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The fundamental group of a circle

Except for some trivial cases we have not, so far, calculated the fundamental
group of a space. In this chapter we shall calculate the fundamental group of
the circle S', the answer being I the integers. Intuitively we see this result
as follows. A closed path f in S1 based at 1 E S1 winds a certain number of
times around the circle; this number is called the winding number or degree
of f. (Start with f(0) = 1 and consider f(t) as t increases; every time we go
once around the circle in an anticlockwise direction record a score of + 1,
every time we go once around in a clockwise direction score -1. The total
score is the winding number or degree of f.) Thus to each closed path f based
at I we get an integer. It turns out that two closed paths are equivalent (i.e.
homotopic rel { 0,1 } ) if and only if their degrees agree. Finally, for each
integer n there is a closed path of degree n.

To get a more precise definition of the degree of a closed path we con-
sider the real numbers mapping onto S' as follows.

e:

t

Figure 16.1
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Geometrically we think of the reals as a spiral with e being the projection
mapping (see Figure 16.1). Note that e1(1) =Z R . The idea now is that
if we are given f: I S' with f(O) = f(1) = 1 then we show that there is a
unique mapT R 0 ande?'=f(themapfiscalledalfftoff)
Since f(I) = 1 we must have E e' (1) =I ; this integer is defined to be
the degree of f. We then go on to show that if f0 and f1 are equivalent paths
in S' then ?(l) =1(l). This leads to a function ir(S' ,l) Z which we
finally show is an isomorphism of groups.

The 'method of calculation' of ir(S' ,1) that we shall be presenting
generalizes to some other spaces; see the subsequent three chapters. In fact
the next lemma is the starting point for a crucial definition in Chapter 17.

16.1 Lemma
Let Ube any open subset ofS'- {I }

R. Then (U) is the disjoint union of the open sets V + n ={ v+n;
v E V } ,n E I, each of which is mapped homeomorphically onto U by e.

Proof We assume that U is an open interval, i.e.

U {exp(2irit);0<a<t<b<l}
for some a,b. Then V =(a,b) and V + n =(a+n,b+n). It is clear that e -'(U)
is the disjoint union of the open sets V + n (n E I). Letdenote the
restriction of e to (a+n,b+n). Clearly is continuous and bijective. To
check that is continuous we consider (a+n, b+n) and let W c(a+n,
b+n) be a closed (and hence compact) subset. Since W is compact and S' is
Hausdorff, induces a homeomorphism W by Theorem 8.8. In
particular is compact and hence closed. This shows that if W is a
closed subset then is also closed; thus is continuous and hence

is a homeomorphism.

16.2 Exercise
Show that the above holds for S1 -{ x}, where x is any point of S'.

16.3 Corollary
If f: X S' is not surjective then f is null homotopic.

Proof If x image (0 then S' - { x } is homeomorphic to (0,1) which is
contractible. (x exp(27ris) for some sand S' =( exp(2irit); s < t < 1 +s }.)

We come now to the first major result of this chapter: the so.called path
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lifting theorem (for e: R S').

16.4 Theorem
Any continuous map f: I S' has a lift?; I -÷R . Furthermore given

E R with e(xo) =f(O) there is a unique lift f with = xo.

Proof For each x E S'let be an open neighbourhood of x such that
(Us) is the disjoint union of open subsets of R each of which are mapped

homeomorphically onto by e. The set x E S' } may be
exi5ressed in the form { Ci I; j E J } which is an open cover of I. Since
I is compact there is a finite subcover of the form

+e1),(t2 e2,t2 —

with t1 + ç> - for i = 1,2,...,n - 1. Now choose a1 E
t1+€1)fori=I,2,...,n— isothat

O=a0<a1 <a2
Obviously f([aj,aj+1]) CS1, but more so f([a1,a1+1]) is contained in an open
subset of S' such that (S1) is the disjoint union of open subsets of R
each of which are mapped home omorphically onto S1 by e.

