The fundamental group of a circle

Except for some trivial cases we have not, so far, calculated the fundamental group of a space. In this chapter we shall calculate the fundamental group of the circle S^1 , the answer being \mathbb{Z} the integers. Intuitively we see this result as follows. A closed path f in S^1 based at $1 \in S^1$ winds a certain number of times around the circle; this number is called the winding number or degree of f. (Start with f(0) = 1 and consider f(t) as t increases; every time we go once around the circle in an anticlockwise direction record a score of +1, every time we go once around in a clockwise direction score -1. The total score is the winding number or degree of f.) Thus to each closed path f based at 1 we get an integer. It turns out that two closed paths are equivalent (i.e. homotopic rel $\{0,1\}$) if and only if their degrees agree. Finally, for each integer n there is a closed path of degree n.

To get a more precise definition of the degree of a closed path we consider the real numbers \mathbb{R} mapping onto S^1 as follows.

e:
$$\mathbb{R} \rightarrow S^1$$
,
t $\rightarrow \exp(2\pi i t)$.

Figure 16.1

Geometrically we think of the reals as a spiral with e being the projection mapping (see Figure 16.1). Note that $e^{-1}(1) = \mathbb{Z} \subseteq \mathbb{R}$. The idea now is that if we are given $f: I \to S^1$ with f(0) = f(1) = 1 then we show that there is a unique map $\tilde{f}: I \to \mathbb{R}$ with $\tilde{f}(0) = 0$ and $e\tilde{f} = f$ (the map \tilde{f} is called a *lift* of f) Since f(1) = 1 we must have $\tilde{f}(1) \in e^{-1}(1) = \mathbb{Z}$; this integer is defined to be the degree of f. We then go on to show that if f_0 and f_1 are equivalent paths in S^1 then $\tilde{f}_0(1) = \tilde{f}_1(1)$. This leads to a function $\pi(S^1, 1) \to \mathbb{Z}$ which we finally show is an isomorphism of groups.

The 'method of calculation' of $\pi(S^1, 1)$ that we shall be presenting generalizes to some other spaces; see the subsequent three chapters. In fact the next lemma is the starting point for a crucial definition in Chapter 17.

16.1 Lemma

Let U be any open subset of $S^1 - \{1\}$ and let $V = I \cap e^{-1}(U) \subseteq \mathbb{R}$. Then $e^{-1}(U)$ is the disjoint union of the open sets $V + n = \{v+n; v \in V\}$, $n \in \mathbb{Z}$, each of which is mapped homeomorphically onto U by e.

Proof We assume that U is an open interval, i.e.

 $U = \{ exp(2\pi it); 0 \le a < t < b \le 1 \}$

for some a,b. Then V = (a,b) and V + n = (a+n,b+n). It is clear that $e^{-1}(U)$ is the disjoint union of the open sets V + n ($n \in \mathbb{Z}$). Let e_n denote the restriction of e to (a+n,b+n). Clearly e_n is continuous and bijective. To check that e_n^{-1} is continuous we consider (a+n, b+n) and let $W \subseteq (a+n, b+n)$ be a closed (and hence compact) subset. Since W is compact and S¹ is Hausdorff, e_n induces a homeomorphism $W \rightarrow e_n(W)$ by Theorem 8.8. In particular $e_n(W)$ is compact and hence closed. This shows that if W is a closed subset then $e_n(W)$ is also closed; thus e_n^{-1} is continuous and hence e_n is a homeomorphism.

16.2 Exercise

Show that the above holds for $S^1 - \{x\}$, where x is any point of S^1 .

16.3 Corollary

If $f: X \rightarrow S^1$ is not surjective then f is null homotopic.

Proof If $x \notin \text{image}(f)$ then $S^1 - \{x\}$ is homeomorphic to (0,1) which is contractible. $(x = \exp(2\pi i s) \text{ for some s and } S^1 = \{\exp(2\pi i t); s \le t < 1+s\}.)$

We come now to the first major result of this chapter: the so-called path

lifting theorem (for e: $\mathbb{R} \to S^1$).

16.4 Theorem

Any continuous map $f: I \to S^1$ has a lift $\tilde{f}: I \to R$. Furthermore given $x_0 \in R$ with $e(x_0) = f(0)$ there is a unique lift \tilde{f} with $\tilde{f}(0) = x_0$.

