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Abstract. We present recent results on the model companions of set theory, placing
them in the context of the current debate in the philosophy of mathematics. We start
by describing the dependence of the notion of model companionship on the signature,
and then we analyze this dependence in the specific case of set theory. We argue that
the most natural model companions of set theory describe (as the signature in which we
axiomatize set theory varies) theories of Hκ+ , as κ ranges among the infinite cardinals.
We also single out 2ℵ0 = ℵ2 as the unique solution of the Continuum problem which can
(and does) belong to some model companion of set theory (enriched with large cardinal
axioms). Finally this model-theoretic approach to set-theoretic validities is explained and
justified in terms of a form of maximality inspired by Hilbert’s axiom of completeness.

1. Introduction

Without doubt the Continuum problem is one of the driving forces of set theory. The
attempts to determine the cardinality of the Continuum has accompanied the history of
set theory (from its very beginning to the present day) and motivated many of its most
significant advances. Cantor’s definition of the Perfect Set Property was prompted by a
partial solution to the Continuum Problem and more in general the initial developments
of descriptive set theory were also driven by an attempt to confirm the Continuum Hy-
pothesis (CH: 2ℵ0 = ℵ1) at least for the definable subsets of R. In more recent times,
Gödel’s constructible universe and Cohen’s method of forcing were devised to show the
independence of CH from ZFC (the standard first order axiomatization of set theory).

The techniques developed by Gödel and Cohen clarified the intrinsic limitations of the
axiomatic approach to the Continuum problem, and profoundly influenced the subsequent
development of set theory. As a matter of fact, after the Sixties, the many independence
results obtained combining the methods of inner models and forcing partially shifted the
main focus of set theory: set theorists progressively devoted more and more efforts to the
study of the models of set theory, and only derivatively to the study of sets (understood
as autonomous mathematical objects).

The present paper presents a new approach to the Continuum problem which stems
from a model-theoretic perspective on set theory and discusses the philosophical import
of the results appearing in [31,34]. As is standard, we recognize the intrinsic limitation of
ZFC in capturing set-theoretic validities, but instead of proposing new axioms to extend
ZFC we suggest to enforce new model-theoretic properties on the models of set theory.
Consequently, the sought solution to the Continuum problem is not only motivated by the
adoption of a specific axiom, but mainly by the nice model-theoretic properties displayed
by the models of set theory enriched with large cardinal axioms.

The central notion we borrow from model-theory and that motivates the present ap-
proach is that of model companionship. This concept has been developed by Abraham
Robinson in the Sixties and it is meant to capture, in an abstract setting, the closure
properties that algebraically closed fields display with respect to commutative rings with
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no zero divisors. As algebraically closed fields contain solutions for all Diophantine equa-
tions, the models of the companions of set theory will have solutions for all “simple” set
theoretical problems.

A fundamental property of model companionship is its dependence on the signature.1

Loosely speaking: there can be distinct first order axiomatizations of a mathematical
theory T , one in signature σ and the other in signature τ , such that T admits a model
companion when axiomatized according to σ, but does not when axiomatized in signature
τ . This peculiar aspect of model companionship will therefore motivate a detailed discus-
sion aimed to single out the relevant signatures for set theory. We start by clarifying some
fundamental aspects of set-theoretical practice. In particular we will explain why bounded
formulae (i.e. ∆0-formulae) express set-theoretic concepts of low complexity and therefore
should be included in any reasonably rich signature for set theory. We will then show
how a careful choice of the signatures for set theory allows to classify the complexity of
set-theoretic concepts and to clarify the informal notion of “simple” set-theoretic problem.
Our analysis will provide precise criteria able to link the logic complexity of a signature
for set theory to forcing invariance and to the notion of simplicity for a set-theoretic con-
cept. By varying the signatures, we will show that the corresponding model companions
of set theory describe possible (first order) theories of the structures Hκ+ , for κ an infi-
nite cardinal.2 Moreover, given an appropriate signature τκ for set theory (relative to the
cardinal κ), the τκ-theory of Hκ+ will maximize the Π2-sentences that are consistent with
the Π1-fragment of set theory (where all complexities are computed according to τκ).

This feature is peculiar to the model companions of set theory and isolates a notion
which is strictly stronger than that of model companionship. We will call it absolute model
companionship (AMC). Absolute model companionship describes those τ -theories S for
which a model companion exists and is axiomatized by the Π2-sentences (for τ) which
are consistent with the Π1-fragment of any completion of S.3 The sought solution to the
Continuum problem will be motivated by reckoning that:

(i) ¬CH is a Π2-formula in any signature for set theory which contains the ∆0-
properties among its atomic formulae and has a parameter for ω1;

(ii) for each infinite (and definable) cardinal κ there is at least one signature τκ con-
taining the ∆0-properties among its atomic formulae, a constant to interpret the
cardinal κ, and such that set theory axiomatized in the corresponding τκ admits
an AMC;

(iii) any signature τ for set theory, containing the ∆0-properties among its atomic
formulae and such that the corresponding τ -set theory admits an AMC will not
have CH among the truths of this absolute model companion;

(iv) there is at least one signature τ∗ for set theory which contains the ∆0-properties
among its atomic formulae and such that the corresponding τ∗-set theory (enriched
with large cardinals) admits an AMC that contains ¬CH among its axioms.

A similar but more delicate argument (since ¬(2ℵ0 > ℵ2) is a Σ2-sentence in parameter ω2)
will show that the above results hold also if one replaces CH by 2ℵ0 > ℵ2 in items (ii)–(iv)
(but with the same τ∗ working for item (iv)). Therefore, these results single out 2ℵ0 = ℵ2

as the unique solution of the Continuum problem which can fall in at least one absolute

1See Section 4 for a precise formulation of this dependence.
2Recall that Hκ+ is the collection of sets whose transitive closure has size at most κ.
3This apparently technical property will motivate the definition of a proper strenghtnening of Robinson’s
notion of model companionship: that of absolute model companionship (AMC), see Section 5. AMC seems
to be the correct notion of model companionship to apply to set theory. For example it is unknown to the
authors whether there can be a signature for which the axiomatization of set theory in it admits a model
companion which is not its AMC.
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model companion of set theory enriched with large cardinal axioms (e.g. the AMC of set
theory enriched with large cardinals with respect to signature τ∗).

The present model-theoretic approach to set theoretic validities is not incompatible with
the standard strategy of producing axiomatic extensions of ZFC. On the contrary it can be
seen as a practical realization of Gödel’s program: a step by step extension of the axioms of
set theory. Indeed, given the stratification of V in terms of the Hκ+ , we can interpret the
closure properties of the absolute model companions of set theory as gradually closing-off
the universe of sets with respect to all “simple” set theoretical problems. In this sense, the
nice model-theoretic properties displayed by the theories of Hκ+ (as the model companions
of set theory) realize a form of maximality that we dare to call Hilbertian Completeness.
Indeed, as Hilbert’s axiom of completeness was meant to maximize the objects of geome-
try, absolute model companions maximize witnesses for Σ1-properties (formalized in the
appropriate signature). Moreover, important axiomatic extensions of ZFC (considered in
the last decades as candidates for fulfilling Gödel’s program4) as are large cardinals and
forcing axioms find, in the present approach, another justification. As a matter of fact, the
generic absoluteness results that we can obtain from large cardinals hypotheses are now
of pivotal importance in detecting the signature expansions for the language of set theory
with respect to which set theory admits a(n absolute) model companion. It also occurs
that the theory of Hℵ2 in models of strong forcing axioms decribes the model companion
of ZFC + large cardinals (as expressed in a natural signature τκ for κ the first uncountable
cardinal).

The paper is structured as follows: in §2 and 3 we gently analyze the role that signatures
can play in outlining the properties of a mathematical theory T (with a focus on how the
morphisms between models of T can be used to detect the right signatures for T ). In §4
we present a few standard notions from model theory (i.e. existentially closed structures,
model completeness, and model companionship), which are discussed and generalized in §5,
where we define the notions of partial Morleyzation, absolute model companionship, and
(absolute) model companionship spectrum. From §6 onwards we devote our attention to
set theory. We first present precise mathematical criteria to detect what are the “simple”
set-theoretical concepts. Then we analyze various signatures for set theory in §6.1. In §6.2
we show that the intended models of the model companions of set theory are structures
of the form Hκ+ , for κ an infinite cardinal. Finally, in §7 we present the main results
regarding the model companions of set theory and discuss the information they convey on
the cardinality of the Continuum. We conclude, in §8, by comparing our approach with
the various notions of maximality we find in the literature and with the debate on the
justification of new axioms in set theory.

This paper aims to reach scholars interested at the crossroads of philosophy and mathe-
matics. We tried for this reason to minimize the mathematical and philosophical prerequi-
sites needed to follow it. Those who made through this introduction should encounter no
serious obstacles to read the remainder of this article. The model companionship results
we discuss in the present paper are presented without proofs. The reader interested in
them is referred to [31,34].

Acknowledgements. We thank Gabriel Goldberg for many useful comments on previous
drafts of this paper and David Asperó, Ilijas Farah, Leon Horsten, Luca Motto Ros, and
Boban Veličković for many interesting discussions on these topics. Clearly the opinions
expressed (and the errors occurring) in this paper are the sole responsibility of the authors

4A clear justification of why large cardinal axioms are a partial realization of Gödel’s program can be
found in [20]. An analysis of why (strong) forcing axioms can also be seen as a realization of this program
can be found in [6] or in the introduction of [32]. See also [36–38] where it is proposed to realize Gödel’s
program by introducing new axioms to describe the theories Hℵ1 and Hℵ2 .
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and do not engage in any way those who had the patience to give some advice to improve
our presentation.

2. What is the right signature for a mathematical theory?

One of the great successes of mathematical logic consists in providing an efficient formal-
ization of mathematics: by means of first order logic it is possible to render mathematical
theories the objects of a mathematical investigation. In this way logic is able to produce
unexpected and non-trivial mathematical results as well as novel insights on a variety of
mathematical fields. It is a matter of facts that there can be many distinct first order
formalizations of a mathematical theory: varying the linguistic presentation of a theory
(i.e. its signature) we obtain different axiomatic presentations of the same set of theo-
rems. In order to appreciate the variety of possibilities we can encounter, let us consider
the concrete case of group theory. This will help us to gently introduce one of the main
themes of the present present: the role of the signature in detecting the properties of a
theory formalized in it.

We can formalize group theory in first order logic using the signature {·}, which simply
consists of a binary function symbol and the following axioms:

∀x, y, z [(x · y) · z = x · (y · z)],
∃x∀y (x · y = y ∧ y · x = y),

∀x∃y∀z [(x · y) · z = z ∧ (y · x) · z = z ∧ z · (x · y) = z ∧ z · (y · x) = z].

