The fundamental group of a circle

Except for some trivial cases we have not, so far, calculated the fundamental group of a space. In this chapter we shall calculate the fundamental group of the circle \mathbf{S}^{1}, the answer being \mathbb{Z} the integers. Intuitively we see this result as follows. A closed path f in S^{1} based at $1 \in S^{1}$ winds a certain number of times around the circle; this number is called the winding number or degree of f. (Start with $f(0)=1$ and consider $f(t)$ as t increases; every time we go once around the circle in an anticlockwise direction record a score of +1 , every time we go once around in a clockwise direction score -1. The total score is the winding number or degree of f.) Thus to each closed path f based at 1 we get an integer. It turns out that two closed paths are equivalent (i.e. homotopic rel $\{0,1\}$) if and only if their degrees agree. Finally, for each integer n there is a closed path of degree n .

To get a more precise definition of the degree of a closed path we consider the real numbers R mapping onto S^{1} as follows.

$$
\begin{aligned}
& e: \quad R \rightarrow S^{\mathbf{1}}, \\
& t \rightarrow \exp (2 \pi i t) .
\end{aligned}
$$

Figure 16.1

Geometrically we think of the reals as a spiral with e being the projection mapping (see Figure 16.1). Note that $\mathrm{e}^{-1}(1)=\mathbb{Z} \subseteq \mathbf{R}$. The idea now is that if we are given $f: I \rightarrow S^{1}$ with $f(0)=f(1)=1$ then we show that there is a unique map $\widetilde{\mathrm{f}} \mathrm{I} \rightarrow \mathbb{R}$ with $\widetilde{\mathrm{f}}(0)=0$ and $\widetilde{\mathrm{e}}=\mathrm{f}$ (the map $\widetilde{\mathrm{f}}$ is called a lift of f) Since $f(1)=1$ we must have $\widetilde{f}(1) \in \mathrm{e}^{-1}(1)=\mathbb{Z}$; this integer is defined to be the degree of f. We then go on to show that if f_{0} and f_{1} are equivalent paths in S^{1} then $\widetilde{f}_{0}(1)=\widetilde{f}_{1}(1)$. This leads to a function $\pi\left(S^{1}, 1\right) \rightarrow \mathbb{Z}$ which we finally show is an isomorphism of groups.

The 'method of calculation' of $\pi\left(\mathbf{S}^{1}, 1\right)$ that we shall be presenting generalizes to some other spaces; see the subsequent three chapters. In fact the next lemma is the starting point for a crucial definition in Chapter 17.

16.1 Lemma

Let U be any open subset of $S^{1}-\{1\}$ and let $V=I \cap e^{-1}(U) \subseteq$ R. Then $e^{-1}(U)$ is the disjoint union of the open sets $V+n=\{v+n$; $v \in V\}, n \in \mathbb{Z}$, each of which is mapped homeomorphically onto U by e.

Proof We assume that U is an open interval, i.e.

$$
\mathrm{U}=\{\exp (2 \pi \mathrm{it}) ; 0 \leq \mathrm{a}<\mathrm{t}<\mathrm{b} \leq 1\}
$$

for some a, b. Then $V=(a, b)$ and $V+n=(a+n, b+n)$. It is clear that $e^{-1}(U)$ is the disjoint union of the open sets $V+n(n \in \mathbb{Z})$. Let e_{n} denote the restriction of e to $(a+n, b+n)$. Clearly e_{n} is continuous and bijective. To check that $e_{n}{ }^{-1}$ is continuous we consider $(a+n, b+n)$ and let $W \subseteq(a+n$, $b+n$) be a closed (and hence compact) subset. Since W is compact and S^{1} is Hausdorff, e_{n} induces a homeomorphism $W \rightarrow e_{n}(W)$ by Theorem 8.8. In particular $e_{n}(W)$ is compact and hence closed. This shows that if W is a closed subset then $e_{n}(W)$ is also closed; thus $e_{n}{ }^{-1}$ is continuous and hence e_{n} is a homeomorphism.

16.2 Exercise

Show that the above holds for $S^{1}-\{x\}$, where x is any point of S^{1}.

16.3 Corollary

If $f: X \rightarrow S^{1}$ is not surjective then f is null homotopic.
Proof If $\mathbf{x} \notin$ image (f) then $S^{1}-\{x\}$ is homeomorphic to $(0,1)$ which is contractible. $\left(x=\exp \left(2 \pi\right.\right.$ is) for some s and $S^{1}=\{\exp (2 \pi i t) ; s \leq t<1+s\}$.)

