Corso di Laurea in Matematica – Geometria 2 Foglio di esercizi n. 6 – a.a. 2017-18

Da consegnare: martedì 21 novembre

Esercizio 1. (Manetti, Esercizio 10.6) Dimostrare, come affermato nella Definizione 10.17, che per uno spazio topologico non vuoto X le seguenti condizioni sono equivalenti:

- 1. X ha il tipo di omotopia di un punto.
- 2. Per ogni $p \in X$ l'applicazione costante $f: X \to X$ data da f(x) = p, è omotopa all'identità.
- 3. Esiste $p \in X$ tale che l'applicazione costante $f: X \to X$ data da f(x) = p, è omotopa all'identità.

Esercizio 2. (Manetti, Esercizio 10.12.) Sia X uno spazio topologico e siano $f,g:X\to S^n$ due applicazioni continue. Utilizzando l'espressione algebrica

$$\frac{tf(x) + (1-t)g(x)}{\|tf(x) + (1-t)g(x)\|}, \quad t \in [0,1]$$

mostrare che se $f(x) \neq -g(x)$ per ogni $x \in X$, allora f è omotopa a g.

Esercizio 3. (Manetti, Esercizio 12.32.) Siano $f, g: S^1 \to S^1$ due applicazioni continue tali che $f(x) \neq g(x)$ per ogni x. Provare che f e g sono omotope. Suggerimento: usare l'esercizio precedente.

Esercizio 4. (Manetti, Esercizio 11.11.) Provare che ogni applicazione continua omotopa ad una costante induce l'omomorfismo nullo tra i rispettivi gruppi fondamentali.