We shall define liftings ? inductively over [O,ak] for k O,l,...,n such
that = x0. For k = 0 this is trivial: ?(O) =x0; we have no choice.

Figure 16.2
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Suppose that ?:[O,ak] R is defined and is unique. Recall that
f( , ak +1]) c and that e' (Sk) is the disjoint union of j E J } with

Wi -+ being a homeomorphism for each j E J. Now fk(ak) E W for
some unique member W of { j J }; see Figure 16.2. Any extension

must map [ak,ak+1] into W since Eak,ak+1I is path connected. Since
the restriction eIW: W -÷Sk is a homeomorphism there is a unique map p:

-÷ W such that ep =fi [ak,ak+1J (in fact p = fl. Now
define by

?(s) O<s<ak,
=

p(s) ak<s�ak÷1,
which is continuous by the glueing lemma since ?(ak) =p(ak) and is unique
by construction. By induction we obtain?:

Using this theorem we can define the degree of a closed path in S1. Let f
be a closed path in S' based at1 and let ? I -÷ R be the unique lift with
f(O) = 0. Since e1(f(1)) =e'(l) = Z we see is an integer which is
defined to be the degree of f. To show that equivalent paths have the same
degree we shall first show that equivalent paths have equivalent lifts. To do
this we replace I by 12 in the previous theorem to obtain.

16.5 Lemma
Any continuous map F: 12 has a lift 12 R. Furthermore

given x0 E R with e(xo) =F(0,O) there is a unique lift xo.

Proof The proof is quite similar to that of Theorem 16.4. Since 12 is compact
we find

0= a0 <aa < ...< 1,

O = bo <b1< ...<bye = I,

such that C S' , where is the rectangle

= { }

The lifting defined inductively over the rectangles

R0,0, R.0,1 ,...,R.o,m, R1 ,o ,R1

by a process similar to that in Theorem 16.4. We leave the details for the
reader.

As a corollary we have the so-called monodromy theorem for e: R -+St,
which tells us that equivalent paths have the same degree.
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16.6 Corollary
Suppose thatf0 and f1 are equivalent paths in S' based at1. If?

and f1 are lifts with f0(0) =f1(0)

the homotopy rd { 0,1 } between f0 and f1. It lifts
uniquely to P': 12 -÷R with = f1(O). Since F(t,0) =f0(t) and
F(t,l) = f1(t), we have = ?,(t) and = ?(t). Also, is a
path from ?,(1) to ? (1) sinceF(I ,t) = fo(l) = But ,t) E
(f0(1)) Z, which means that F(l,t) is constant and hence?,(1)?j(1)
thus completing the proof. Note that in factprovides a homotopy rel
{0,1}betweenfo and?;.

We are now in a position to calculate the fundamental group of the circle.

16.7 Theorem

ir(S' .1) Z by p( [f]) = deg(f), the degree of f. Recall that
deg(f) = f(l) where f is the unique lift of f with f(O) =0. The function p is
well defined by Corollary 16.6. We shall show thatis an isomorphism of
groups.

First we show that p is a homomorphism. Let denote the lift of f
beginning at a E e' (f(O)). Thus Q0(f) =Tand Qa(f)(t) = + a for a path
in S' beginning at 1. It is clear that

* g) = *

where b = it!) + a. Thus if[fi, E ir(S' , I) then

[g]) = p([fsg)
= £o(f*g)(l)
= where

=

=

=

=

which shows that is a homomorphism.
To show that is suijective is rather easy: given n E Z let g: IR be

given by g(t) =nt; then eg: I -+S1 is a closed path based at 1. Since gis the
lift of eg with g(O) =Owe have = deg(eg) = g(1) = n which shows
that is surjective.

To show that is injective we suppose that = 0, I.e. deg(f) =0.
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This means that the lift Tof f satisfies = =0. Since P. is contractible
we have e0 (rel f 0,1 }); in other words there is a map F:j2 R with
F(0,t) = F(1,t) = 0 and F(t,O) = F(t,1) 0. Indeed F(s,t) (l—s)T(t).