We come now to the first major result of this chapter: the so-called path
lifting theorem (for $\mathrm{e}: \mathbf{R} \rightarrow \mathbf{S}^{\mathbf{1}}$).

16.4 Theorem

Any continuous map $\mathrm{f}: \mathrm{I} \rightarrow \mathrm{S}^{\mathbf{1}}$ has a lift $\widetilde{\mathrm{f}} \mathrm{I} \rightarrow \mathrm{R}$. Furthermore given $x_{0} \in R$ with $e\left(x_{0}\right)=f(0)$ there is a unique lift \widetilde{f} with $\widetilde{f}(0)=x_{0}$.

Proof For each $x \in S^{1}$ let U_{x} be an open neighbourhood of x such that $e^{-1}\left(U_{x}\right)$ is the disjoint union of open subsets of R each of which are mapped homeomorphically onto U_{x} by e. The set $\left\{f^{-1}\left(U_{x}\right) ; x \in S^{1}\right\}$ may be expressed in the form $\left\{\left(\mathrm{x}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right) \cap \mathrm{I} ; \mathrm{j} \in \mathrm{J}\right\}$ which is an open cover of I . Since I is compact there is a finite subcover of the form

$$
\left[0, t_{1}+\epsilon_{1}\right),\left(t_{2}-\epsilon_{2}, t_{2}+\epsilon_{2}\right), \ldots,\left(t_{n}-\epsilon_{n}, 1\right]
$$

with $t_{i}+\epsilon_{i}>t_{i+1}-\epsilon_{i+1}$ for $i=1,2, \ldots, n-1$. Now choose $a_{i} \in\left(t_{i+1}-\epsilon_{i+1}\right.$, $t_{i}+\epsilon_{i}$) for $i=1,2, \ldots, n-1$ so that

$$
0=a_{0}<a_{1}<a_{2}<\ldots<a_{n}=1 .
$$

Obviously $f\left(\left[a_{i}, a_{i+1}\right]\right) \subset S^{1}$, but more so $f\left(\left[a_{i}, a_{i+1}\right]\right)$ is contained in an open subset S_{i} of \mathbf{S}^{1} such that $e^{-1}\left(S_{i}\right)$ is the disjoint union of open subsets of R each of which are mapped homeomorphically onto S_{i} by e.

We shall define liftings $\widetilde{f_{k}}$ inductively over $\left[0, a_{k}\right]$ for $k=0,1, \ldots, n$ such that $\widetilde{f}_{k}(0)=x_{0}$. For $k=0$ this is trivial: $\widetilde{f}_{0}(0)=x_{0}$; we have no choice.

Figure 16.2

Suppose that $\widetilde{f}_{k}:\left[0, a_{k}\right] \rightarrow R$ is defined and is unique. Recall that $f\left(\left[a_{k}, a_{k+1}\right]\right) \subseteq S_{k}$ and that $e^{-1}\left(S_{k}\right)$ is the disjoint union of $\left\{W_{j} ; j \in J\right\}$ with $e \mid W_{j}: W_{j} \rightarrow S_{k}$ being a homeomorphism for each $j \in J$. Now $\widetilde{f}_{k}\left(a_{k}\right) \in W$ for some unique member W of $\left\{W_{j} ; j \in J\right\}$; see Figure 16.2. Any extension \widetilde{f}_{k+1} must map $\left[a_{k}, a_{k+1}\right]$ into W since $\left[a_{k}, a_{k+1}\right]$ is path connected. Since the restriction $\mathrm{e} \mid \mathrm{W}: \mathrm{W} \rightarrow \mathrm{S}_{\mathrm{k}}$ is a homeomorphism there is a unique map ρ : $\left[a_{k}, a_{k+1}\right] \rightarrow W$ such that $e \rho=f \mid\left[a_{k}, a_{k+1}\right]$ (in fact $\rho=(e \mid W)^{-1} f$). Now define \tilde{f}_{k+1} by

$$
\widetilde{f}_{k+1}(s)= \begin{cases}\widetilde{f}_{k}(s) & 0 \leq s \leq a_{k} \\ \rho(s) & a_{k} \leq s \leq a_{k+1}\end{cases}
$$

which is continuous by the glueing lemma since $\widetilde{f_{k}}\left(a_{k}\right)=\rho\left(a_{k}\right)$ and is unique by construction. By induction we obtain $\widetilde{\mathrm{f}}$.

