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Chapter 1

Introduction

1.1 Content

These notes are meant for students in mathematics who wish to follow the set theory
course in the master program of Torino university. The course program covers large
portions of Kunen’s book [6] (or its new edition [7]). We focus in particular on:

� Axiomatic set theory, including basics of cardinal and ordinal arithmetic, trans-
finite recursion and the Mostowski collapsing theorem, the reflection theorems,
the absoluteness properties of transitive structures, the development of basic
model theory (including the Löwenheim-Skolem theorem for set structures)
inside the standard model V for ZFC. This material is extensively covered
in [6, Chapters I,III,IV,V] or [7, Chapter I, and Sections II.1–II.5].

� Forcing and combinatorics of partial orders ( [6, Chapters II,VII] or [7, Chap-
ters III, IV]). Since the course presents this material in a way which differs
substantially from the approaches taken in [6] or [7], we decided to write up
these notes to cover this part of the program.

These notes are divided in six chapters and two appendixes. Apart from the
introduction (first chapter) the second, third and fourth chapters recall standard
material on partial orders and boolean algebras which can be found in several
textbooks. The fifth introduces boolean valued semantics as a natural generalization
of Tarski semantics for first order logic. The sixth chapter is the heart of these
notes. It gives a detailed presentation of the forcing method via boolean valued
models. It features the most celebrated application of this method, namely the
undecidability of the continuum hypothesis CH. The first appendix gives some more
details on the parts of our course for which the reference texts are [6, Chapters
III,IV,V] or [7, Chapter I, and Sections II.1–II.5] specifically on the basic properties
of transitive structures and on absolute properties. The second appendix cover some
basic facts about partial orders and topological spaces and includes a proof of the
Stone-Cech compactification theorem. The reader already familiar with the material
covered in chapters 2-3-4 of these notes may just skim through this part or refer back
to it if needed while reading chapters 5 and 6.
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2 CHAPTER 1. INTRODUCTION

� Chapters 2 and 3 introduce basic notions regarding boolean algebras. Some
basic properties of the dualities which link these apparently distinct categories
of mathematical objects are recalled. We prove in particular that every partial
order admits, up to isomorphism, a unique complete boolean algebra in which
it embeds as a dense subset, and we link the basic theory of boolean algebras
to that of compact Haussdorff spaces by means of the Stone representation
theorem. We bring to the attention of the reader that these chapters present
material on boolean algebras which she/he may already have encountered in
other courses. We decided to include it here in order to present these results
with a focus aimed towards their use within set theory and their role in the
development of the forcing method.

� Chapter 4 introduces some basic combinatorial properties of partial orders
which will be needed to prove the independence of the continuum hypothesis by
means of the forcing method. In particular we focus on CCC partial orders, we
prove the ∆-system Lemma, and we use it to prove that the notion of forcing
which can be used to produce a model of ZFC where CH fails is CCC. Most (if
not all) of these results can be found in [7, III.1-III.2-III.3] or [6, II] , however
these sections of both books contain a large amount of material which is not
strictly necessary to present the two basic applications of the forcing method
we aim for in these notes. The role of this chapter is to collect the minimal
amount of information needed to run our applications of the forcing method.
We also aim to outline the connections between the combinatorial properties
of certain partial orders and well known topological properties of the Stone
spaces associated to them (among other things we prove the Baire category
theorem for compact Hausdorff spaces).

� Chapter 5 introduces the boolean valued semantics for first order theories
and shows that certain function spaces which naturally occur in functional
analysis produce natural examples of boolean valued models. The boolean
valued semantic selects a given complete boolean algebra B and assigns to
every statement φ a boolean value in B. The boolean operations reflect the
behavior of the propositional connectives; it requires more attention to give a
meaning to atomic formulae and to quantifiers, and we need a certain amount
of completeness for B in order to be able to interpret quantifiers in the boolean
semantic.

� Chapter 6 develops the theory of forcing by means of boolean valued models
giving detailed proofs of the basic properties of boolean valued models for
set theory, of Cohen’s forcing theorem, and the two basic applications of the
method which suffice to prove the independence of CH from the standard
axioms of set theory. Our presentation of forcing departs completely from the
approach taken by Kunen and is more keen to that taken by Bell [2], Jech [5].
We decide to follow this different approach for two reasons:

1. In our eyes, the boolean valued models approach makes the metamath-
ematical arguments needed to understand the forcing method easier to
grasp and greatly simplifies some proofs.
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2. The boolean valued model approach makes more transparent what is the
role played by generic filters in the development of the forcing method and
where the hypothesis that a filter is suitably generic is essential. Moreover
it enlightens the link existing between the notion of generic filter arising
in forcing with the corresponding topological notion of generic point of a
topological space which is at the heart of the Baire category arguments.

Typographical conventions All over these notes in some occasions we introduce
some arguments and material which are not central for the development of the core
results. We adopt the typographical convention to put these parts of our notes in a

smaller font.