Proof For each $x \in S^1$ let U_x be an open neighbourhood of x such that $e^{-1}(U_x)$ is the disjoint union of open subsets of \mathbb{R} each of which are mapped homeomorphically onto U_x by e. The set { $f^{-1}(U_x)$; $x \in S^1$ } may be expressed in the form { $(x_j, y_j) \cap I$; $j \in J$ } which is an open cover of I. Since I is compact there is a finite subcover of the form

$$[0,t_1 + \epsilon_1), (t_2 - \epsilon_2, t_2 + \epsilon_2), ..., (t_n - \epsilon_n, 1]$$

with $t_i + \epsilon_i > t_{i+1} - \epsilon_{i+1}$ for i = 1, 2, ..., n - 1. Now choose $a_i \in (t_{i+1} - \epsilon_{i+1}, t_i + \epsilon_i)$ for i = 1, 2, ..., n - 1 so that

 $0 = a_0 < a_1 < a_2 < \dots < a_n = 1.$

Obviously $f([a_i, a_{i+1}]) \subset S^1$, but more so $f([a_i, a_{i+1}])$ is contained in an open subset S_i of S^1 such that $e^{-1}(S_i)$ is the disjoint union of open subsets of R each of which are mapped homeomorphically onto S_i by e.

We shall define liftings \tilde{f}_k inductively over $[0,a_k]$ for k = 0,1,...,n such that $\tilde{f}_k(0) = x_0$. For k = 0 this is trivial: $\tilde{f}_0(0) = x_0$; we have no choice.

Suppose that $\tilde{f}_k: [0, a_k] \to \mathbb{R}$ is defined and is unique. Recall that $f([a_k, a_{k+1}]) \subseteq S_k$ and that $e^{-1}(S_k)$ is the disjoint union of $\{W_j; j \in J\}$ with $e|W_j: W_j \to S_k$ being a homeomorphism for each $j \in J$. Now $\tilde{f}_k(a_k) \in W$ for some unique member W of $\{W_j; j \in J\}$; see Figure 16.2. Any extension \tilde{f}_{k+1} must map $[a_k, a_{k+1}]$ into W since $[a_k, a_{k+1}]$ is path connected. Since the restriction $e|W: W \to S_k$ is a homeomorphism there is a unique map ρ : $[a_k, a_{k+1}] \to W$ such that $e\rho = f|[a_k, a_{k+1}]$ (in fact $\rho = (e|W)^{-1}f$). Now define \tilde{f}_{k+1} by

$$\widetilde{f}_{k+1}(s) = \begin{cases} \widetilde{f}_k(s) & 0 \le s \le a_k, \\ \\ \rho(s) & a_k \le s \le a_{k+1} \end{cases}$$

which is continuous by the glueing lemma since $\tilde{f}_k(a_k) = \rho(a_k)$ and is unique by construction. By induction we obtain \tilde{f} .

Using this theorem we can define the degree of a closed path in S^1 . Let f be a closed path in S^1 based at 1 and let $\tilde{f}: I \to R$ be the unique lift with $\tilde{f}(0) = 0$. Since $e^{-1}(f(1)) = e^{-1}(1) = \mathbb{Z}$ we see that $\tilde{f}(1)$ is an integer which is defined to be the *degree* of f. To show that equivalent paths have the same degree we shall first show that equivalent paths have equivalent lifts. To do this we replace I by I^2 in the previous theorem to obtain.

16.5 Lemma

Any continuous map $F: I^2 \to S^1$ has a lift $\tilde{F}: I^2 \to R$. Furthermore given $x_0 \in R$ with $e(x_0) = F(0,0)$ there is a unique lift \tilde{F} with $\tilde{F}(0,0) = x_0$.

Proof The proof is quite similar to that of Theorem 16.4. Since I^2 is compact we find

 $\begin{array}{l} 0 = a_0 < a_1 < ... < a_n = 1, \\ 0 = b_0 < b_1 < ... < b_m = 1, \end{array}$

such that $F(R_{i,i}) \subset S^1$, where $R_{i,i}$ is the rectangle

 $\mathbf{R}_{i,j} = \{ (t,s) \in \mathbf{I}^2; a_i \le t \le a_{i+1}, b_j \le s \le b_{j+1} \}.$

The lifting \widetilde{F} is defined inductively over the rectangles

 $R_{0,0}, R_{0,1}, \dots, R_{0,m}, R_{1,0}, R_{1,1}, \dots$

by a process similar to that in Theorem 16.4. We leave the details for the reader.

As a corollary we have the so-called monodromy theorem for e: $\mathbb{R} \to S^1$, which tells us that equivalent paths have the same degree.