Notice that the third axiom, which expresses the existence of a multiplicative inverse,
represents a rather complicated assertion, both from the point of view of its syntactic
readability and its Lévy complexity (being a Π3-sentence). The reason is that in this basic
signature we lack a constant symbol to denote the neutral element of a group. Enriching
the language to {·, e}, with e a constant symbol, we can now formalize group theory with
a simpler set of axioms:

∀x, y, z (x · y) · z = x · (y · z),
∀y (e · y = y ∧ y · e = y),

∀x∃y [x · y = e ∧ y · x = e].

We increased readability and decreased (Lévy) complexity, as we are now dealing with a
Π2-axiomatization. But we can do better. Indeed, if we consider the signature

{
·, e,−1

}
,

which further adds a unary operation symbol for the inverse operation, we can axiomatize
group theory with a set of universal equations (Π1-sentences):

∀x, y, z [(x · y) · z = x · (y · z)],
∀x (x · e = x ∧ e · x = x),

∀x [x · x−1 = e ∧ x−1 · x = e].

On the other hand, we could follow a completely different route and axiomatize group
theory avoiding the use of function symbols. For example we can consider the signature
{R, e} consisting of a ternary relation symbol R and a constant symbol e and produce the
following axiomatization for group theory:

∀x, y∃!z R(x, y, z),

∀x, y, z, w, t [((R(x, y, w) ∧R(y, z, t))→ ∃u (R(x, t, u) ∧R(w, z, u))],

∀y [R(e, y, y) ∧R(y, e, y)],

∀x∃y [R(x, y, e) ∧R(y, x, e)].

At the cost of further complicating our axiomatization, we could even drop the use of
the constant symbol e and formalize group theory in the signature {R}. The latter is
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clearly an artificial solution; moreover, the minimality of the signature does not help the
perspicuity of the axiomatization.

Of all the above formalizations, the one mathematicians use more frequently is certainly
the one in signature

{
·, e,−1

}
. On the contrary, to recognize that the system in signature

{R, e} is an axiomatization of group theory would surely require some logical training
These considerations suggest that among the many possible signatures in which we can

formalize a mathematical theory some are better than others. Our aim is to unfold criteria
which allow us to detect the best signatures τ for the formalization of a mathematical
theory T . To do so we appeal to two sets of arguments.

On the one hand, we can select τ on the basis of specific considerations internal to
T . For example, by checking the adherence of a formalization to the standard informal
presentation of the theory (e.g. the signature

{
·, e,−1

}
clearly gives the best presentation

of group theory in terms of its basic operations). On the other hand, we can give abstract
criteria for the choice of τ based on the structural properties that the τ -axiomatization of
T displays, disregarding any consideration on the adherence of the τ -axiomatization of T
with the informal one.

It occurs that for several theories T what allows us to identify a signature τ as good
according to the first set of arguments have corresponding procedures which also allow us
to validate τ with respect to the second set of arguments; and conversely. Furthermore it
is clear that the second set of arguments is prone to a clearer mathematical formulation
(e.g. we need to define precisely what structural properties are preferable and for a given
theory T accept the signatures σ for which the σ-axiomatization of T has the preferred
property). It is less transparent how to give a precise mathematical formulation of the
first set of arguments: which mathematical criterion allow us to recognize {·, e} as a better
signature than {R, e} for the formalization of group theory? For example note that both
give a Π2-axiomatization of group theory. It is clear that any mathematician would regard
the {·, e}-axiomatization of group theory as more natural than the one given in {R, e}.
Can we turn this qualitative preference into a precise mathematical criterion?

3. Simple and complicated concepts for a mathematical theory

When dealing with a first order theory, the formulae that compose it naturally suggest
a notion of complexity which, derivatively, can be attributed to the concepts of the theory
formalized by these formulae. This is the well-known notion of Lévy complexity which
connects the number and patterns of the quantifiers that appear in a formula with its
conceptual complexity. Given a theory T expressed in a signature τ , the Lévy hierarchy
of the τ -formulae with respect to T -equivalence stratifies the concepts of T as follows:
the basic concepts are those formalized by a boolean combination of atomic τ -formulae.
The complexity of a concept then increases according to the number of alternations of
∀,∃-quantifiers that a formula φ formalizing it displays when expressed in a prenex nor-
mal form. In assigning a Lévy complexity to a concept of T , we consider, among all
the τ -formulae which are T -equivalent and formalize the given concept, those in prenex
normal form with the least number of quantifier alternations. In this way we can assign
complexity Πn, Σn or ∆n to the concepts of T that are expressible by means of τ -formulas.
More precisely, Π0 = Σ0 = ∆0 is the complexity of concepts formalized by boolean combi-
nations of atomic formulae; Πn+1 represents the complexity of those concepts formalized
by a formula of type ∀~xψ(~x, ~y) with ψ(~x, ~y) Σn; Σn+1 represents the complexity of those
concepts formalized by a formula of type ∃~xφ(~x, ~y) with φ(~x, ~y) Πn, and ∆n represents
the complexity of the concepts whose complexity lays in Πn ∩ Σn. However, the measure
of complexity does not always match with the intuitive notion of complexity we attribute
in practice to some concepts. For example the process of Morleyization (see [28, Section
3.2] or Def. 5.5 below) produces a mathematically equivalent axiomatization T ∗ of a first
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order τ -theory T in a new signature τ∗ ⊇ τ , such that every τ∗-formula is T ∗-equivalent to
an atomic formula; hence all concepts of T becomes of the same logical complexity when
expressed in signature τ∗ according to the mathematically equivalent theory T ∗.

To better understand the relevance of the signature in describing the correct logical
complexity of the concepts of a theory, let us examine the case of the theory of com-
mutative semi-rings with no zero-divisors. Consider the signature {+, ·, 0, 1} which is
standardly used to axiomatize rings and fields. In this signature we can provide the ax-
ioms of commutative semi-rings with no zero-divisors by means of the following universal
sentences:

∀x, y (x · y = y · x),(1)

∀x, y, z [(x · y) · z = x · (y · z)],
∀x (x · 1 = x ∧ 1 · x = x),

∀x, y (x+ y = y + x),

∀x, y, z [(x+ y) + z = x+ (y + z)],

∀y (x+ 0 = x ∧ 0 + x = x),

∀x, y, z [(x+ y) · z = (x · y) + (x · z)],

∀x, y [x · y = 0→ (x = 0 ∨ y = 0)].

By further extending the above list we can obtain the theory of commutative rings with
no zero-divisors adding the Π2-axiom

∀x∃y (x+ y = 0),(2)

and the theory of fields by further adding the Π2-axiom

∀x [x 6= 0→ ∃y (x · y = 1)],(3)

and finally the theory of algebraically closed fields by supplementing the above axioms
with the following Π2-sentences5 for all n ∈ N

∀x0 . . . xn∃y
∑

xi · yi = 0.(4)

A common trait of the above set of Π2-axioms is that they assert the existence of solu-
tions to certain basic equations of the theory expressible in terms of sum, multiplication, 0,
1, e.g. the atomic formulae of {·,+, 0, 1}. Indeed, any commutative semi-ring M without
zero divisors can be extended to an algebraically closed field simply by extending it with
solutions to the basic polynomial equations with parameters in M (and which may not
exist in M).

In the signature {+, ·, 0, 1} we have as basic operations +, ·. Using this signature in
commutative rings we can also define the additive inverse, −, using the atomic formula
(x + z = 0), while in fields we can add the multiplicative inverse, −1, using the boolean
combination of atomic formulae (x = 0 ∧ z = 0) ∨ (x 6= 0 ∧ x · z = 1). Notice that even
when subtraction and division are partially defined on a semiring, we can still meaningfully
interpret these two operations in it, just by adding two unary function symbols −,−1

5Notice that any model of Axioms (1) and (4) is automatically a field.
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for them and by adopting the convention that the corresponding inverse operations are
trivially defined on the non invertible elements; this is captured for example by the axioms

∀x [(∃y (x · y = 1) ∧ x · x−1 = 1) ∨ (¬∃y (x · y = 1) ∧ x−1 = 0)].(5)

to interpret −1 and

∀x [(∃y (x+ y = 0) ∧ x+ (−x) = 0) ∨ (¬∃y (x+ y = 0) ∧ (−x) = 0)](6)

to interpret −.
It is clear that the class of

{
+, ·, 0, 1,−,−1

}
-structures satisfying axioms (1), (5), (6)

are exactly the commutative semi-rings with no zero-divisors, however in doing so we
perturbed the notion of morphism between these structures. To see this, notice that the
inclusion of N into Z is a {+, ·, 0, 1}-morphism but not a

{
+, ·, 0, 1,−,−1

}
-morphism as

(−2) = 0 when computed in N seen as a model of (1), (5), (6), while (−2) = −2 when
computed in Z seen as a model of (1), (5), (6). Similarly the inclusion of Z into Q is a
{+, ·, 0, 1,−}-morphism but not a

{
+, ·, 0, 1,−,−1

}
-morphism.

Moreover, we can observe that in the class of commutative rings with no zero-divisors as
formalized in signature {+, ·, 0, 1,−} subtraction is axiomatized now by the universal sen-
tence ∀x [x+ (−x) = 0] rather than the Π2-sentence (6) which defines it in the larger class
of commutative semirings. Similarly if we consider the class of

{
+, ·, 0, 1,−,−1

}
-structures

which are fields, i.e. models of (1), (2), (3), then (5) becomes logically equivalent, modulo
the other axioms, to ∀x [x 6= 0 → x · x−1 = 1], which is a universal

{
+, ·, 0, 1,−,−1

}
-

sentence. On the algebraic side note that the {·,+, 0, 1}-morphisms between commutative
rings with no zero-divisors naturally extend to {·,+, 0, 1,−}-morphisms, as the operation
x 7→ −x is preserved by additive morphisms on rings. Similarly the {·,+, 0, 1}-morphisms
between fields naturally extends to

{
+, ·, 0, 1,−,−1

}
-morphisms, as the operation x 7→ x−1

is preserved by additive and multiplicative morphisms between fields.
More generally when a τ -theory T can define an operation by means of a universal τ -

sentence, the τ -morphisms between τ -models of T preserve the operation. In our concrete
example, {+, ·, 0, 1}-morphisms between commutative rings with no zero-divisors naturally
extends to {+, ·, 0, 1,−}-morphisms, while {+, ·, 0, 1}-morphisms between fields naturally
extends to

{
+, ·, 0, 1,−,−1

}
-morphisms exactly because the operations −,−1 are defined

by universal axioms in the respective theories.
These examples suggest the following observation: when considering the first order

axiomatization of a theory, we should carefully consider not only its class of models, but
also the class of morphisms between these models. Dealing with the theory of commutative
semi-rings with no zero-divisors, the notion of additive inverse has a complexity which
exceeds that of + and ·. We can detect this by noticing that the class of morphisms
between these structures shrinks when we impose the preservation of this operation. On
the other hand, in the context of commutative rings, the notion of additive inverse has the
same complexity of +, ·. But, again, this is not the case for the notion of multiplicative
inverse: we need to focus on the theory of field in order to regard multiplicative inverse as
a concept with the same complexity as addition and multiplication. We can sum up these
considerations as follows:

• The signature {+, ·, 0, 1} is suitable for commutative (semi)rings with no zero-
divisors, and fields;
• The signature {+, ·, 0, 1,−} is better suited for commutative rings with no zero-

divisors, and fields;
• The signature

{
+, ·, 0, 1,−,−1

}
is better suited (only) for fields.