1.1.1 Prerequisites.

We assume that the reader of these notes has familiarity with the content of [6,
Chapter I, Sections II.1–II.5] or [7, Chapter III,IV,V]. This familiarity is not of vital
importance for the comprehension of the first four chapters of these notes, where just
a basic knowledge of the axioms of set theory is required and no familiarity with the
formal first order development of ZFC is needed. On the other hand to understand
the fifth chapter on forcing the reader must know :

� the basic facts about cardinal arithmetic and well orders (what is done for
example in [6, Sections I.7, I.10] is more than sufficient),

� the first order axiomatization of set theory ZFC (which for us is the first order
axiom system introduced in [6, Introduction, Section 7]),

� what is an absolute property between transitive sets M ⊆ N ⊆ V , where V is
meant to be the “standard” model of ZFC and M,N are definable classes or
sets (see Section 7.1 of the appendix for more details),

� that all properties which are provably ∆1 in a theory T with respect to
parameters a1, . . . an ∈ M are absolute for transitive (class or set) models
M ⊆ N ⊆ V of T ,

� which standard set theoretic objects (eventually defined by transfinite recursion)
are defined by properties which are absolute for transitive structures which
models large fragments of ZFC, i.e.: the notion of relation, function, ordinal,
algebraic structure, etc... or the functions defined by transfinite recursion using
absolutely defined functions to be generated (for example the rank function,
the Mostowski collapsing function, the transitive closure operation, etc....)

� which standard set theoretic properties are not absolute for transitive structures
which models large fragments of ZFC, for example the notion of cardinality, of
power set, etc...

� the standard facts about Mostowski collapsing theorem.
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All these facts (and much more) are covered in [7, Chapter I, and Sections II.1–II.5]
or [6, Chapters I, III, IV, V]. Some of these facts are also covered and expanded in
the appendix of these notes (see Section 7.1 of the appendix).

1.2 Some remarks on the onthologyy of mathe-

matics

The first chapters (up and including chapter 5) do not require on our side any special
commitment on the onthology of mathematical entities and can be considered as a
standard textbook on a mathematical theory which is developed much in the same
way as one develops the theory of other fields of mathematics, i.e. we are in the
situation common to most of mathematics where onthological considerations on the
nature of mathematical entities do not play a significant role in our reasonings. On
the other hand in the sixth chapter on forcing we have to give a neat explanation of
the type of onthological assumptions we are making, in order to make transparent
many of our arguments. Below we give a concise account of the point of view on the
nature of mathematics we pursue in these notes. We do this in the following form:
we list a series of basic questions on the onthology of mathematics, and we explain
in few words what are the possible stances and the one that we choose to adopt.

1. What is a mathematical reasoning? For us a mathematical reasoning is a
process expressed in a natural language (i.e. italian, english, french, chinese,
whatever is most suited) which from given premises (hypotheses) produces a
certain conclusion (thesis) which is mathematically rigorous.

2. What does it mean mathematically rigorous? For us it means that
there is a first order language such that the premises and the conclusion can be
formalized by first order formulae in that language (φ1, . . . φn for the premises
and ψ for the conclusion) and such that there is a sound and complete first
order calculus which allow to prove ψ by premises φ1, . . . φn on the basis of the
calculus rules and axioms.

3. What is the meaning of premises and conclusion? There are various
possible stances in this regard which range from:

� Extreme formalism: there is no clear meaning in the premises and the
conclusion of our reasoning as expressed in the natural language, since
there cannot be a precise semantic interpretation of natural languages.
What we know for sure is that with respect to the formalized counterpart
φ1, . . . φn of the premises and ψ of the conclusion, for what we know so
far, from premises φ1, . . . φn on the one hand, using a first order sound
and complete calculus, we have not been able to derive a contradiction,
on the other hand, we have been able to derive ψ.

� Extreme platonism: There is a hyperuranium of mathematical entities,
the premises and the conclusion define clear mathematical properties
which can be predicated of objects in this hyperuranium. Our reasoning
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show that if the premises assert true properties of the hyperuranium, so
does its conclusion. The fact that our reasoning (which we express in a
natural language) can be formalized in a first order calculus gives a proof
check of the correctness of our reasoning process establishing truths of
the hyperuranium.

In this course we adopt a stance of extreme platonism when dealing with
mathematical reasoning.

4. What does it mean CON(T ) for a first order theory T in a language
L = (Ri, i ∈ I, fj : j ∈ J, ck : k ∈ K) to which Gödel’s incompleteness
theorem applies?

� For the extreme formalist it means just that so far nobody has been able
to derive a contradiction using a sound a correct first order calculus and
starting from the axioms of T as premises.

� For a platonist it means that there is a set M in V and relations RM
i : i ∈ I

on Mni , for i ∈ I, functions fMj : Mnj → M for j ∈ J , and elements of
M cMk for k ∈ K also all in V such that (M,RM

i : i ∈ I, fMj : j ∈ J, cMk :
k ∈ K) is a Tarski model for T as well as an element of V .