16.6 Corollary

Suppose that f_0 and f_1 are equivalent paths in S¹ based at 1. If \tilde{f}_0 and \tilde{f}_1 are lifts with $\tilde{f}_0(0) = \tilde{f}_1(0)$ then $\tilde{f}_0(1) = \tilde{f}_1(1)$.

Proof Let F be the homotopy rel $\{0,1\}$ between f_0 and f_1 . It lifts uniquely to $\widetilde{F}: I^2 \to \mathbb{R}$ with $\widetilde{F}(0,0) = \widetilde{f_0}(0) = \widetilde{f_1}(0)$. Since $F(t,0) = f_0(t)$ and $F(t,1) = f_1(t)$, we have $\widetilde{F}(t,0) = \widetilde{f_0}(t)$ and $\widetilde{F}(t,1) = \widetilde{f_1}(t)$. Also, $\widetilde{F}(1,t)$ is a path from $\widetilde{f_0}(1)$ to $\widetilde{f_1}(1)$ since $F(1,t) = f_0(1) = f_1(1)$. But $\widetilde{F}(1,t) \in e^{-1}$ $(f_0(1)) \cong \mathbb{Z}$, which means that $\widetilde{F}(1,t)$ is constant and hence $\widetilde{f_0}(1) = \widetilde{f_1}(1)$ thus completing the proof. Note that in fact \widetilde{F} provides a homotopy rel $\{0,1\}$ between $\widetilde{f_0}$ and $\widetilde{f_1}$.

We are now in a position to calculate the fundamental group of the circle.

16.7 Theorem

 $\pi(\mathbb{S}^1,1)\cong\mathbb{Z}.$

Proof Define $\varphi: \pi(S^1, 1) \to \mathbb{Z}$ by $\varphi([f]) = \deg(f)$, the degree of f. Recall that $\deg(f) = \widetilde{f}(1)$ where \widetilde{f} is the unique lift of f with $\widetilde{f}(0) = 0$. The function φ is well defined by Corollary 16.6. We shall show that φ is an isomorphism of groups.

First we show that φ is a homomorphism. Let $\ell_a(f)$ denote the lift of f beginning at $a \in e^{-1}(f(0))$. Thus $\ell_0(f) = \tilde{f}$ and $\ell_a(f)(t) = \tilde{f}(t) + a$ for a path in S¹ beginning at 1. It is clear that

$$\begin{aligned} \ell_a(f * g) &= \ell_a(f) * \ell_b(g) \\ \text{where } b &= \widetilde{f}(1) + a. \text{ Thus if } [f], [g] \in \pi(S^1, 1) \text{ then} \\ \varphi([f] [g]) &= \varphi([f * g] = \widetilde{f * g}(1) \\ &= \ell_0(f * g)(1) \\ &= (\ell_0(f) * \ell_b(g))(1) \text{ where } b = \widetilde{f}(1) \\ &= \ell_b(g)(1) \\ &= b + \widetilde{g}(1) \\ &= \widetilde{f}(1) + \widetilde{g}(1) \\ &= \varphi([f]) + \varphi([g]) \end{aligned}$$

which shows that φ is a homomorphism.

To show that φ is surjective is rather easy: given $n \in \mathbb{Z}$ let g: $I \to \mathbb{R}$ be given by g(t) = nt; then eg: $I \to S^1$ is a closed path based at 1. Since g is the lift of eg with g(0) = 0 we have $\varphi([eg]) = deg(eg) = g(1) = n$ which shows that φ is surjective.

To show that φ is injective we suppose that $\varphi([f]) = 0$, i.e. deg(f) = 0.

This means that the lift \tilde{f} of f satisfies $\tilde{f}(0) = \tilde{f}(1) = 0$. Since **R** is contractible we have $\tilde{f} \simeq \epsilon_0$ (rel { 0,1 }); in other words there is a map $F: I^2 \to \mathbb{R}$ with $F(0,t) = \tilde{f}(t), F(1,t) = 0$ and F(t,0) = F(t,1) = 0. Indeed $F(s,t) = (1-s) \tilde{f}(t)$. But eF: $I^2 \to S^1$ with eF(0,t) = f(t), eF(1,t) = 1, eF(t,0) = eF(t,1) = 1 and so $f \simeq \epsilon_1$ (rel { 0,1 }), i.e. [f] = $1 \in \pi(S^1, 1)$, which proves that φ is injective and hence φ is an isomorphism.

This completes the proof of the main result of this chapter. As a corollary we immediately obtain:

16.8 Corollary

The fundamental group of the torus is $\mathbb{Z} \times \mathbb{Z}$.