The algebraic case we discussed is instructive and guides us towards more general con-
siderations on the interplay between the complexity of concepts of a theory T , the first
order language τ in which to express them, the properties of the τ -morphisms between
models of T . First of all, the Lévy hierarchy gives a potentially useful hierarchy by which
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we can stratify the complexity of the concepts of a mathematical theory; furthermore our
discussion suggests that for a given a signature τ , the basic concepts of a τ -theory T are
not only those expressed by (boolean combinations of) atomic τ -formulae, but also those
expressed by universal τ -sentences (e.g. the additive inverse is a simple operation for ring
theory, being axiomatized in signature {+, ·, 0, 1,−} by a universal sentence, while it is not
for semi-ring theory, being axiomatized in signature {+, ·, 0, 1,−} by a Π2-sentence). The
reason is that if Mv N are τ -structures which model the same τ -theory T , the graph of
a relation/operation RM defined on M as prescribed by the universal axiom ψR of T is
exactly the restriction toM of the graph of that same relation/operation RN defined now
on N as prescribed by ψR (in our example, − is preserved by {+, ·, 0, 1,−}-morphisms of
rings but not by {+, ·, 0, 1,−}-morphisms of semi-rings).

Summing up, when dealing with a mathematical theory T for which we have a clear
picture of its intended class of models, the choice of a signature τ in which to formalize
T can be made on the basis of which morphism between models of T we would like to
be the τ -morphisms between the τ -models of T , or —correspondingly— on the basis of
which concepts of T we would like to be of low logical complexity in the Lévy hierarchy
induced by τ on T . Once this decision is made, this affects the type of signature τ in
which the theory can be formalized, what are the τ -morphisms between the T -models,
and what are the universal τ -axioms of T . Therefore, we can get different stratifications
of the complexity of concepts for a theory by selecting the appropriate class of morphisms
between its models and by selecting which concepts of T we require to be axiomatized by
universal sentences.

4. Existentially closed models, model completeness, and model
companionship

It is now the time to introduce the notion of existentially closed model and of model
companionship6. These model-theoretic notions will be the structural properties of first
order theories we will use to select good signatures for set theory. Before giving the precise
mathematical definitions of these notions, let us start by introducing these concepts in the
context of (semi-)ring theory.

A common trait of the set of axioms (2), (3), (4) is that they assert the existence
of solutions to certain basic equations that are expressible by atomic formulae in the
{+, ·, 0, 1}-theory given by axioms (1). Indeed, any commutative (semi-)ring M without
zero divisors can be enlarged to an algebraically closed field simply by extending it with
solutions to the basic polynomial equations with parameters in M (which in principle
may not exist in M). Notice that the process of adding new solutions to a commutative
(semi-)ring can be seen as closing it with respect to its basic operations. It is here that
the choice of a signature τ for the formalization of a theory T becomes relevant: the richer
is τ , the more complex are the concepts expressible by atomic τ -formulae (expressing the
basic properties) and universal τ -sentence (expressing the basic T -definable operations).
Therefore, the richer is τ , the more closed-off are the models of a τ -theory that are closed
with respect to the basic T -operations.

This closing-off process is one of the driving forces of mathematics. For example it is
by adding new solutions to basic equations that commutative semi-rings with no zero-
divisors (like N) have been extended to commutative rings (like Z, which contains all
additive inverses), and then to fields (like Q, which contains all multiplicative inverses),
and finally to algebraically closed fields (like C, in which all diophantine equations have a
solution).

6Reference texts for existentially closed models, model completeness, and model companionship are [10]
and the second author’s notes [35].
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Of course, the choice of the signature τ in which a theory T is formalized affects the
outcome of this closing-off process. A key request is that the τ -theory T ′ describing the
validities in the closed-off structures, should agree with T at least with respect to the Π1-
consequences of T in signature τ (as the latter express the properties of the basic concepts
and operations of T according to τ). Indeed, only in this case we can say that the closing-
off process has been performed with respect to the basic concepts and operations of T .
The notion of existentially closed model defines precisely which structures are the outcome
of this closing-off process.

Definition 4.1. Let τ be a first order signature and T be a τ -theory. A τ -structure M
is T -ec if:

• There is some N τ -superstructure of M which models T .
• M is a Σ1-substructure of P whenever P is a τ -superstructure ofM which models
T .

A caveat is in order: while a mathematical theory T can be unambiguosly defined
regardless of any of its possible first order axiomatizations, to define unambiguously the
notion of T -ec model we commit ourselves to choose a specific signature τ in which to
formalize T .

Definition 4.2. Given a signature τ and a τ -theory T , T τ∀ is the set of universal τ -
sentences which follows from T (accordingly we define T τ∃ , T τ∀∃, etc.).

While the set of logical consequences of T is independent of the signature in which we
axiomatize it, the set T τ∀ heavily depends on the choice of τ . For example if T is the theory
of rings, subtraction is axiomatized by an axiom in T τ∀ for τ = {·,+, 0, 1,−} but this is
not the case when we consider the signature σ = {·,+, 0, 1}.

Notice that any T -ec τ -structure is a model of T τ∀ . A less trivial observation is the
following.

Fact 4.3. [35, Prop. 1.9(2)] A τ -structure M is T -ec if and only if it is T τ∀ -ec. Hence a
τ -structure M which is T -ec is also S-ec for any τ -theory S such that Sτ∀ = T τ∀ .

It is not hard to see that algebraically closed fields, in the signature σ = {+, ·, 0, 1},
are S-ec structures for S the σ-theory of commutative (semi-)rings with no zero-divisors.
Furthermore, notice that existentially closed models can be such with respect to different
theories. For example, consider the two σ-theories U and R, respectively, of fields and
of commutative rings with no zero-divisors that are not fields. Then, any σ-structure M
which is an algebraically closed field is automatically S-ec, U -ec, and R-ec at the same
time (since Rσ∀ = Sσ∀ = Uσ∀ ).

In general, given a τ -theory T , the class of T -ec models might not be elementary. In the
specific case of algebraically closed fields this is the case, since this class of structures is
axiomatized by the {+, ·, 0, 1}-theory ACF given by axioms (1) and (4); but this is a rather
peculiar case, which also depends on the specific choice of the signature. On the contrary,
if we consider the

{
·, e,−1

}
-theory T of groups, then the T -ec

{
·, e,−1

}
-structures do not

form an elementary class7 [10, Example 3.5.16]. Abraham Robinson introduced the notion
of model companionship to describe exactly when the collection of T -ec τ -models form an
elementary class:

Definition 4.4. Let τ be a signature.

7Moreover, none of the signatures for group theory that we presented in Section 2 have existentially closed
models which give rise to an elementary classe
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• A τ -theory T is model complete8 if for any τ -structure M
M |= T if and only if M is T τ∀ -ec.

• A τ -theory R is the model companion of a τ -theory T if:
(i) T andR are jointly consistent: i.e. T τ∀ = Rτ∀, (or equivalently —by [34, Lemma

2.1.1] or [10, Remark 3.5.6(2)]— every model of T embeds in a model of T ∗

and vice versa);
(ii) R is model complete.

It is useful to recall that model complete theories are axiomatized by their Π2-consequence
(see [10, Prop. 3.5.10]), and that the model companion of a τ -theory T (if it exists) is
unique (by [10, Prop. 3.5.13]).

We also note (as is the case for existentially closed structures) that a model complete
τ -theory T can be the model companion of different τ -theories S: it suffices that Sτ∀ = T τ∀ .
For example let S0 be the {·,+, 0, 1}-theory of commutative rings with no zero-divisors
that are not fields (i.e. the models of axioms (1), (2) and of the negation of (5)) and
let S1 be the {·,+, 0, 1}-theory of fields. Then the model complete {·,+, 0, 1}-theory ACF
is the model companion of both S0 and S1. Another interesting observation is that no
algebraically closed field is a model of S0 and conversely. As a matter of fact, the notion
of model companionship for a τ -theory S does not isolate a proper subclass of the models
of S, but rather the models that are closed-off with respect to the basic operations and
relations definable in S by universal τ -sentences.

Given the connection between model companions and existentially closed structures, it
should be no surprise that the notion of model companionship is sensible to the choice of
the signature. For example: consider the language

{
+, ·, 0, 1,−1

}
and the theory S′0 which

results by adding axiom (5) to axioms (1), (2). We obtain that S′0 is still the theory of
commutative rings with no zero-divisors, now formalized in the signature

{
+, ·, 0, 1,−1

}
.

However, the
{

+, ·, 0, 1,−1
}

-theory of algebraically closed fields ACF′ given by axioms (1),

(4), (5) is not the model companion of the
{

+, ·, 0, 1,−1
}

-theory S′0. In order to see this, let
M be the field of complex numbers and let N be C[X]: the ring of polynomials in complex
coefficients and variable X (both seen as

{
+, ·, 0, 1,−1

}
-structures). Then it is the case

that Mv N , but now N models the Σ1-sentence for
{

+, ·, 0, 1,−1
}
∃y (y 6= 0 ∧ y−1 = 0)

(as witnessed by the polynomial X), while M does not. In particular, M is not S′0-ec, as
M is not a Σ1-substructure of N , which is a model of S′0.

Given that the existence of a model companion for a theory T depends so directly on the
choice of the signature, we can use the notion of model companionship to select signatures:

Model-theoretic criterion for selecting signatures: Given a mathematical theory T
and two signatures τ and σ in which T can be axiomatized, τ is preferable to σ for T
if the τ -axiomatization of T admits a model companion, while its σ-axiomatization
does not.

We will put to use this criterion in the case of set theory, while also outlining that the
existence of a model companion for set theory in a given signature provides important
information on the properties of the universe of sets.

8Usually model completeness is defined by requiring that the substructure relation overlaps with the
elementary substructure relation (see [10, Def. on page 186]). Our definition is equivalent in view of [10,
Prop. 3.5.15] combined with [34, Lemma 2.1.1].
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5. Partial Morleyizations, absolute model companionship, and the
AMC-spectrum of a theory

We can now give a more formal treatment of the ideas presented in the previous sec-
tions, by introducing the central concepts of (partial) Morleyization and absolute model
companionship.

5.1. Partial Morleyizations.

Notation 5.1. Given a signature τ , let φ(x0, . . . , xn) be a τ -formula.
We let:

• Rφ be a new n+ 1-ary relation symbols,

• fφ be a new n-ary function symbols9

• cτ be a new constant symbol.