But eF: 12 S' with eF(0,t) f(t), eF(1,t) 1, eF(t,0) = eF(t, 1) = 1and
so f e1 (rel { 0,1 }), i.e. [fJ 1 E ,r(S' ,l), which proves thatis injec-
five and hence is an isomorphism.

This completes the proof of the main result of this chapter. As a corollary
we immediately obtain:

16.8 Corollary
The fundamental group of the torus is Z X Z.

We close the chapter by giving two applications. The first is well known
and is the fundamental theorem of algebra.

16.9 Corollary
Every non-constant complex polynomial has a root.

Proof We may assume without loss of generality that our polynomial has the
form

p(z)a0+alz+...+ak_Jzk_l +zk
with k � 1. Assume that p has no zero (i.e. no root). Define a function G:
IX C Cby

G(t,r)
p(rexp(2irit)) Ip(r)I

exp(2irit))I p(r)

for 0 � t � 1 and r � 0. Clearly G is continuous. Define F: 12 -+S' by

G(t,s/(1-s)) 0<t<I,0�s<1,
F(t,s) =

exp(2irikt) 0�t<1,sl.
By observing that

urn F(t,s) lim G(t,s/(I—s)) = Urn G(t,r) = (exp(2irit))k

we see that F is continuous. Also, we see that F is a homotopy rel { 0.1 }
between f0(t) = F(t,0) and f3(t) F(t,1). But f0(t) = 1 and f1(t) = exp
(2 irikt), so that deg(fo) = 0 while deg(f1) = k, which is a contradiction
(unless k = 0).

The second application comes under the title of Brouwer's fixed point
theorem In the plane. Recall that in Chapter 10 we proved a fixed point
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theorem for I; the next result is the analogous theorem for D2 .The result is
also true in higher dimensions but the proof requires tools other than the
fundamental group.

16.10 Corollary
Any continuous map f: D2 -÷D2 has a fixed point, i.e. a point x

such that f(x) =x.

Figure 16.3

Proof Suppose to the contrary that xf(x) for all x E D2. Then we may
defIne a function D2 -÷ S1 by setting p(x) to be the point on S1 obtained
from the intersection of the line segment from f(x) to x extended to meet
S'; see Figure 16.3. Thatis continuous is obvious. Let i: S' D2 denote

the inclusion, then = 1 and we have a commutative diagram

SI
I

l'his leads to another commutative diagram

ir(S1,1)
1

ir(S',l)

ir(D2,1)

But ir(D2,I) = 0, since D2 is contractible, and so we get a commutative
diagram

which is impossible. This contradiction proves the result.
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16.11 Exercises
(a) Given E ir(S1,l), let be the contour { f(t); tEl ) C C and

define

11 dzw(f)=—i —
21riJ7 z

Prove that (i) w(f) is an integer,
(ii) w(f) is independent of the choice of f E [f
(iii) w(f) = deg(f).

(b) Let f: S1 -+S' be the mapping defined by f(z) = for some integer
k. Describe f,,: ir(S1 .1) -+ ir(S' , 1) in terms of the isomorphism

(c) Let be the following closed paths in S' X S1.

a(t) = (exp(2irit), 1), (1, exp(2irit).)

Show, by means of diagrams, that a * * a.
(d) Calculate ir(S1XS1 X ...X Si, (1,1,..., 1)).

n

(e) Using Exercise 15.16(c) deduce that the torus is not homeomorphic
to the sphere S2.

(0 Prove that the set of points z E D2 for which D2 -{ z } is simply
connected is precisely S2. Hence prove that if f: D2D2 is a
homeomorphism then I(S1) =S'.

(g) Find the fundamental groups of the following spaces.
(i) C C-{O};
(ii) C */G, where G is the group of homeomorphisms { n E
Z } with cp(z) = 2z.

(iii) C *IH where H = { n E Z } with =

(iv) C */ { e, a }, where e is the identity homeomorphism and
az =—i