Using this theorem we can define the degree of a closed path in S^{1}. Let f be a closed path in S^{1} based at 1 and let $\widetilde{f}: I \rightarrow R$ be the unique lift with $\widetilde{f}(0)=0$. Since $e^{-1}(f(1))=e^{-1}(1)=\mathbb{Z}$ we see that $\widetilde{f}(1)$ is an integer which is defined to be the degree of f. To show that equivalent paths have the same degree we shall first show that equivalent paths have equivalent lifts. To do this we replace I by $\mathrm{I}^{\mathbf{2}}$ in the previous theorem to obtain.

16.5 Lemma

Any continuous map $F: I^{2} \rightarrow S^{1}$ has a lift $\widetilde{F}: I^{2} \rightarrow R$. Furthermore given $x_{0} \in \mathbb{R}$ with $e\left(x_{0}\right)=F(0,0)$ there is a unique lift \widetilde{F} with $\widetilde{F}(0,0)=x_{0}$.

Proof The proof is quite similar to that of Theorem 16.4. Since I^{2} is compact we find

$$
\begin{aligned}
& 0=a_{0}<a_{1}<\ldots<a_{n}=1, \\
& 0=b_{0}<b_{1}<\ldots<b_{m}=1,
\end{aligned}
$$

such that $F\left(R_{i, j}\right) \subset S^{1}$, where $R_{i, j}$ is the rectangle

$$
R_{i, j}=\left\{(t, s) \in I^{2} ; a_{i} \leq t \leq a_{i+1}, b_{j} \leq s \leq b_{j+1}\right\}
$$

The lifting \widetilde{F} is defined inductively over the rectangles

$$
\mathbf{R}_{\mathbf{0}, \mathbf{0}}, \mathbf{R}_{\mathbf{0}, \mathbf{1}}, \ldots, \mathbf{R}_{\mathbf{0 , m}}, \mathbf{R}_{\mathbf{1}, 0}, \mathbf{R}_{1,1}, \ldots
$$

by a process similar to that in Theorem 16.4. We leave the details for the reader.

As a corollary we have the so-called monodromy theorem for $\mathrm{e}: \mathbf{R} \rightarrow \mathbf{S}^{\mathbf{1}}$, which tells us that equivalent paths have the same degree.

16.6 Corollary

Suppose that f_{0} and f_{1} are equivalent paths in S^{1} based at 1 . If $\widetilde{f_{0}}$ and \widetilde{f}_{1} are lifts with $\widetilde{f}_{0}(0)=\widetilde{f}_{1}(0)$ then $\widetilde{f}_{0}(1)=\widetilde{f}_{1}(1)$.

Proof Let F be the homotopy rel $\{0,1\}$ between f_{0} and f_{1}. It lifts uniquely to $\widetilde{F}: I^{2} \rightarrow R$ with $\widetilde{F}(0,0)=\widetilde{f}_{0}(0)=\widetilde{f}_{1}(0)$. Since $F(t, 0)=f_{0}(t)$ and $F(t, 1)=f_{1}(t)$, we have $\widetilde{F}(t, 0)=\widetilde{f}_{0}(t)$ and $\widetilde{F}(t, 1)=\widetilde{f}_{1}(t)$. Also, $\widetilde{F}(1, t)$ is a path from $\widetilde{f}_{0}(1)$ to $\widetilde{f}_{1}(1)$ since $F(1, t)=f_{0}(1)=f_{1}(1)$. But $\widetilde{F}(1, t) \in e^{-1}$ $\left(f_{0}(1)\right) \cong \mathbb{Z}$, which means that $\widetilde{F}(1, t)$ is constant and hence $\widetilde{f}_{0}(1)=\widetilde{f}_{1}(1)$ thus completing the proof. Note that in fact $\widetilde{\mathbf{F}}$ provides a homotopy rel $\{0,1\}$ between $\widetilde{\mathrm{f}_{0}}$ and $\widetilde{\mathrm{f}_{1}}$.

We are now in a position to calculate the fundamental group of the circle.

16.7 Theorem $\pi\left(\mathbf{S}^{1}, 1\right) \cong \mathbb{Z}$.

Proof Define $\varphi: \pi\left(\mathrm{S}^{1}, 1\right) \rightarrow \mathbb{Z}$ by $\varphi([\mathrm{f}])=\operatorname{deg}(\mathrm{f})$, the degree of f . Recall that $\operatorname{deg}(f)=\widetilde{f}(1)$ where \widetilde{f} is the unique lift of f with $\widetilde{f}(0)=0$. The function φ is well defined by Corollary 16.6. We shall show that φ is an isomorphism of groups.