We also let:
AX0

φ := ∀~x[φ(~x)↔ Rφ(~x)],

AX1
φ :=∀x1, . . . , xn

[(∃!yφ(y, x1, . . . , xn)→ φ(fφ(x1, . . . , xn), x1, . . . , xn))∧
∧ (¬∃!yφ(y, x1, . . . , xn)→ fφ(x1, . . . , xn) = cτ )]

for φ(x0, . . . , xn) having at least two free variables, and

AX1
φ := [(∃!yφ(y))→ φ(fφ)] ∧ [(¬∃!yφ(y))→ cτ = fφ] .

for φ(x) having exactly one free variable.
Let Formτ denotes the set of τ -formulae. For A ⊆ Formτ × 2

• τA is the signature obtained by adding to τ all relation symbols Rφ, for (φ, 0) ∈ A,
and all function symbols fφ, for (φ, 1) ∈ A (together with the special symbol cτ if
at least one (φ, 1) is in A).
• Tτ,A is the τA-theory having as axioms the sentences AXiφ for (φ, i) ∈ A.

We let τ∗ = τC for C = Formτ × {0} and T ∗ be the τ∗-theory Tτ,C .

With respect to the theories in signature σ = {·,+, 0, 1} discussed in the previous
section, Axiom (5) is (logically equivalent to) AX1

φ for φ(x, y) being x · y = 1 (assuming cτ
is interpreted by 0). Similarly Axiom (6) is (logically equivalent to) AX1

ψ for ψ(x, y) being
x+ y = 0.

Remark 5.2. For any τ -theory T , T ∗ is a τ∗-theory admitting quantifier elimination (the
Morleyization of T )10.

Remark 5.3. Given a τ -formula φ, a τ -structure M with domain M , and a c ∈ M , there
is exactly one extension of M to a τ{φ}×{1}-structures which interprets the value of the

special constant cτ as c and models AX1
φ.

In what follows we want to analyze what happens when the Morleyization process is
performed on arbitrary subsets of Formτ × 2.

9As usual we confuse 0-ary function symbols with constants.
10See [28, Section 3.2, pp. 31-32].
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5.2. Absolute model companionship. The following properties will bring us to intro-
duce the notion of absolute model companionship.

• A τ -structure M is T -ec if and only if it is T τ∀ -ec (by [35, Prop. 1.9(2)]).
• If T is complete, a T -ec structure M realizes any Π2-sentence which holds true in

some τ -model of T τ∀ (by [35, Prop. 1.9(5)]).
• If a τ -theory S is the model companion of a τ -theory T , S is axiomatized by its

Π2-consequences for signature τ (by [35, Thm. 1.20]).

Combining these results, one might wonder whether the model companion S of a τ -
theory T (whenever it exists) could be axiomatized by the family of all Π2-sentences for
τ which holds in some model of T τ∀ . This is not alway the case and, in fact, holds only
when T is a complete model companionable theory. The standard counterexample is given
by the {+, ·, 0, 1}-theory Fields0 of fields of characteristic 0, given by axioms (1), (2), (3)
and the infinitely many axioms granting that the characteristic of its models is 0 (Fields0
is not a complete theory), and its model companion ACF0 which adds (4) to the above
axioms (ACF0 is a complete theory). Indeed, the sentence ∀x¬(x2 +1 = 0) is a Π2-sentence
(actually Π1) which is not in ACF0 but holds in Q, hence is consistent with the universal
fragment of Fields0. Absolute model companionship rules out counterexamples of this
kind.

Definition 5.4. [34, Def. 1.1, Thm. 1.3] Given a τ -theory T , we say that a τ -sentence
ψ is strongly T -consistent for τ whenever ψ+Rτ∀∨∃ is consistent for any τ -theory R which
extends T .

A τ -theory S is the absolute model companion (AMC) of a τ -theory T if it is the model
companion of T and it is axiomatized by the Π2-sentences (for τ) which are strongly
T -consistent for τ .

Equivalently T is the AMC of S if (letting Rτ∀∨∃ denote the set of boolean combinations
of universal τ -sentences which follow from a τ -theory R):

• T τ∀∨∃ = Sτ∀∨∃,
• T is model complete.

A τ -theory S can have an AMC if, to some extent, it has already maximized the
family of existential sentences which are consistent with its universal consequences. Let us
elaborate more on this point. Given a τ -theory T , the family of strongly T -consistent Π2-
sentences for τ describes a fragment of the Π2-sentences which hold in a T -ec τ -structure
(see [34, Remark 2.2.8]). An AMC describes the set-up in which the choice of τ is such
that the family of strongly T -consistent Π2-sentences axiomatize a model complete theory.
When this occurs the process of closing-off a τ -model with respect to the T -operations
and relations (axiomatized by T τ∀ -sentences) gives rise to models that are axiomatized by
the Π2-sentences which are strongly T -consistent for τ .

As we already mentioned, complete first order τ -theories are model companionable
if and only if they admit an AMC. Indeed, for a complete theory S, the information
conveyed by Sτ∀ and by Sτ∀∨∃ is the same. On the other hand we have already seen that
there are non-complete τ -theories admitting a model companion but not an AMC, e.g.
the {+, ·, 0, 1}-theory of fields.

Let us briefly analyze more in details what is the obstruction for the {+, ·, 0, 1}-theory
of fields of characteristic 0 to have the {+, ·, 0, 1}-theory of algebraically closed fields of
characteristic 0 as its AMC. The problem is that Diophantine equations can be expressed
by atomic formulae of {+, ·, 0, 1} and not all of them have rational solutions. On the other
hand the existence of solutions for these equations does not contradict the field axioms.
Note that the smallest existentially closed {+, ·, 0, 1}-model M for the theory of fields is
given by the algebraically closed field consisting exactly of the solutions of diophantine
equations. Its standard construction builds it as a direct limit of Galois extensions of
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the rationals each adding new solutions to polynomial equations with coefficients in N
but without rational solutions. By performing this construction we can preserve the field
axioms and the characteristic 0 (which holds in Q as well as in all the Galois extensions of
Q under consideration), but at each stage we may invalidate some universal sentences that
are true in Q (e.g. the universal sentence asserting that a certain diophantine equation does
not have rational solutions). In particular the closing-off process performed in signature
σ = {+, ·, 0, 1} which brings from the theory of fields T to that of algebraically closed
fields cannot be described only by the Π2-sentences ψ which are strongly T -consistent for
σ. Indeed, there are other Π2-sentences which needs to be realized in an algebraically
closed field and which are not strongly T -consistent for σ (e.g. the existential statements
asserting the existence of solutions for diophantine equations). On the other hand we will
argue that in the case of set theory AMC faithfully describes the closing-off process of
models of set theory with respect to basic set-theoretic operations.

5.3. The (A)MC-spectra of a first order theory. Model theory has been extremely
successful in classifying the complexity of a mathematical theory according to its structural
properties, and has produced a variety of properties and criteria to separate the (so called)
tame mathematical theories from the (so called) untamed ones (e.g. o-minimality, stability,
simplicity, NIP). Typically a mathematical theory is considered hard to classify (and thus
untamed) if it can code in itself first order arithmetic. In this respect the ∈-theory ZFC is
untamed.

We have already observed that most mathematical theories admit many different first
order axiomatizations in (almost) as many distinct signatures. A common characteristic
of tameness properties such as o-minimality, stability, simplicity, and NIP is that they are
signature invariant. More precisely if we take a τ -theory T and we consider its Morley-
ization T ∗ in the signature τ∗ (see Notation 5.1), T is o-minimal (stable, simple, NIP)
if and only if so is T ∗. In contrast, this is not the case for Robinson’s notion of model
companionship: we have already observed that the theory of algebraically closed fields is
the model companion of the theory of commutative (semi-)rings with no zero divisors in
signature {+, ·, 0, 1}, but this ceases to be case for the signature

{
+, ·, 0, 1,−,−1

}
. Con-

versely a σ-theory R may not have a model companion (e.g. the σ = {·, 1}-theory of
groups), but its Morleyization R∗ in signature σ∗ is always its own model companion. We
instantiate the model-theoretic criterion formulated in the last part of Section 4 by means
of the following:

Definition 5.5. Let T be a τ -theory.

• Its AMC-spectrum (specAMC (T, τ)) is given by the sets A ⊆ Formτ × 2 such that
T + Tτ,A has an AMC (which we denote by AMC(T,A)).
• Its MC-spectrum (specMC(T, τ)) is given by the sets A ⊆ Formτ × 2 such that
T + Tτ,A has a model companion (which we denote by MC(T,A)).

Clearly specMC(T, τ) is a superset of specAMC (T, τ) and the two can be distinct. Observe
that C = Formτ × {0} is always in the AMC-spectrum of a theory T , as T + Tτ,C admits
quantifier elimination and therefore it is model complete and its own AMC in signature
τC = τ∗. Moreover, ∅ is in the (A)MC-spectrum of T if and only if T has an (absolute)
model companion. For σ = {+, ·, 0, 1} we have that:

• ∅ is in specMC(T, σ) \ specAMC(T, σ) for T the σ-theory of commutative (semi)rings
with no 0-divisors or fields considered in Section 3.
• For φ the σ-formula defining the additive inverse, {(φ, 1)} is in specMC(T, σ) if T is

the theory of commutative rings with no 0-divisors or fields, while {(φ, 1)} is not
in specMC(S, σ) if S is the σ-theory of commutative semirings with no 0-divisors.
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• For ψ the σ-formula defining the multiplicative inverse, {(ψ, 1)} is in specMC(T, σ)
if T is the theory of fields, while {(ψ, 1)} is not in specMC(S, σ) if S is the σ-theory
of commutative (semi)rings with no 0-divisors or the theory of fields.
• It can be shown that specAMC(T, σ) = ∅ for T the σ-theory of commutative

(semi)rings with no 0-divisors or fields.

For A in the AMC-spectrum of a τ -theory T , the problem of axiomatizing the exis-
tentially closed τA-models for T + Tτ,A becomes a consistency problem: that of checking
whether a Π2-sentence is strongly T + Tτ,A-consistent for τA.

6. The (A)MC-spectra of set theory

From now on we focus our attention on set theory. Our main goal is to study the model
companions of set theory and the relevant signatures for which they exist. We will not
only provide a new set of arguments in favour of 2ℵ0 = ℵ2, but we will also present a
new method to detect set theoretic validities. The realist-minded readers can consider the
following results as an attempt to produce a complete (first order) axiomatization of set
theory. Indeed we will show that the model companions of set theory describe possible
theories of larger and larger segments of the universe of sets (V,∈). More precisely we
will show that for each infinite cardinal κ there are appropriate signatures τκ which make
a certain theory of Hκ+ the model companion of set theory in signature τκ. Although a
realist stance towards mathematics is not needed to understand and prove these results,
it is within a realist agenda that we can better appreciate their meaning. We can make
more explicit this perspective outlining two important principles that will motivate the
present model-theoretic approach.

Semantic realism: the universe of all sets (V,∈) is sufficiently well-defined so that it is
possible to provide a unique axiomatic first order axiomatization of it. Therefore,
any set theoretical statement axiomatizable in first order logic receives, in (V,∈),
a well defined truth value.

Hilbertian completeness: (V,∈) offers a complete picture of what exists in set theory.
Therefore, (V,∈) contains any set whose existence is not in direct contradiction
with the already recognized truths of set theory.

