of doing this. One can use only techniques of algebra; this proof is long and arduous. Or one can develop the theory of analytic functions of a complex variable to the point where it becomes a trivial corollary of Liouville's theorem. Or one can prove it as a relatively easy corollary of our computation of the fundamental group of the circle; this we do now.

Theorem 56.1 (The fundamental theorem of algebra). A polynomial equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

of degree $n>0$ with real or complex coefficients has at least one (real or complex) root.

Proof. Step 1. Consider the map $f: S^{1} \rightarrow S^{1}$ given by $f(z)=z^{n}$, where z is a complex number. We show that the induced homomorphism f_{*} of fundamental groups is injective.

Let $p_{0}: I \rightarrow S^{1}$ be the standard loop in S^{1},

$$
p_{0}(s)=e^{2 \pi i s}=(\cos 2 \pi s, \sin 2 \pi s) .
$$

Its image under f_{*} is the loop

$$
f\left(p_{0}(s)\right)=\left(e^{2 \pi i s}\right)^{n}=(\cos 2 \pi n s, \sin 2 \pi n s)
$$

This loop lifts to the path $s \rightarrow n s$ in the covering space \mathbb{R}. Therefore, the loop $f \circ p_{0}$ corresponds to the integer n under the standard isomorphism of $\pi_{1}\left(S^{1}, b_{0}\right)$ with the integers, whereas p_{0} corresponds to the number 1 . Thus f_{*} is "multiplication by n " in the fundamental group of S^{1}, so that in particular, f_{*} is injective.

Step 2. We show that if $g: S^{1} \rightarrow \mathbb{R}^{2}-\mathbf{0}$ is the map $g(z)=z^{n}$, then g is not nulhomotopic.

The map g equals the map f of Step 1 followed by the inclusion map $j: S^{1} \rightarrow$ $\mathbb{R}^{2}-\mathbf{0}$. Now f_{*} is injective, and j_{*} is injective because S^{1} is a retract of $\mathbb{R}^{2}-\mathbf{0}$. Therefore, $g_{*}=j_{*} \circ f_{*}$ is injective. Thus g cannot be nulhomotopic.

Step 3. Now we prove a special case of the theorem. Given a polynomial equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

we assume that

$$
\left|a_{n-1}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|<1
$$

and show that the equation has a root lying in the unit ball B^{2}.
Assume it has no such root. Then we can define a map $k: B^{2} \rightarrow \mathbb{R}^{2}-\mathbf{0}$ by the equation

$$
k(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

Let h be the restriction of k to S^{1}. Because h extends to a map of the unit ball into $\mathbb{R}^{2}-\mathbf{0}$, the map h is nulhomotopic.

On the other hand, we shall define a homotopy F between h and the map g of Step 2; since g is not nulhomotopic, we have a contradiction. We define $F: S^{1} \times I \rightarrow$ $\mathbb{R}^{2}-\mathbf{0}$ by the equation

$$
F(z, t)=z^{n}+t\left(a_{n-1} z^{n-1}+\cdots+a_{0}\right) .
$$

See Figure 56.1; $F(z, t)$ never equals $\mathbf{0}$ because

$$
\begin{aligned}
|F(z, t)| & \geq\left|z^{n}\right|-\left|t\left(a_{n-1} z^{n-1}+\cdots+a_{0}\right)\right| \\
& \geq 1-t\left(\left|a_{n-1} z^{n-1}\right|+\cdots+\left|a_{0}\right|\right) \\
& =1-t\left(\left|a_{n-1}\right|+\cdots+\left|a_{0}\right|\right)>0 .
\end{aligned}
$$

Figure 56.1
Step 4. Now we prove the general case. Given a polynomial equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

let us choose a real number $c>0$ and substitute $x=c y$. We obtain the equation

$$
(c y)^{n}+a_{n-1}(c y)^{n-1}+\cdots+a_{1}(c y)+a_{0}=0
$$

or

$$
y^{n}+\frac{a_{n-1}}{c} y^{n-1}+\cdots+\frac{a_{1}}{c^{n-1}} y+\frac{a_{0}}{c^{n}}=0 .
$$

If this equation has the root $y=y_{0}$, then the original equation has the root $x_{0}=c y_{0}$. So we need merely choose c large enough that

$$
\left|\frac{a_{n-1}}{c}\right|+\left|\frac{a_{n-2}}{c^{2}}\right|+\cdots+\left|\frac{a_{1}}{c^{n-1}}\right|+\left|\frac{a_{0}}{c^{n}}\right|<1
$$

to reduce the theorem to the special case considered in Step 3.

