Proof. After a linear transformation (over K which is algebraically closed), we can effectively assume that $Q\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=x_{0} x_{1}-x_{2} x_{3}$ (this amounts to writing the space as a direct sum of two hyperbolic planes). The isomorphism of the quadric to $\mathbf{P}^{1} \times \mathbf{P}^{1}$ is thus a particular case of Proposition B-1.6.

The following two lemmas are special cases of Bézout's theorem, proven further down (Theorem B-2.4).
1.13. Lemma. Let C be a curve of degree d (i.e., defined by a homogeneous polynomial of degree d) in the projective plane and not containing the line D of \mathbf{P}^{2}. Then $C \cap D$ is composed of d points (counted with multiplicity).

Proof. Let $F\left(x_{0}, x_{1}, x_{2}\right)=0$ be the equation of degree d of C and $a_{0} x_{0}+$ $a_{1} x_{1}+a_{2} x_{2}=0$ that of D. One of the a_{i} is non-zero, so we can take it to be a_{0}. The equation of points of intersection of C and D is therefore written $x_{0}=-\frac{a_{1}}{a_{0}} x_{1}-\frac{a_{2}}{a_{0}} x_{2}$ and

$$
F\left(-\frac{a_{1}}{a_{0}} x_{1}-\frac{a_{2}}{a_{0}} x_{2}, x_{1}, x_{2}\right)=0
$$

which factors as $a \prod_{i}\left(\alpha_{i} x_{1}-\beta_{i} x_{2}\right)^{m_{i}}$ with $\sum_{i} m_{i}=d$.
1.14. Lemma. If C is a curve of degree d in the projective plane with no components in common with the conic D of \mathbf{P}^{2}, then $C \cap D$ is composed of $2 d$ points (counted with multiplicity).

Proof. If the conic is composed of two lines, this lemma can be deduced from the previous lemma. We can thus assume that the conic is irreducible. Up to a linear change of coordinates, we can assume that the conic is written as $x_{1} x_{0}-x_{2}^{2}=0$ and hence that it is parametrized by the map from \mathbf{P}^{1} to \mathbf{P}^{2} given by $\left(y_{0}, y_{1}\right) \mapsto\left(y_{0}^{2}, y_{1}^{2}, y_{0} y_{1}\right)$. Let $F\left(x_{0}, x_{1}, x_{2}\right)=0$ be the equation of C. The equation of the points of intersection of C and D is thus written $P=\left(y_{0}^{2}, y_{1}^{2}, y_{0} y_{1}\right)$ and

$$
F\left(y_{0}^{2}, y_{1}^{2}, y_{0} y_{1}\right)=0
$$

which factors into $a \prod_{i}\left(\alpha_{i} y_{1}-\beta_{i} y_{0}\right)^{m_{i}}$ with $\sum_{i} m_{i}=2 d$.
Notation. We denote by $S_{n, d}$ the vector space of homogeneous polynomials of degree d in x_{0}, \ldots, x_{n}, and if P_{1}, \ldots, P_{r} are points of \mathbf{P}^{n}, we denote by $S_{n, d}\left(P_{1}, \ldots, P_{r}\right)$ the subspace of $S_{n, d}$ formed of polynomials which vanish at each P_{i}.
1.15. Definition. A linear system of hypersurfaces S of degree d in \mathbf{P}^{n} is a vector subspace S of $S_{n, d}$.

The set of hypersurfaces corresponding to the polynomials of S can be seen as a linear subvariety of dimension $\operatorname{dim}(S)-1$ in the projective space corresponding to $S_{n, d}$.
1.16. Lemma. We have the following formulas:

$$
\operatorname{dim} S_{n, d}=\binom{n+d}{d} \quad \text { and } \quad \operatorname{dim} S_{n, d}\left(P_{1}, \ldots, P_{r}\right) \geqslant \operatorname{dim} S_{n, d}-r .
$$

The lemma is obvious by noticing that vanishing at point P is a linear condition on the coefficients of a polynomial. The computation of the exact dimension of $S_{n, d}\left(P_{1}, \ldots, P_{r}\right)$ can however be tricky.
1.17. Examples. We have
$\operatorname{dim} S_{2, d}=\frac{(d+2)(d+1)}{2}$ and $\operatorname{dim} S_{2, d}\left(P_{1}, \ldots, P_{r}\right) \geqslant \frac{(d+2)(d+1)}{2}-r$ and, in particular, $\operatorname{dim} S_{2,2}=6$ and $\operatorname{dim} S_{2,2}\left(P_{1}, \ldots, P_{r}\right) \geqslant 6-r$. Thus there always passes at least one conic through any five given points. We can specify under which conditions such a conic is unique.
1.18. Lemma. Through any five points P_{1}, \ldots, P_{5} in the projective plane, there always passes a conic. Furthermore, if no four of the points are colinear, the conic is unique, i.e., $\operatorname{dim} S_{2,2}\left(P_{1}, \ldots, P_{5}\right)=1$.

Proof. We will first treat the case where three of the points, P_{1}, P_{2}, P_{3}, are colinear. The conic must contain the line $L=0$ defined by the three points. Hence, we have $S_{2,2}\left(P_{1}, \ldots, P_{5}\right)=L S_{2,1}\left(P_{4}, P_{5}\right)$ since P_{4} and P_{5} are not on the line $L=0$. There is only one line which passes through P_{4} and P_{5}, hence $\operatorname{dim} S_{2,1}\left(P_{4}, P_{5}\right)=1$ and $\operatorname{dim} S_{2,2}\left(P_{1}, \ldots, P_{5}\right)=1$. We will now treat the case where no three of the P_{i} are colinear. Suppose $\operatorname{dim} S_{2,2}\left(P_{1}, \ldots, P_{5}\right)>1$, and let P_{6} be a point distinct from P_{4} and P_{5} on the line $L=0$ defined by these two points. We would then have $\operatorname{dim} S_{2,2}\left(P_{1}, \ldots, P_{6}\right) \geqslant 1$, and a corresponding conic containing P_{4}, P_{5}, P_{6} must contain the whole line hence be composed of two lines, and then P_{1}, P_{2}, P_{3} would be colinear.

The dimension of $S_{2,3}$ is 10 . Therefore, there is always a cubic passing through any nine points in the projective plane plane. If 4 of these points are colinear, the cubic must contain the corresponding line, and if 7 of these points are on the same conic, the cubic must contain the corresponding conic.
1.19. Definition. A point $P=\left(x_{0}, \ldots, x_{n}\right)$ on a hypersurface $V=\{P \in$