In the context of a realist conception of sets, Hilbertian completeness yields a notion
of maximality for set theory. Because of the importance of this notion in set-theoretical
investigations, we defer to the last section of this paper a thorough discussion of the role
model companionship can play in its clarification. Meanwhile, we can rephrase Hilbertian
completeness (still in informal terms) in order to outline its connection with the notion of
model companionship and the use we make of this idea.

(IEC) Informal Existential Compleness If P (x, Y ) is a “simple” property formaliz-
able in the ∈-signature in parameter some set Y of V and ∃xP (x, Y ) is consistent
with the basic principles of set theory, then in V a witness of this existential
statement should exist.

Our task now consists in spelling out a precise mathematical definition of which set the-
oretic properties are to be regarded as “simple” and which sets Y of V we can accept as
parameters for the property P (also attention must be paid to single out what we exactly
mean by “consistent with the basic principles of set theory” to avoid trivial counterexam-
ples to (IEC)). Towards this end we can take advantage of our previous discussion about
signatures and AMC.

(a) We determine that a property of sets P is “simple” by analyzing the peculiarity
of set theory, as a mathematical theory. After choosing A ⊆ Form{∈} × 2 and
performing a partial Morleyization with respect to A, we can check whether P (x, y)
can be formalized by a quantifier free formula in signature {∈}A. If this is the case
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we consider P (x, y) simple (with respect to A). We clearly need criteria for the
choice of A. Indeed, if A = Form{∈} × 2, then any ∈-formalizable set theoretic
property becomes simple, since it is expressible by an atomic formula of {∈}A. In
order to avoid trivialities, we use set theoretic practice and forcing as a guiding
tool to select the appropriate sets A and, consequently, the simple set theoretic
properties. We regard a property P (~x) as simple if one or more of the following
conditions are met:
(i) its ∈-formalization can be expressed by a ∆0-formula;
(ii) its meaning is invariant across forcing extensions: i.e. P (~a) holds in V if and

only if it holds in some (any) generic extension of V ;
(iii) the basic truths about P (~x) are forcing invariant, which roughly amounts to

require that whenever ψ(~x) is an ∈-formula formalizing P (~x) and φ(~y) is a
boolean combination of ∆0-formulae and ψ, then the truth value of ∀~y φ(~y)
cannot be changed by forcing11.

Notice that the second and the third conditions are implied by the first. There
are properties P (x) which are not expressible using ∆0-formulae but for which
nonetheless the second or third (or both) conditions apply; for example: the second
condition applies to the provably ∆1-properties for ZFC− and (assuming large
cardinals) to the property “x belongs to a certain universally Baire set B”, while
the third holds for P (x) being “x is a stationary subset of ω1” (see Thm. 7.4 and
the comments following it).

We can give separate motivations for why each of the above condition is a sim-
plicity criterion: (i) is motivated by set theoretic practice (we expand on this in
Section 6.1). (ii) and (iii) are simplicity criteria as they state that we cannot use
forcing to change the basic truths regarding properties satisfying them. We con-
sider forcing invariance a legitimate “simplicity” check, since forcing is the unique
known efficient method to produce consistency results for existential statements
and —by the results we aim to expose in this paper— also the unique method at
all, at least for a large class of statements (we expand more on this in Section 6.3).

(b) Rather than focusing on the particularly delicate task of establishing which sets Y
do exist in V and which do not (in order to argue whether ∃xP (x, Y ) is consistent),
we just investigate whether the Π2-sentence ∀x∃y P (x, y) is consistent with the
basic principles of set theory. This task can be rephrased as checking whether
the sentence ∀x∃y P (x, y) belongs to AMC(T,A), for T some ∈-theory extending
ZFC+large cardinals, and A ⊆ Form{∈} × 2 such that P (x, y) is formalizable by a
quantifier free formula in signature {∈}A. Moreover (assuming (IEC)), if P (x, y)
satisfies any of the conditions for simplicity listed in (a), we can regard the Π2-
sentence ∀x∃yP (x, y) as a set-theoretic validity, since it asserts that the (suitable
fragment of the) universe of sets in which it holds is closed-off with respect to the
“simple” operations and relations described by P .

Now that we have some insights on which mathematical criteria detect “simplicity” and
on what we mean by “consistent with the basic principles of set theory”, we can give a
first general outline of the main results on the model companions of set theory.

(A) The (A)MC-spectrum of set theory can be used to characterize a theory of the
various Hκ+ as κ ranges over the infinite cardinals. More precisely, for any signa-
ture τ that extends {∈} and includes all ∆0-formulae among its atomic formulae,
if the τ -theory of sets admits a model companion, this model companion extends

11For example let P (x) be the property x is a stationary subset of ω1, then ∃x [P (x) ∧ P (ω1 \ x)] is a
ZFC-theorem hence its truth value cannot be changed by forcing. This is true regardless of the fact that
whenever G is V -generic for a forcing collapsing ωV1 to become countable, the witnesses of the truth of
∃x [P (x) ∧ P (ω1 \ x)] in V and that of ∃x [P (x) ∧ P (ω1 \ x)] in V [G] cannot be the same set.
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ZFC−τ (i.e. all axioms of ZFC with the exception of power-set and with replacement
holding for all τ -formulae). Furthermore for any infinite cardinal κ we can cook
up at least one signature τκ (extending {∈} and including all ∆0-formulae among
its atomic formulae) such that the τκ-theory of Hκ+ is the AMC of the τκ-theory
of V .

(B) If S is the {∈}-theory ZFC+large cardinals,12 there is (more than one) B in
specAMC (S, {∈}) such that all quantifier free formulae of {∈}B express simple
properties according to (a). Furthermore these sets B are chosen so that the
corresponding AMC(S,B) describes a theory of Hω2 and is axiomatized by the
Π2-sentences (in the signature {∈}B) which hold in the Hω2 of a model of strong

forcing axioms. Among these Π2-sentences there is a definable version of 2ℵ0 = ℵ2.
(C) For any theory S as in (B), neither CH nor 2ℵ0 > ℵ2 can be in AMC(S,A) for any

A in specAMC (S, {∈}).
(D) Finally for any S and B as in (B), the universal {∈}B-theory of S+T{∈},B is invari-

ant with respect to forcing. Moreover, any Π2sentence ψ of {∈}B is in AMC(T,B)
if and only if ψHω2 is forcible.

The resulting picture of V given by the above results (and on the basis of (IEC)) is that
of a cumulative hierarchy whose initial segments are closed-off with respect to more and
more complex set-theoretic operations (as κ increases), each initial segment being closed-
off with respect to set theoretic operations the same way as an algebraically closed field
is closed-off with respect to the solutions to its basic equations. When the Hκ+ described
by these AMCs are closed-off with respect to basic set-theoretical concepts satisfying
simplicity criteria (as those presented in (a)), then their theory realizes (IEC) and the
Hilbertian completeness encoded by it. The results outlined in (B) show that this is the
case for κ = ω1.

6.1. What is the right signature for set theory? The standard axioms of ZFC in
the ∈-signature are clearly sufficient to provide a first order axiomatization of set the-
ory. However a closer inspection reveals that many simple set-theoretic concepts are not
formalized by simple ∈-formulae.

Consider, for example, the notion of ordered pair. While we informally write x = 〈y, z〉
to mean that x is the ordered pair with first component y and second component z, in set
theoretic terms this statement hides a non-trivial coding of the concept of ordered pair (for
example) by means of Kuratowski’s definition: x = {{y} , {y, z}}. A proper definition of
the concept of ordered pair in the ∈-signature can then be given by the following ∈-formula:

∃t∃u [∀w (w ∈ x↔ w = t ∨ w = u) ∧ ∀v (v ∈ t↔ v = y) ∧ ∀v (v ∈ u↔ v = y ∨ v = z)].

It is clear that the meaning of this ∈-formula is hardly recognizable with a rapid glance
(unlike x = 〈y, z〉). Moreover, from a purely logical perspective, its Lévy complexity is
already Σ2. This clashes with our understanding that the concept of ordered pair is simple.
Indeed, we do not regard the notion of ordered pair as a complex concept, contrary to
other more complicated and theoretically loaded ones like that of uncountability, or many
of the properties of the continuum (such as its correct place in the hierarchy of uncountable
cardinals). In a similar vein other very basic notions such as being a function, a binary
relation, or the domain or the range of a function are formalized by rather complicated
∈-formulae, both from the point of view of their readability and of their Lévy complexity.

The standard solution adopted in set theory textbooks13 is to regard as basic all those ∈-
formulae in which the quantifiers are bounded to range over the elements of some set, that

12It is not essential here to specify what is meant by large cardinals. one could replace this assertion with
the statement there are class many Woodin and a supercompact, or any axiom implying this hypothesis.
See Thm. 7.4 below for a precise formulation of such an S.
13See for example [22, Chapter IV, Def. 3.5] or [19, Def. 12.9].
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is the ∆0-formulae. In order to make these observations precise we need to be extremely
cautious on our notational conventions.

Notation 6.1. For any A ⊆ Form{∈} × 2 we write ∈A rather than {∈}A, and we let T∈,A
be the ∈A-theory

T{∈},A + ∀x
[
(∀y y /∈ x)↔ c{∈} = x

]
,

where the theory T{∈},A (according to Notation 5.1 for {∈} and A) is reinforced by an
axiom asserting that the interpretation of the constant symbol c{∈} is the empty set. We
use the abbreviations ∈∆0 and T∆0 to denote what, according to the above conventions,
should rather be slight extensions of14 ∈∆0×{0} and T∈,∆0×{0}.

We also let for any τ ⊇∈∆0 , ZFCτ denote ZFC + T∆0 enriched with the replacement
axiom for all τ -formulae, and ZFC−τ denote ZFCτ without the powerset axiom. ZFC∆0

denotes ZFCτ for τ being ∈∆0 , accordingly we define ZFC−∆0
.

The reason why set-theoretic practice regards the concepts expressed by quantifier free
formulae of ∈∆0 as “simple” is due to the fact that the truth value of these formulae
is invariant among transitive models of large enough fragments of ZF (e.g. [22, Corollary
IV.3.6]), and thus also forcing invariant (e.g. [19, Lemma 14.21]). Furthermore ∈∆0 is a sig-
nature which allows to formalize many fundamental set theoretic concepts using formulae
whose Lévy complexity is in accordance to our intuitive understanding (e.g. [19, Chapter
13, Lemma 13.10]).

For example consider the following notions and their logical complexity:

• (x is a cardinal) is the Π1-formula (for ∈∆0)

(x is an ordinal) ∧ ∀f [(f is a function ∧ dom(f) ∈ x)→ ran(f) 6= x] .

• (x is ℵ1) is the boolean combination of Σ1-formulae

(x is a cardinal) ∧ (ω ∈ x)∧
∧∃F [(F : ω × x→ x) ∧ ∀α ∈ x (F � ω × {α} is a surjection on α)] .