We close the chapter by giving two applications. The first is well known and is the *fundamental theorem of algebra*.

16.9 Corollary

Every non-constant complex polynomial has a root.

Proof We may assume without loss of generality that our polynomial has the form

$$p(z) = a_0 + a_1 z + \dots + a_{k-1} z^{k-1} + z^k$$

with $k \ge 1$. Assume that p has no zero (i.e. no root). Define a function G: $I \times [0,\infty) \rightarrow S^1 \subset C$ by

$$G(t,r) = \frac{p(r \exp(2\pi i t))}{|p(r \exp(2\pi i t))|} \frac{|p(r)|}{p(r)}$$

for $0 \le t \le 1$ and $r \ge 0$. Clearly G is continuous. Define $F: I^2 \to S^1$ by

$$F(t,s) = \begin{cases} G(t,s/(1-s)) & 0 \le t \le 1, 0 \le s < 1 \\ exp(2\pi i kt) & 0 \le t \le 1, s = 1. \end{cases}$$

By observing that

$$\lim_{s \to 1} F(t,s) = \lim_{s \to 1} G(t,s/(1-s)) = \lim_{r \to \infty} G(t,r) = (\exp(2\pi i t))^k$$

we see that F is continuous. Also, we see that F is a homotopy rel $\{0,1\}$ between $f_0(t) = F(t,0)$ and $f_1(t) = F(t,1)$. But $f_0(t) = 1$ and $f_1(t) = \exp(2\pi i k t)$, so that $\deg(f_0) = 0$ while $\deg(f_1) = k$, which is a contradiction (unless k = 0).

The second application comes under the title of Brouwer's fixed point theorem in the plane. Recall that in Chapter 10 we proved a fixed point theorem for I; the next result is the analogous theorem for D^2 . The result is also true in higher dimensions but the proof requires tools other than the fundamental group.

16.10 Corollary

Any continuous map $f: D^2 \rightarrow D^2$ has a fixed point, i.e. a point x such that f(x) = x.

Figure 16.3

Proof Suppose to the contrary that $x \neq f(x)$ for all $x \in D^2$. Then we may define a function $\varphi: D^2 \rightarrow S^1$ by setting $\varphi(x)$ to be the point on S^1 obtained from the intersection of the line segment from f(x) to x extended to meet S^1 ; see Figure 16.3. That φ is continuous is obvious. Let $i: S^1 \rightarrow D^2$ denote the inclusion, then $\varphi i = 1$ and we have a commutative diagram

This leads to another commutative diagram

But $\pi(D^2, 1) = 0$, since D^2 is contractible, and so we get a commutative diagram

which is impossible. This contradiction proves the result.

- 16.11 Exercises
 - (a) Given [f] $\in \pi(S^1, 1)$, let γ be the contour { f(t); t $\in I$ } $\subset \mathbb{C}$ and define

$$w(f) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z}$$

Prove that (i) w(f) is an integer,

(ii) w(f) is independent of the choice of $f \in [f]$,

(iii) w(f) = deg(f).

- (b) Let f: S¹ → S¹ be the mapping defined by f(z) = z^k for some integer
 k. Describe f_{*}: π(S¹, 1) → π(S¹, 1) in terms of the isomorphism π(S¹, 1) ≃ Z.
- (c) Let α,β be the following closed paths in S¹ × S¹. $\alpha(t) = (\exp(2\pi i t), 1), \qquad \beta(t) = (1, \exp(2\pi i t).)$ Show, by means of diagrams, that $\alpha * \beta \sim \beta * \alpha$.
- (d) Calculate $\pi(\underbrace{S^1 \times S^1 \times ... \times S^1}_n, (1, 1, ..., 1)).$
- (e) Using Exercise 15.16(c) deduce that the torus is not homeomorphic to the sphere S^2 .
- (f) Prove that the set of points $z \in D^2$ for which $D^2 \{z\}$ is simply connected is precisely S^2 . Hence prove that if $f: D^2 \rightarrow D^2$ is a homeomorphism then $f(S^1) = S^1$.
- (g) Find the fundamental groups of the following spaces.
 (i) C *=C {0};
 (ii) C */G, where G is the group of homeomorphisms { φⁿ; n ∈ Z } with φ(z) = 2z.
 - (iii) C*/H where H = { ψ^n ; $n \in \mathbb{Z}$ } with $\psi(z) = 2\overline{z}$.
 - (iv) $\mathbb{C}^*/\{e, a\}$, where e is the identity homeomorphism and $az = -\overline{z}$.