
To do a descriptive set theoretic study of Banach spaces we need a polish space
whose elements are precisely all Banach spaces. Since Banach spaces cannot be
coded in just one space, we will restrict our attention to the subclass of those being
separable.

1. Coding separable Banach spaces

This coding relies on two results.

Theorem. Any separable Banach space X is isometrically isomorphic to a closed
subspace of C(2N).

Proof. Consider (BX∗ , ω∗) the closed unit ball of the dual space with the weak∗

topology. It is a compact space and since X is separable, it is also metrizable. Then
we can fix f : 2N → BX∗ a continuous surjection. The mapping we are looking for
is

T : X → C(2N)

x 7→ gx,

where gx(σ) = f(σ)(x). It remains to check that T is an isometric isomorphism.

• Linearity : Follows from the linearity of f(σ).
• Injectivity : The Hans-Banach theorem provides for each x ̸= y a functional
x∗ of norm 1 such that x∗(x) ̸= x∗(y). In particular we have gx ̸= gy for
x ̸= y.

• Isometry : We have

||T (x)|| = sup
σ∈2N

|gx(σ)| = sup
σ∈2N

|f(σ)(x)| = sup
x∗∈BX∗

|x∗(x)| ≤ ||x||.

To show that the norm of x is actually achieved, recall that the Hans-Banach
theorem provides for each x ∈ X, x∗ ∈ BX∗ such that x∗(x) = ||x||.

We have proved that any separable Banach space can be seen as a closed subset
of C(2N). Nonetheless we still face two difficulties. The first one is that we need a
standard Borel structure in the space of closed subsets of C(2N). The second one
is that not all closed subsets of C(2N) need be vector spaces so the identification is
not 1− 1. The following construction solves the first.

Theorem. (Effros-Borel structure) Let X be a polish space and denote F (X) the
set of closed subsets of X. Consider τ the σ-algebra generated by the sets

{F ∈ F (X) : F ∩ U ̸= ∅},
where U ranges over all open sets in X. Then

• (F (X), τ) is a standard Borel space.
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• (Kuratowski-Ryll-Nardzewski) There exist Borel maps

dn : F (X) → X

such that (dn(F ))n∈N is dense in F .

For the first difficulty note that for closed sets F being a vector subspace can be
characterised by a density argument as

0 ∈ F ∧ ∀p, q ∈ Q ∀n,m ∈ N pdn(F ) + qdn(F ) ∈ F.

Because the maps dn are Borel the set

SB = {X ∈ F (C(2N)) : X is a separable Banach space}

is Borel. Any Borel set is still standard when considered with the restricted σ-
algebra.

The coding we were looking for is given by the space SB together with its standard
Borel structure and the restriction to SB of the Borel maps (dn, n ∈ N). From now
on dn denotes the restriction to SB and not the original map. We are now prepared
to do a descriptive set theoretic analysis of properties from separable Banach spaces.

2. Reflexive Banach spaces

The first property of separable Banach spaces we analyse is that of being reflexive.
Let us begin by recalling two results that will be needed later on.

Theorem. (Dieudonné) A normed space is reflexive if and only if the closed unit
ball is compact with respect to the weak topology.

Theorem. (Mazur) Let X be a normed space and C ⊂ X a convex subset. Then
the norm closure and the weak closure are the same:

C = C
∗
.

In order to prove that the set

REFL = {X ∈ SB : X is reflexive}

is co-analytic we show that it can be Borel reduced to WF. The structure of the
proof is the same for all the properties (P) we study. First, for each Banach space
X, we construct a family of trees on X and show that well-foundedness of all the
trees is equivalent to the property (P) we analyse. Then we introduce a discrete
version of these trees using the maps (dn)n∈N described in the previous section and
finally we glue all the trees in one so that property (P) holding in X is equivalent
to well-foundedness of the final tree. The trees we construct are made up of finite
attemps of producing a “nice” sequence in the space X.
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Fix X a Banach space, K ≥ 1 and ϵ > 0. Say that a sequence (xi)
l
i=1 is k-Shauder

if for any m ≤ l and a1, . . . , al ∈ R,

||
m∑
i=1

aixi|| ≤ k||
l∑

i=1

aixi||.

Note that a sequence (xn)n∈N is basic if and only if for some k ∈ N we have that
(xn)n≤l is k-Shauder for all l ∈ N. The tree Tc(X, ϵ,K) is defined on the sphere SX

and is given by

(xi)
l
i=1 ∈ T(X, ϵ,K) if and only if (xi)

l
i=1 is k-Shauder and

for any a1, . . . , al ∈ R+ such that
l∑

i=1

ai = 1, ||
l∑

i=1

aixi|| > ϵ.