• CH is the Σ2-sentence

∃f [(f is a function ∧ dom(f) is ℵ1) ∧ ∀r ⊆ ω (r ∈ ran(f))] .

and ¬CH is the boolean combination of Π2-sentences15

∃x (x is ℵ1) ∧ ∀f [(dom(f) is ℵ1 ∧ f is a function)→ ∃r ⊆ ω (r 6∈ ran(f))] .

• (x is ℵ2) is the Σ2-formula

(x is a cardinal)∧
∧∃F∃y [(y is ℵ1) ∧ (y ∈ x) ∧ (F : y × x→ x) ∧ ∀α ∈ x (F � y × {α} is a surjection on α)] .

• 2ℵ0 > ℵ2 is the boolean combination of Π2-sentences

∃x (x is ℵ2) ∧ ∀f [(f is a function ∧ dom(f) is ℵ2)→ ∃r (r ⊆ ω ∧ r 6∈ ran(f))] .

• 2ℵ0 ≤ ℵ2 is the Σ2-sentence

∃f [(f is a function) ∧ dom(f) is ℵ2 ∧ ∀r (r ⊆ ω → r ∈ ran(f))] .

Let us also introduce the notation we will use to handle the substructure relation over
expanded signatures. The following conventions supplement Notation 5.1.

14The precise definition of ∈∆0 and T∆0 can be found in [34, Notation 3.1.1]. They are obtained by
enriching ∈∆0×{0} and T∈,∆0×{0} with a constant symbol for ω and function symbols for the Goedel
operations (as defined in [19, Def. 13.6]) and axioms to interpret them correctly.
15We let ¬CH include the Σ2-sentence ∃x (x is ℵ1), for otherwise its failure could be witnessed by the
assertion that there is no uncountable cardinal, a statement which holds true in Hω1 , regardless of whether
CH or its negation is true in the corresponding universe of sets.
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Notation 6.2. Given τ -structures M, N we write M v N to denote the substructure
relation, while we useM≺n N to denote the Σn-substructure relation. Morevoer,M≺ N
denotes the elementary substructure relation.

Notation 6.3. Let τ ⊇∈∆0 ∪{κ} be a signature with κ a constant symbol, (M, τM ) a
τ -structure, and B a subset of Formτ ×2. Then, (M, τMB ) is the unique extension of (M, τ)
defined in accordance with Notations 5.1 which satisfies Tτ,B. In particular (M, τMB ) is a

shorthand for (M,SM : S ∈ τB). If (N, τN ) is a substructure of (M, τM ) we also write
(N, τMB ) as a shorthand for (N,SM � N : S ∈ τB).

6.2. Lévy absoluteness and the possible AMCs of set theory. Recall that for an
infinite cardinal λ, Hλ is the initial transitive fragment of V given by those sets whose
transitive closure has size less than λ and is by itself a set in V (see [22, Section IV.6]).
We have the following results.

Stratification of V : the universe of sets V can be stratified as the union, along the class
of infinite cardinals κ, of the sets Hκ+ .

Standard theory of Hλ: [22, Thm. IV.6.5] for any uncountable cardinal λ, (Hλ,∈V∆0
)

is a model of ZFC−∆0
(recall Notation 6.1).

Strong Lévy absoluteness: [31, Lemma 5.3] For all Ai ⊆ P (κ)ni for i = 1, . . . , k

(HV
κ+ ,∈V∆0

, A1, . . . , Ak) ≺1 (V,∈V∆0
, A1, . . . , Ak).

Second order characterization of Hκ+: WheneverM is an ∈∆0 ∪{κ}-model of ZFC∆0+
κ is an infinite cardinal (HMκ+ ,∈M∆0

, κM) is a model of the Π2-sentence for ∈∆0 ∪{κ}
(7) ∀x∃f (f : κ→ x is a surjection).

Furthermore HV
κ+ can be described as the unique set M ∈ V such that;

• κ ∈M and M is transitive;
• (M,∈V∆0

) satisfies (7) and ZFC−∆0
;

• M has the (second order property) that for all a ∈ M and b ⊆ a, b ∈ M as
well.

In particular the theory of each Hκ+ offers a Σ1-approximation of the theory of V with
respect to a signatures τκ which extends ∈∆0 ∪{κ} and contains predicates for subsets
of P (κ)n for some n ∈ N. Consequently, if we want to study the Σ1-properties of the
reals (second order arithmetic), or the powerset of the reals (third order arithmetic) it is
sufficient to study it within the theory of some Hκ+ for κ a large enough regular cardinal
(and for most purposes Hℵ1 suffices for second order arithmetic, and Hℵ2 for third-order
arithmetic). Moreover, in view of Lévy absoluteness, Hκ+ and V agree on the computation
of many simple set theoretic operations and relations: for example the operations and
relations formalizable by means of ∆0-formulae and ∆0-definable Skolem functions.

The above results entail that whenever T is a τ -theory that extend ZFC∆0 + κ is a
cardinal, τ is a signature that contain ∈∆0 ∪{κ} and is contained in

∈∆0 ∪{A : A ⊆ P (κ)n , n ∈ N} ,
and (V, τV ) models T , then

(HV
κ+ , τ

V ) ≺1 (V, τV ).

Hence (Hκ+ , τV ) witnesses that (7) is consistent with the universal fragment of the τ -
theory of V . In particular if T has an AMC for τ , say S, then (7) must be in S, since it
is a Π2-sentence which is strongly T -consistent for τ .

We can now collect all these observations and conclude the following.

(1) The structure of V is uniquely determined by the structure of the various Hκ+ as
κ ranges among the infinite cardinals.
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(2) Given an infinite cardinal κ, consider a signature τ extending ∈∆0 only with pred-
icates for subsets of P (κ) and a constant symbol for κ. Then, if some T ⊇ ZFCτ
has an AMC, this AMC looks like a theory of Hκ+ and is axiomatized by the
Π2-sentences which are strongly T -consistent for τ .

Now assume T is some ∈-theory T ⊇ ZFC+large cardinals and A ⊆ Form∈ × 2 is in
specAMC (T, {∈}). Assume further that:

• for some constant symbol κ of ∈A
ZFC− + ∀X∃f (f : κ→ X is a surjection)

is in AMC(T,A);
• every atomic formula of ∈A satisfies at least one of the simplicity criteria set forth

in (a).

Then (on the basis of (IEC)) we should conclude that AMC(T,A) describes the correct
theory of Hκ+ , since criterion (b) is satisfied by all axioms of AMC(T,A).

6.3. Existentially closed fragments of the set theoretic universe versus AMC.
We conclude this section giving a non-exhaustive list of results that show that, for certain
infinite cardinals κ, the corresponding Hκ+ already witnesses some important existential
closure properties (e.g. Lévy absoluteness, Shoenfield’s absoluteness, BMM, BMM++) and
its theory has some traits which are peculiar of model complete theories (e.g. Woodin’s
absoluteness, MM+++).16 The reader needs not be familiar with these results, as they
only serve as motivation to bring our focus on existentially closed models for set theory.17

Lévy absoluteness: [31, Lemma 5.3] Whenever λ is a regular uncountable cardinal,

(Hλ,∈V∆0
) ≺1 (V,∈V∆0

).

Shoenfield’s absoluteness: (see [33, Lemma 1.2] for the apparently weaker formulation
we give here) Whenever G is V -generic for some forcing notion in V ,

(Hω1 ,∈V∆0
) ≺1 (V [G],∈V [G]

∆0
).

Woodin’s absoluteness: (see [33, Lemma 3.2] for the weak form of Woodin’s result we
give here) Whenever G is V -generic for some forcing notion in V (and there are
class many Woodin cardinals in V ),

(HV
ω1
,∈V∆0

) ≺ (HV [G]
ω1

,∈V [G]
∆0

).

Bounded Martin’s Maximum (BMM): [5] Whenever G is V -generic for some station-
ary set preserving forcing notion in V ,

(Hω2 ,∈V∆0
) ≺1 (V [G],∈V [G]

∆0
).

BMM++: [39, Def. 10.91] Whenever G is V -generic for some stationary set preserving
forcing notion in V ,

(Hω2 ,∈V∆0
,NSVω1

) ≺1 (V [G],∈V [G]
∆0

,NSV [G]
ω1

),

where NSω1 is a unary predicate symbol interpreted by the non-stationary ideal
on ω1.

Bounded category forcing axioms, MM+++, RAω(SSP): [3, 4, 32] Whenever V and
V [G] are models of MM+++ (RAω(SSP), BCFA(SSP)) and G is V -generic for some
stationary set preserving forcing notion in V ,

(HV
ω2
,∈V∆0

) ≺ (HV [G]
ω2

,∈V [G]
∆0

).

16Recall that a τ -theory T is model complete if and only if the substructure relation between its models
overlaps with the elementary substructure relation. In particular the mentioned results are weak forms of
model completeness for the theory of Hℵi for i = 1, 2.
17For further examples of existentially closed models of set theory see [30].
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7. Main results

We can now present results culminating the discussion of the previous sections. The
proofs can be found in [34].

Notation 7.1. ForA ⊆ Form∈×2, ZFCA denotes the ∈A-theory ZFC∈A defined in Notation
6.1. Accordigly we define ZFC−A.

Definition 7.2. Let T ⊇ ZFC− be an ∈-theory. κ is a T -definable cardinal if for some
∈-formula φκ(x), T proves:

• ∃!xφκ(x) and
∀x [φκ(x)→ (x is a cardinal)].

• κ is the constant fφκ existing in the signature ∈{(φκ,1)}.

7.1. The AMCs of set theory are theories of Hκ+. The first result shows that the
AMC spectrum of set theory isolates a rich set of theories which produce models of ZFC−,
that is, structures which behave like an Hλ for some regular uncountable cardinal λ.

Theorem 7.3. Let R be an ∈-theory extending ZFC.

(i) Assume A ∈ specMC (R,∈) and ∈A⊇∈∆0. Then MC(R,A) models ZFC−A.
(ii) Assume A ∈ specMC (R,∈), ∈A⊇∈∆0, and λ is an R-definable cardinal represented

by a constant symbol of ∈A and such that18

(HMλ+ ,∈MA ) ≺1 M
whenever M models R + T∈,A. Then ∀x∃f (f : λ → x is a surjection) is in
MC(R,A).

(iii) Assume λ is an R-definable cardinal. Then there exists Aλ ∈ specAMC (R,∈) with
∈Aλ containing ∈∆0 such that AMC(R,Aλ) is given by the ∈Aλ-theory common to
the structures HMλ+ as M ranges among the ∈Aλ-models of R+ T∈,Aλ.

7.2. Forcibility versus absolute model companionship. The following is the major
result relating AMC to forcibility and to forcing axioms19:

Theorem 7.4. Let S be the ∈-theory

ZFC + there exists class many supercompact cardinals.

Then there is a set B ∈ specAMC (S,∈) with ∈B containing ∈∆0, and such that for any
Π2-sentence ψ for ∈B and any ∈-theory R ⊇ S the following are equivalent:

(a) ψ ∈ AMC(R,B);
(b) (R+ T∈,B)∈B∀∨∃ + S + MM++ + T∈,B proves20 ψHω2 ;

(c) R proves that ψHω2 is forcible21 by a stationary set preserving forcing;
(d) R proves that ψHω2 is forcible by some forcing;
(e) For any R′ ⊇ R, ψ + (R′ + T∈,B)∈B∀∨∃ is consistent.