First we show that φ is a homomorphism. Let $\ell_{a}(f)$ denote the lift of f beginning at a $\in e^{-1}(f(0))$. Thus $\ell_{0}(f)=\widetilde{f}$ and $\ell_{a}(f)(t)=\widetilde{f}(t)+a$ for a path in S^{1} beginning at 1 . It is clear that

$$
\ell_{a}(f * g)=\ell_{a}(f) * \ell_{b}(g)
$$

where $b=\widetilde{f}(1)+a$. Thus if $[f],[g] \in \pi\left(S^{1}, 1\right)$ then

$$
\begin{aligned}
\varphi([\mathrm{f}][\mathrm{g}]) & =\varphi([\mathrm{f} * \mathrm{~g}]=\widetilde{\mathrm{f}} * \mathrm{~g}(1) \\
& =\ell_{0}(\mathrm{f} * \mathrm{~g})(1) \\
& =\left(\ell_{0}(\mathrm{f}) * \ell_{\mathrm{b}}(\mathrm{~g})\right)(1) \text { where } \mathrm{b}=\widetilde{\mathrm{f}}(1) \\
& =\ell_{\mathrm{b}}(\mathrm{~g})(1) \\
& =\mathrm{b}+\widetilde{\mathrm{g}}(1) \\
& =\widetilde{\mathrm{f}}(1)+\widetilde{\mathrm{g}}(1) \\
& =\varphi([\mathrm{f}])+\varphi([\mathrm{g}])
\end{aligned}
$$

which shows that φ is a homomorphism.
To show that φ is surjective is rather easy: given $\mathrm{n} \in \mathbb{Z}$ let $\mathrm{g}: \mathrm{I} \rightarrow \mathbb{R}$ be given by $g(t)=n t$; then eg: $I \rightarrow S^{1}$ is a closed path based at 1 . Since g is the lift of eg with $g(0)=0$ we have $\varphi([\mathrm{eg}])=\operatorname{deg}(\mathrm{eg})=\mathrm{g}(1)=\mathrm{n}$ which shows that φ is surjective.

To show that φ is injective we suppose that $\varphi([f])=0$, i.e. $\operatorname{deg}(f)=0$.

This means that the lift \widetilde{f} of f satisfies $\widetilde{f}(0)=\widetilde{f}(1)=0$. Since \mathbf{R} is contractible we have $\widetilde{f} \simeq \epsilon_{0}($ rel $\{0,1\})$; in other words there is a map $F: I^{2} \rightarrow \mathbb{R}$ with $F(0, t)=\widetilde{f}(t), F(1, t)=0$ and $F(t, 0)=F(t, 1)=0$. Indeed $F(s, t)=(1-s) \widetilde{f}(t)$. But eF: $I^{2} \rightarrow S^{1}$ with $e F(0, t)=f(t), e F(1, t)=1, e F(t, 0)=e F(t, 1)=1$ and so $f \simeq \epsilon_{1}$ (rel $\{0,1\}$), i.e. [$\left.f\right]=1 \in \pi\left(S^{1}, 1\right)$, which proves that φ is injective and hence φ is an isomorphism.

This completes the proof of the main result of this chapter. As a corollary we immediately obtain:

16.8 Corollary

The fundamental group of the torus is $\mathbb{Z} \times \mathbb{Z}$.
We close the chapter by giving two applications. The first is well known and is the fundamental theorem of algebra.

16.9 Corollary

Every non-constant complex polynomial has a root.
Proof We may assume without loss of generality that our polynomial has the form

$$
p(z)=a_{0}+a_{1} z+\ldots+a_{k-1} z^{k-1}+z^{k}
$$

with $k \geq 1$. Assume that p has no zero (i.e. no root). Define a function G : I $X[0, \infty) \rightarrow \mathbf{S}^{\mathbf{1}} \subset \mathbf{C}$ by

$$
G(t, r)=\frac{p(r \exp (2 \pi i t))}{|p(r \exp (2 \pi i t))|} \frac{|p(r)|}{p(r)}
$$

for $0 \leq t \leq 1$ and $r \geq 0$. Clearly G is continuous. Define $F: I^{2} \rightarrow S^{1}$ by

$$
F(t, s)= \begin{cases}G(t, s /(1-s)) & 0 \leq t \leq 1,0 \leq s<1 \\ \exp (2 \pi i k t) & 0 \leq t \leq 1, s=1\end{cases}
$$