Lets describe what an infinite branch is coding. From the definition of k-Shauder
we get that it provides a basic sequence with basis constant less or equal than k.
Since the tree is defined in SX the sequence is normalized. Lets see that the second
condition ensures that it has no weakly null subsequence. Suppose (xσ(n))n∈N is a
weakly null sequence, that is

xσ(n) →w 0.

By Mazur’s theorem the norm closure of span{xσ(n) : n ∈ N} is the same as the
weak closure. In particular 0 belongs to the norm closure of span{xσ(n) : n ∈ N}
and since the sequence is basic,

0 =
∞∑
i=1

aixσ(i)

for some (ai) ⊂ R. But then we can find n such that

||
l∑

i=1

aixi|| < ϵ,

contradicting the definition of the tree. The main result we prove is the following.

Theorem. A separable Banach space X is reflexive if and only if for any k ≥ 1
and any ϵ > 0 the tree Tc(X, ϵ, k) is well founded.

Proof. Suppose first that for some ϵ and k there is an infinite branch and denote
(xn)n∈N the associated basis. We now apply Dieudonné’s theorem to show that
the space X cannot be reflexive. By contradiction, suppose the unit ball is weakly
compact, we want so see that it admits a weakly convergent subsequence (xσ(n))n∈N.
Note that since X is assumed to be reflexive and it is separable, X∗ is also separable.
This proves that (BX , ω) is metrizable and we have found a weakly convergent
subsequence (xσ(n))n∈N. To get a contradiction our previous discussion ensures that
it is enough to show that the subsequence is weakly null. Consider the coordinate
functionals < −, xm > associated to our basic sequence. If y is the weak limit we
have that for each m ∈ N,

< xσ(n), xm > → < y, xm > as n → ∞.
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But since the sequence is basic, (< xσ(n), xm >)n∈N = (0, . . . , 0, 1, 0, . . . , 0, . . . , ) and
< y, xm > = 0 for all m ∈ N, i.e. y = 0.

For the other direction we first recall a corollary of the Eberleyn-Smulian theorem.

Corollary.(Eberleyn-Smulian) Let (xn)n∈N be a bounded sequence in a Banach
space X. If it does not have a weak limit in X, then it admits a subsequence which
is basic.

Suppose that X is non reflexive and take x∗∗ ∈ X∗∗\X with r = ||x∗∗|| ≤ 1.
By the Odell-Rosenthal theorem there are two possibilities. If l1 embeds via f
in X then for some K ≥ 1 and ϵ > 0, (f(en))n∈N is an infinite branch. If l1
does not embed, there exists (xn)n∈N weak∗ convergent to x∗∗, meaning that for
any f ∈ X∗, f(xn) → x∗∗(f). By the Banach-Steinhauss theorem every weak∗

convergent sequence is bounded, in particular we can admit (xn)n∈N in BX . Since
the norm of f is given by

r = ||x∗∗|| = sup
f∈BX∗

|x∗∗(f)|,

we can find f such that ||f || ≤ 1 and x∗∗(f) > r
2
. Because f(xn) converges to x∗∗(f)

there is a subsequence (xσ′(n)) such that f(xσ′(n)) ≥ r
2
. We want to extract a further

subsequence being basic. By the Eberlein-Smulian theorem it is enough to see that
it has no weak limit. Should it have weak limit x, then for any g ∈ X∗

j(xn)(g) = g(xn) → g(x) = x∗∗(g),

proving x = x∗∗, a contradiction. Then we can extract a subsequence (xσ(n)) which

is basic with constant k. Normalize the sequence by taking yn =
xσ(n)

||xσ(n)||
. Ir remains

to see that (yn) is an infinite branch in T (X, r
2
, k). For a1, . . . , al ∈ R such that

l∑
i=1

ai = 1

we have

r

2
=

l∑
i=1

ai
r

2
≤

l∑
i=1

aif(xσ(i)) ≤
l∑

i=1

ai
f(xσ(i))

||xσ(i)||
=

l∑
i=1

aif(yi) = |
l∑

i=1

aif(yi)| =

|f(
l∑

i=1

aiyi)| ≤ ||
l∑

i=1

aiyi|| ∗ ||f || ≤ ||
l∑

i=1

aiyi||.