Furthermore for any θ which is a boolean combination of Π1-sentences for ∈B and any
(V,∈) model of S, TFAE:

(A) (V,∈VB) models θ;

18HMλ+ denotes the substructure ofM whose extension is given by the formula defining Hλ+ in the model
(using the parameter λ).
19The reader unaware of what is MM++ or a stationary set preserving forcing can skip the second and
third items of the theorem.
20Here and elsewhere we write ψN to denote the relativization of ψ to a definable class (or set) N ;
see [22, Def. IV.2.1] for details. Recall that for a τ -theory S Sτ∀∨∃ denotes the boolean combinations of
universal τ -sentences which follow from S.
21Here and in the next item we mean that the ∈-formula θ which is T∈,B-equivalent to ψ is such that θHω2

is forcible by the appropriate forcing.
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(B) (V,∈VB) models that some forcing notion P forces θ;
(C) (V,∈VB) models that all forcing notions P force θ.

The second part of the theorem shows that forcing cannot change the Π1-fragment of
the theory of V in signature ∈B ⊇ ∈∆0 . Notice also that if (V,∈) is a model of S and R is
the ∈B-theory of its unique extension to a model of T∈,B, we get that a Π2-sentence ψ for

∈B is consistent with the universal fragment of R if and only if ψHω2 is forcible over V .
We give an accurate definition of ∈B in [34]; here we just mention that B is a recursive

set extending ∈∆0 with a predicate symbol for the non-stationary ideal on ω1, a constant
symbol for ω1, and predicate symbols for all sets of reals definable by ∈-formulae without
parameters in the Chang model L(Ordω) (which by an unpublished result of Woodin form
an interesting subclass of the universally Baire sets, assuming the large cardinal hypothesis
of the Theorem).

We can also drop any reference to AMC and ∈B and prove the following result which
relates forcibility to consistency for Π2-sentences in the signature ∈∆0 .

Theorem 7.5. Let S be the theory of Thm. 7.4.
For any Π2-sentence ψ for the signature ∈∆0 and for any ∈-theory R ⊇ S the following

are equivalent:

(1) (R+ T∆0)
∈∆0
∀∨∃ + S + MM++ + T∆0 proves ψHω2 ;

(2) R proves that ψHω2 is forcible by a stationary set preserving forcing;
(3) R proves that ψHω2 is forcible;

(4) For any consistent ∈-theory R′ ⊇ R, ψ + (R′ + T∆0)
∈∆0
∀∨∃ is consistent.

7.3. The AMC-spectrum of set theory and the continuum problem. The AMC
spectrum of set theory places ℵ2 in a very special position among the possible values of
the continuum.

Theorem 7.6. Let S be the ∈-theory of Thm. 7.4. The following holds:

(1) Let R ⊇ S be an ∈-theory. Assume A ∈ specAMC (R,∈) is such that ∈A contains
∈∆0 and ¬CH + ZFC + (R+ T∈,A)∈A∀∨∃ is consistent. Then CH 6∈ AMC(R,A).

(2) For the signature ∈B of Thm. 7.4 ¬CH is in AMC(R,B) for any ∈-theory R ⊇ S.

Let us briefly argue why CH cannot be in AMC(R,A) whenever R+ ¬CH is consistent.
We use the following peculiar property of AMC (which can fail for model companionship22):

Fact 7.7. [34, Lemma 2.1.2, Def. 2.2.4, Lemma 2.2.7 ] Let T, S be τ -theories with T
the AMC of S. Then for any completion S′ of S there are models M≺1 N such that M
models T and N models S′.

Now R+¬CH is consistent by assumption, hence so is R+¬CH+T∈,A, since the latter
is a conservative extension of the former. Morevoer, since ∈A⊇∈∆0 , we get that ¬CH is
expressible by the boolean combination of a Π2-sentence of R+T∈,A with the Σ2-sentence
for ∈∆0 the first uncountable cardinal exists. By the above, we can findM≺1 N withM
a model of AMC(R,A) and N a model of R + T∈,A + ¬CH. If M does not model there
exists an uncountable cardinal then ¬CH holds in it; otherwise the Π2-sentence which is
the other conjunct of ¬CH holds in N and therefore reflects to M. In either case we
conclude that ¬CH holds in M. Hence AMC(R,A) cannot prove CH.

Let us also argue why ¬CH falls in the AMC of S + T∈,B for the set B ⊆ Form∈ × 2 of
(2) above. Towards this aim we appeal to the equivalence between (A) and (C) of Thm.
7.4 (which gives a precise instantiation of simplicity criterion (iii)). First of all notice that

22For example no algebraically closed field can be a {+, ·, 0, 1}-substructure of a {+, ·, 0, 1}-structure
elementarily equivalent to Q.
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an ∈-theory R ⊇ S is complete if and only if so is R+ T∈,B. Let R be some ∈-completion
of S and (V,∈) a model of R. We now note that ∈B has a constant κ to denote ω1, and
AMC(S,B) satisfies the ∈∆0 ∪{κ}-sentence “κ is the first uncountable cardinal” Let B be
a cba such that J¬CHKB = 1B holds in (V,∈).23 Let G be any ultrafilter on B. Then

V B/G |= ∀f(f is a function with domain κ→ ∃r ⊆ ω which is not in its range)

(by [19, Lemma 14.14]) and V B/G also models the universal ∈B-fragment of R+T∈,B (by
(A)⇔(C) of Thm. 7.4, and [19, Lemma 14.14]). In particular the Π2-conjunct of ¬CH is
consistent with the universal fragment of any completion of S + T∈,B, hence it belongs to
the AMC of S + T∈,B, while the Σ2-conjunct of ¬CH is in the AMC of S + T∈,B since the

axiom Ax1
ψ for ψ defining the first uncountable cardinal is in T∈,B.

In particular we see that forcing becomes a powerful tool to prove that a Π2-sentence
formalizable in ∈B is the AMC of S + T∈,B. Indeed, it suffices to prove over S that this
sentence is forcible.

We can prove exactly the same type of result replacing CH by 2ℵ0 > ℵ2. Specifically
Moore introduced in [26] a Π2-sentence θMoore for ∈∆0 to show the existence of a definable
well order of the reals in type ω2 in models of the bounded proper forcing axiom. We can
use θMoore as follows.

Theorem 7.8. There is a Π2-sentence θMoore for ∈∆0 such that the following holds:

(1) θMoore is independent of S + T∆0, where S is the ∈-theory of Thm. 7.4.
(2) ZFC−∆0

+∃x (x is ℵ1) + θMoore proves that there exists a well-ordering of24 P (ω) in
type at most ω2.

(3) ZFC−∆0
+ ∃x (x is ℵ2) + θMoore proves that 2ℵ0 ≤ ω2.

(4) For S and ∈B the theory and signature considered in Thm. 7.4, ∃x (x is ℵ1), θMoore

are both in AMC(R,B) for any ∈-theory R extending S.
(5) If R extends S, A ∈ specAMC (R,∈) is such that ∈A contains ∈∆0, ∃x (x is ℵ2) ∈

AMC(R,A) and
θMoore + (R+ T∈,A)∈A∀∨∃ + ZFC

is consistent, then 2ℵ0 > ℵ2 is not in AMC(R,A).

The two theorems single out 2ℵ0 = ℵ2 among all possible solutions of the continuum
problem.25 For any ∈-theory R extending ZFC+large cardinals there is at least one B ∈
specAMC (R,∈) with ¬CH (and a definable version of 2ℵ0 ≤ ℵ2) in AMC(R,B), and this
occurs even if R |= CH or R |= 2ℵ0 > ℵ2. On the other hand for any ∈-theory R extending
ZFC, if CH is independent of R, then CH is never in AMC(R,A) for any A ∈ specAMC (R,∈)
(if ∈A contains ∈∆0) and similarly if θMoore is independent of R, 2ℵ0 > ℵ2 is never in
AMC(R,A) for any A ∈ specAMC (R,∈) (if ∈A contains ∈∆0). Furthermore the last part
of Thm. 7.4 shows that CH, 2ℵ0 = ℵ2, 2ℵ0 > ℵ2, θMoore are all boolean combination of
Π2-sentences in the signature ∈∆0 which cannot be expressed by boolean combination of
Π1-sentences for the signature ∈B⊇∈∆0 in models of S (with S and B as in Thm. 7.4),
as their truth value can be changed by forcing.

23For example the boolean completion of the partial order originally devised by Cohen. See for details [19,
Thm. 14.32]
24More precisely: there is a a ZFC−∆0

-provably ∆1-property ψ(x, y, z) such that in any model M of the

mentioned theory there is a parameter d ∈ M such that ψ(x, y, d) defines an injection of P (ω) of the
model with the class of ordinals of size at most ω1 of the model.
25These results bring to light the role of forcing axioms in deciding the value of the continuum; an overview
of the proofs of 2ℵ0 = ℵ2 given by forcing axioms is given for example in [27].
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8. On maximality and justification

In this last section we focus on two philosophical aspects of the present approach.
First we address the following question: which notion of maximality is displayed by the
model companions of ZFC+large cardinals? Notice that the role of large cardinals and
strong forcing axioms in providing model completeness for the theory of Hℵ2 suggests a
justification of the formers in terms of the clarification they provide of the latter. This
observation suggests a second question: is there a form of justification of set-theoretical
axioms that emerges from the present approach? In the remainder of this section we
address these two questions.

8.1. Maximality. Maximality principles play an important role in the study of the ax-
iomatic extensions of ZFC. Maximality conveys the idea that the universe of sets is as full
as it could be, while maximality principles are (first order) statements that try to capture
this idea axiomatically.26

There is no unique way to realize maximality in set theory, and its various forms depend
on what in fact is maximized. Indeed, the process of maximization can be applied to
objects, possibilities, or even domains.

• With respect to objects we find two standard forms of maximization: height max-
imality (expressing maximality for the lengths of the series of ordinals) and width
maximality (expressing the maximality of the power-set operation). The former is
successfully exemplified by large cardinals axioms [21], while the latter represents
a cluster of notions often connected to the justification of generic absoluteness
principles [6] or forms of horizontal reflection like the Inner Model Hypothesis [1].
• For what concerns the maximization of possibilities, we find modal principles of

forcing like the so-called Maximality Principle [14] (expressing the idea that every-
thing that is possibly necessary is true) or resurrection axioms [3,4,16] (expressing
the idea that if something is true, then it is necessarily possible).
• Finally, the maximization of domains is a strategy inspired by Hilbert’s (second

order) axiom of completeness that found a (first order) axiomatic realization in
McGee’s Completeness Principle [25]. This principle, like Hilbert’s axiom, is suf-
ficient to prove categoricity for the class of pure sets (in a context of a set theory
with Urelemente).