By observing that

$$
\lim F(t, s)=\lim G(t, s /(1-s))=\lim G(t, r)=(\exp (2 \pi i t))^{k}
$$

$$
s \rightarrow 1 \quad s \rightarrow 1 \quad r \rightarrow \infty
$$

we see that \mathbf{F} is continuous. Also, we see that \mathbf{F} is a homotopy rel $\{0.1\}$ between $f_{0}(t)=F(t, 0)$ and $f_{1}(t)=F(t, 1)$. But $f_{0}(t)=1$ and $f_{1}(t)=\exp$ ($2 \pi \mathrm{ikt}$), so that $\operatorname{deg}\left(f_{0}\right)=0$ while $\operatorname{deg}\left(f_{1}\right)=k$, which is a contradiction (unless $\mathrm{k}=0$).

The second application comes under the title of Brouwer's fixed point theorem in the plane. Recall that in Chapter 10 we proved a fixed point
theorem for I; the next result is the analogous theorem for D^{2}. The result is also true in higher dimensions but the proof requires tools other than the fundamental group.

16.10 Corollary

Any continuous map $f: D^{2} \rightarrow D^{2}$ has a fixed point, i.e. a point x such that $\mathrm{f}(\mathrm{x})=\mathrm{x}$.

Figure 16.3

Proof Suppose to the contrary that $x \neq f(x)$ for all $x \in D^{2}$. Then we may define a function $\varphi: D^{2} \rightarrow S^{1}$ by setting $\varphi(x)$ to be the point on S^{1} obtained from the intersection of the line segment from $f(x)$ to x extended to meet S^{1}; see Figure 16.3. That φ is continuous is obvious. Let i: $S^{1} \rightarrow D^{2}$ denote the inclusion, then $\varphi \mathrm{i}=1$ and we have a commutative diagram

This leads to another commutative diagram

But $\pi\left(D^{2}, 1\right)=0$, since D^{2} is contractible, and so we get a commutative diagram

which is impossible. This contradiction proves the result.

16.11 Exercises

(a) Given $[f] \in \pi\left(S^{1}, 1\right)$, let γ be the contour $\{f(t) ; t \in I\} \subset C$ and define
$w(f)=\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathrm{dz}}{\mathrm{z}}$
Prove that (i) $w(f)$ is an integer,
(ii) $w(f)$ is independent of the choice of $f \in[f]$,
(iii) $w(f)=\operatorname{deg}(f)$.
(b) Let $\mathrm{f}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ be the mapping defined by $\mathrm{f}(\mathrm{z})=\mathrm{z}^{\mathrm{k}}$ for some integer k. Describe $f_{*}: \pi\left(\mathbf{S}^{1}, 1\right) \rightarrow \pi\left(\mathbf{S}^{1}, 1\right)$ in terms of the isomorphism $\pi\left(S^{1}, 1\right) \cong \mathbf{Z}$.
(c) Let α, β be the following closed paths in $S^{1} \times S^{1}$.
$\alpha(t)=(\exp (2 \pi i t), 1), \quad \beta(t)=(1, \exp (2 \pi i t)$.
Show, by means of diagrams, that $\alpha * \beta \sim \beta * \alpha$.
(d) Calculate $\pi(\underbrace{S^{1} \times S^{1} \times \ldots \times S^{1}}_{n},(1,1, \ldots, 1))$.
(e) Using Exercise 15.16(c) deduce that the torus is not homeomorphic to the sphere \mathbf{S}^{2}.
(f) Prove that the set of points $z \in D^{2}$ for which $D^{2}-\{z\}$ is simply connected is precisely S^{2}. Hence prove that if $f: D^{2} \rightarrow D^{2}$ is a homeomorphism then $f\left(\mathbf{S}^{1}\right)=S^{1}$.
(g) Find the fundamental groups of the following spaces.
(i) $\mathbb{C}^{*}=\mathbf{C}-\{0\}$;
(ii) C^{*} / G, where G is the group of homeomorphisms $\left\{\varphi^{\mathrm{n}} ; \mathrm{n} \in\right.$ Z \} with $\varphi(z)=2 z$.
(iii) C^{*} / H where $\mathrm{H}=\left\{\psi^{\mathrm{n}} ; \mathrm{n} \in \mathbb{Z}\right\}$ with $\psi(\mathrm{z})=2 \overline{\mathrm{z}}$.
(iv) $\mathbb{C}^{*} /\{e, a\}$, where e is the identity homeomorphism and $\mathrm{az}=-\overline{\mathbf{z}}$.