As we said previously, it is time to use the maps dn in order to define a discrete
version of the trees Tc(X, ϵ, k). Note that the trees we are working with are defined
on the sphere and not in the whole space, it will be then useful to define Sn on SB
by

Sn(Y ) =
dn(Y )

||dn(Y )||
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so that for any separable Banach space Y , (Sn(Y ))n∈N is dense in SY . Consider
j, k ∈ N and define Td(X, 1

j
, k) ⊂ N<N as follows:

(ni)
l
i=1 ∈ Td(X,

1

j
, k) if and only if (Sn1(X), . . . , Snl

(X)) ∈ Tc(X,
1

j
, k).

What is the relation between both trees? An infinite branch (nj)j∈N in some
Td(X, 1

j
, k) provides an infinite branch (Snj

(X))j∈N in Tc(X, 1
j
, k) by definition. Now,

if (xj)j∈N is an infinite branch in the continuous tree, a perturbation argument allows
to find ϵ ≤ 1

j
, K ≥ k and (nj)j∈N ∈ Td(X, 1

j
, k). In particular X is reflexive if and

only if for any j, k ∈ N the tree Td(X, 1
j
, k) is well founded.

Finally, we glue all the discrete trees in just one as follows:

(ni)
l
i=1 ∈ TR(X) if and only if n1 = < j, k > and (ni)

l
i=2 ∈ Td(X,

1

j
, k).

Since an infinite branch < j, k >⌢ (ni)i∈N in TR(X) is giving an infinite branch
in Td(X, 1

j
, k), and vice-versa, X is reflexive if and only if the tree TR(X) is well

founded. To conclude that REFL is co-analytic it is enough to note that the map

X 7→ TR(X)

is Borel.

3. Natural properties

In this section we study the complexity of several natural properties. Recall
that we denote SB the standard Borel space of all separable Banach spaces. This
construction was done for the particular case in which X = C(2N), but can be done
for any separable Banach space X in which case we obtain SUBS(X) the space of
all Banach subspaces of X. By the same argument as before it comes equipped
with the Effros-Borel structure making it a standard Borel space and has a family
of Borel selectors (dn)n∈N.

Inclusion. For any separable Banach space X the set {(Y, Z) : Y ⊂ Z} is Borel in
SUBS(X)× SUBS(X).

We have Y ⊂ Z if and only if for any n ∈ N, dn(Y ) ∈ Z.

Membership. For any separable Banach space X the set {(y, Y ) : y ∈ Y } is Borel
in X × SUBS(X).

We have y ∈ Y if and only if for any n ∈ N there exists some m ∈ N such that
|dm(Y )− y| < 1

n
.

Dense span. For any separable Banach space X the set {((yn)n∈N, Y ) : span{yn :
n ∈ N} = Y } is Borel in XN × SUBS(X).

We have span{yn : n ∈ N} = Y if and only if

• for any n ∈ N, yn ∈ Y and
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• for any n,m ∈ N there exists some l ∈ N and λ1, . . . , λl ∈ Q such that
|dm(Y )−

∑l
i λiyi| < 1

n
.

k-equivalence. For any separable Banach spaces X, Y the set {((xn)n∈N, (yn)n∈N) :
xn and yn are equivalent} is Borel in XN × Y N.

We have that xn and yn are equivalent if and only if for some k ∈ N and for all
l ∈ N, λ1, . . . , λl ∈ Q,

1

k
||

l∑
i

λixi|| ≤ ||
l∑
i

λiyi|| ≤ k||
l∑
i

λixi||.

In particular the relation of k-equivalence is closed.

Isomorphism. The set {(X, Y ) : X and Y are isomorphic} is analytic in SB×SB.

We have that X and Y are isomorphic if and only if there exist (xn)n∈N and
(xn)n∈N in C(2N)N such that

• span{xn : n ∈ N} = X, span{yn : n ∈ N} = Y and
• for some k ∈ N the sequences are k-equivalent.

Basic sequence. The set {(xn)n∈N : (xn)n∈N is a basic sequence} is Borel in SBN.

We have that (xn)n∈N is a basic sequence if and only if for some k ∈ N for all

m, l ∈ N and all λ1, . . . , λl ∈ Q, ||
∑m

i λixi|| ≤ k||
∑l

i λixi||.

Spaces with a Shauder basis. The set {X : X has a Shauder basis} is analytic
in SB.

We have that X has a Shauder basis if and only if there exist (xn)n∈N such that

• span{xn : n ∈ N} = X
• (xn)n∈N is basic.