Now, what form of maximality is displayed by the notion of model companionship? Can
it be compared to any of the above forms of set-theoretical maximality?

At a very general level it is hard to say whether the maximality provided by models com-
panions concerns syntax, semantics, or ontology. Indeed, not only model companions are
model complete theories (a semantic property), but they also maximize the Π2-sentences
consistent with their universal fragment (a syntactic property). Furthermore, a model
companion can be considered as a maximization of the ontology of its models, in view of
their closure properties. Given this multifaceted character of model companionship, let us
compare it with all the three forms of maximality outlined above.

We can start by considering the maximization of objects (or, more appropriately, of
witnesses of existential sentences). For what concerns height maximality, this notion is
successfully realized by large cardinal axioms. While the model companionship results
for set theory do not seem to enforce this form of maximality, they can nonetheless be
used to justify it, as we will show in the next section. On the other hand, for what
concerns width maximality, notice that bounded forcing axiom (and similar principles
meant to express forms of horizontal maximality) can be reformulated in terms of generic
absoluteness properties for Hκ+ . The key observation, then, consists in noticing that

26See [18] for a complete and informative survey on the topic of maximality principles in set theory.
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these generic absoluteness results are weakenings of the notion of model companionship,
since they (only) describe the relationship of the HV

κ+ with the generic multiverse (i.e.

the collection of all H
V [G]
κ+ as V [G] ranges over the forcing extensions of V ). However, the

model-theoretic properties of model companions cannot be reduced to generic absoluteness
results. Indeed, the invariance of the theory of HV

κ+ (as the model companion of the theory
of V expressed in a signature which satisfies the simplicity criteria outlined in (a)) does
not only hold with respect to forcing extensions of V , but also with respect to any model-
theoretic extension whatsoever. In this sense, model companionship results for signatures
satisfying the criteria of (a) yield a form of absoluteness for Hκ+ that is stronger than that
provided by generic absoluteness.

For what concerns the modal principles of forcing, we can argue as for width maximality.
As a matter of fact, the Maximality Principle and the resurrection axioms as exposed
in [3, 4, 14, 16] are, by all means, principles of generic absoluteness for the theory of Hℵ2

(at least in the presence of mild forms of bounded forcing axioms). From this perspective
it is sufficient to notice that (by Thm. 7.4) the ∈B-theory of Hℵ2 is the model companion
of set theory. This allows to recover the generic absoluteness properties and the modal
principles of forcing of [3, 4, 14, 16] leveraging on Robinson’s notion of infinite forcing and
its relation with model companionship (see [17]).

Finally, what is the connection between the maximization given by model companion-
ship results and that provided by Hilbert’s axioms of completeness? One of the presup-
positions of our whole approach is a form of completeness that we named Hilbertian. The
reason for this choice is more conceptual than formal. Indeed, we can see the notion of
model companion as a formal tool implementing the idea that the universe (V,∈) con-
tains all sets. This interpretation is made explicit via the principle of Informal Existential
Completeness (IEC): the maximality of (V,∈) is thus realized by the ability to contain wit-
nesses for all existential sentences (expressed in the appropriate language). Consequently
(IEC) can be seen as a (first order) realization of Hilbert’s idea of completeness that avoids
reference to domains, but that instead maximizes set theory syntactically with respect to
Σ1-properties. Another point of convergence between model companions and Hilbert’s
notion of completeness is their final goal: unicity. Because of its second order character,
Hilbert’s Axiom of Completeness yields categoricity for geometry, consequently making its
theory complete. Although in a weaker form, also an absolute model companion T ∗ (of a
theory T ) is able to fix univocally (via maximization) the Π2-sentences that are consistent
with the Π1-fragment of T .

In conclusion, it seems that the form of maximality provided by (absolute) model com-
panionship does not precisely fit with any of the standard forms of set-theoretical maximal-
ity; although there are formal similarities with generic absoluteness results and conceptual
similarities with Hilbert’s idea of completeness. For this reason we can see the notion of
model companionship as a formalization of the somewhat vague ideas of width maximal-
ity and Hilbertian completeness. Our opinion is that the model companions of set theory
yield a new form of maximality, that we may call algebraic maximality. The inspiration
clearly comes from algebraically closed fields. We consider maximization as a two steps
process: first we determine which are the basic, simple, concepts that our theory can ex-
press and then, once we have extended our language with symbols for these concepts, we
close our theory with respect to the existential formulae of this new language. In the case
of fields, the basic concepts are those expressed by Diophantine equations, while the alge-
braic maximality of ACF is what guarantees that all these equations have solutions. In the
case of set theory, the choice of basic concepts is what determines the relevant signatures
for set theory; furthermore the basic concepts should certainly include the ∆0-properties.
Once a signature τ is fixed, the algebraic maximality of the absolute model companions
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of set theory guarantees the existential closure of the Hκ+ and the maximization of the
Π2-sentences (for signature τ) realized in these structures.

8.2. Justification. Let us now turn to the topic of justification. When it comes to jus-
tifying new set-theoretical principles, the proposed reasons normally fall into two main
categories: intrinsic or extrinsic. These forms of justification have been developed within
the so-called Gödel’s program27: a step by step extension of ZFC, aimed to coherently
complete our picture of the universe of sets. In this sense, the present approach is clearly
in the wake of Gödel’s program. Indeed, the axiomatization of the model companions of
set theory should, eventually, provide a description of the theory of V as the stratification
of the theories of the various Hκ+ .

The role of large cardinals and of strong forcing axioms in the individuation of the model
companions of set theory (in terms of the theories of Hℵ1 and Hℵ2) therefore suggests a
justification of the appropriateness of the formers in terms of the nice model-theoretic
properties of the latters. In order to understand this process of justification, let us briefly
revise what we mean by intrinsic and extrinsic reasons.

• A form of justification is considered intrinsic when it is based on intrinsic features
of the concept of set or, derivatively (given the foundational role of set theory), on
notions that are key to the whole edifice of mathematics and logic. In this sense,
a new axiom is justified when it captures an essential aspect of the concept of
set or when it formalizes notions that are fundamental for mathematics and logic.
This form of justification is utterly conceptual, since it rests on the theoretical
priority of the notion of set over its formalization. Consequently, an extension of
ZFC is well justified, when it faithfully represents the correct concept of set (e.g.
the iterative conception [9] or the quasi-combinatorial one [8]).
• A form of justification is considered extrinsic when we are forced to accept it by

the abundance of its desirable consequences; even in the absence of intrinsic rea-
sons. In this case an axiom is justified even if it does not seem prima facie to
capture any relevant aspect of the concept of set. This second form of justifica-
tion is clearly meant to overcome the limits of intrinsic reasons and to account for
an experimental methodology in the context of the foundations of mathematics.
Extrinsic justifications are pragmatic in nature, since they rely on the fruitfulness
of an axiom in solving new problems, shortening proofs of already known results,
and unifying substantial bodies of theory. The form of justification put forward
by extrinsic reasons is akin to an inference to the best explanation within math-
ematics. Therefore, an extrinsically justified axiom is judged by its consequence
and not by its meaning.

Intrinsic and extrinsic reasons have been extensively studied in the philosophy of set
theory [23,24] and they have been widely applied, in recent debates, for the justifications
of competing programs [2,20]. These two forms of justification have also been criticized for
their opacity in offering clear criteria of application and for the lack of demarcation between
intrinsic and extrinsic reasons [7]. Moreover, as it happened in the debate on the analytic-
synthetic distinction, there is also no shortage of contributions that reject the problem
of justification at its very base. Following a naturalistic account of mathematics, authors
like Hamkins (or before him Cohen [11]) propose to dismiss the problem of justification,
together with the issue of independence, by defending the liberty of mathematicinas to
study different universes of set theory and by declaring the study of the variation of truth
values among the models of ZFC to be all that mathematically matters for the study of
independence [15].

27Presented by Gödel in his seminal paper [13].
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Now, in which sense the nice model-theoretic properties of model companions are able to
justify large cardinals and strong forcing axioms? Is the role of these new set-theoretical
principle in the construction of a model companion able to provide an intrinsic or an
extrinsic justification for them?

A first complication that we face in addressing these questions is that the present
approach does not only deal with axiomatic extensions of ZFC, but also with linguistic
ones: the introduction of new signatures for set theory. For this reason the justification
of large cardinals and strong forcing axioms based on model companionship results for set
theory contain elements of both intrinsic and extrinsic arguments. Indeed, on the one hand
strong forcing axioms provide a maximization of the Π2-statements realized over Hℵ2 and,
thus, have tremendously abundant consequences on third order arithmetic (and on this
ground they can be extrinsically justified). On the other hand, because of the possibility
to provide (generic) absoluteness results, large cardinal axioms determine the “simple”
concepts that need to be included in the new signatures for set theory. Therefore, large
cardinals and strong forcing axioms help us understanding what are the basic concepts on
which third order arithmetic should be based (and for this reason they can be intrinsically
justified).

Another aspect of the present approach that places the justification of new axioms
somewhat outside the standard practice, is the focus on models instead of sets (like the
intrinsic reasons) or problems (like the extrinsic ones). As a matter of fact, large cardinals
and strong forcing axioms play an important role in the construction of model companions
of set theory and, therefore, in detemining the stability of the theories of second and third
order arithmetic. Derivatively, these principles can be intrinsically or extrinsically justified,
that is: because of the nice model-theoretic properties of model companions for set theory
assuming large cardinals (model companions whose theory is determined by strong forcing
axioms) we are able to clarify the notion of set and to have fruitful consequences.The
difficulty in choosing whether the nice model-theoretic consequences of an axiom account
for its intrinsic or extrinsic justification is not new. Similar troubles can be found in any
attempts to justify generic absoluteness principles in terms of this standard dichotomy.28

What the present approach makes evident is the role model-theoretic properties can play
in determining the success of new axioms. In our opinion, what needs to be praised
of these model companionship properties of set theory are not only their intrinsic or
extrinsic virtues, but mostly the clarification they provide of the model theory of set theory.
Because of the limits of the standard intrinsic-extrinsic dichotomy to capture the form of
justification of this model-theoretic approach to set theoretic validities, we may propose a
completely new name for this novel form of justification and call it meta-theoretical.

There is another sense in which these model companionship results, the justification
they offer to new axioms, and the solution they yield for the Continuum problem are
utterly Hilbertian. This is the autonomy they provide for mathematics with respect to its
foundations. As a matter of fact, the use of the notion of model companionship to fix the
theory of second and third order arithmetic (and to enforce algebraic maximality) does
not introduce any element that is foreign to mathematical practice. The sought solution
to the Continuum problem is a solution obtained with formal tools and that is justified
on a purely mathematical ground. Moreover, the possibility to put on a par the notions
of provability, forceability, and consistency provides a solution to the Continuum problem
that encompasses all mathematical means at disposal to prove independence. In this sense
these results realize in full the possibility of an autonomous foundation for mathematics,
as the one sought by Hilbert [12].

28See [29] for a discussion of a conceptual justification of forcing axioms in terms of the notion of arbitrary
set.
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