5. What is the status of the first order theory ZFC?

� For an extreme formalist it is not different from the status of any other
first order theory T to which Gödel’s incompleteness theorem applies: the
only sure thing we know so far is that a deduction of the false has not
been found using a sound and correct first order calculus in which the
premises are axioms of ZFC.

� For an extreme platonist, there is among the elements of the hyperuranium
a well defined mathematical entity V consisting of all those mathematical
entities which are sets. V is not all of the hyperuranium, for example
Russell’s class R = {x ∈ V : x 6∈ x} is a well defined mathematical entity
belonging to the hyperuranium but is not an element of V (i.e. R is not a
set !). Nonetheless V is very large and contains as elements most (if not all)
mathematical entities we commonly use to do mathematics such as the
natural numbers, the complex and real numbers, most topological spaces,
the spaces of functions used in functional analysis, etc..... Moreover V
is closed under many set-theoretic operations, i.e. if (ai : i ∈ I) ∈ V
then also its product

∏
i∈I ai ∈ V , if a ∈ V , ∪a and P(a) ∈ V as well, if

B ∈ V and Φ(x) is a property which makes sense to be asked whether
it is true of mathematical entities {a ∈ B : Φ(a) holds} is also in V , if
F : V → V is a function and A ∈ V is a set then F [A] is also a set in V ,
etc...... In particular the first order structure (V,∈) models ZFC. So for
an extreme platonist, ZFC is not only a consistent theory (since it holds in
the Tarski model (V,∈), though this model is not a set), but it formalizes
in a first order language a true state of affairs of the large portion of the
hyperuranium given by V .
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6. Are there independence results over V ?

� For an extreme platonist there are no independence results over V , given
that V is a well defined coherent mathematical entity and thus the first
order theory of the Tarski structure (V,∈) is complete and coherent. In
particular the continuum hypothesis is either true or false in V , even
though currently our imperfect knowledge of V makes it impossible to
ascertain which is the case. On the other hand ZFC is just a recursive list
of first order properties which reflects true properties of V , but which we
know that they cannot give a complete first order axiomatization of the
theory of V in the first order language {∈} due to Gödel’s incompleteness
theorem. It is well possible (and it is actually the case) that there can
be models (Mi, Ei) which are sets in V for i = 0, 1 and are first order
∈-models of the first order ∈-theory ZFC with the following property:
there is a ∈-formula φ in the language of ZFC such that (M0, E0) |= φ and
(M1, E1) |= ¬φ. Actually the aim of these notes is to show that this is the
case for φ being the first order formalization of the continuum hypothesis
CH in signature ∈.

� For an extreme formalist the above question is void of content given that
V is a meaningless concept.

7. How do we proceed to prove that CH is independent from the axioms
of ZFC? We really commit ourselves to the extreme platonist stance. First of
all ZFC is consistent, since (V,∈,=) is a model of ZFC. Moreover (V,∈) is a
model of ∈-sentence formalizing the completeness theorem we saw in model
theory. We consider just the the foolowing form of the completeness theorem in
V : For every first order language L = {R1, . . . , Rn, f1, . . . , fl, c1, . . . , ck} given
by a finite set of relations, functions, and constants, there is a recursive set of
natural numbers FormL ⊆ ω in V which is a code for the formulae in L. There
is also a recursive subset SentL of FormL consisting of the formulae without
free variables (i.e. its sentences). There are also:

� A recursive predicate DERL ⊆ Form<ω
L which says that (φ1, . . . φn, ψ) ∈

DERL iff there is a derivation in first order calculus of ψ from premises
φ1, . . . φn;

� A definable satisfaction predicate (i.e. a class definable in V )

Sat : FormL × L-structures× V <ω → 2 ∪ {∗}

such that for all L-structureM = (M,RM
1 , . . . , R

M
n , f

M
1 , . . . , fMl , c

M
1 , . . . , c

M
k ) ∈

V and ~s ∈M<ω,
(V,∈) |= Sat(φ,M,~s) = 1

if and only if
M |= φ(~s)

is true (in the latter case according to the rules of Tarski semantics for the
L-structure M, and in the former case according to the rules of Tarski
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semantics for the structure (V,∈) to interpret the definable class function
Sat).

Now the correctness and completeness theorem in V says that (V,∈) models
the following formula in parameter DERL, FormL, for any set of sentences
T ⊆ SentL:

There is no (φ1, . . . φn, ψ ∧ ¬ψ) in DERL with φ1, . . . , φn ∈ T if and
only if there is an L-structure (M,RM

1 , . . . , R
M
n , f

M
1 , . . . , fMl , c

M
1 , . . . , c

M
k )

such that Sat(φ,M, ∅) = 1 for all φ ∈ T .

It can be checked that the above expression can be formulated as a ∈-formula
(more on this will be said in Chapter 7).

This means that in V , there is (M,E) which is a set and is model of ZFC, since
we know that ZFC is consistent given that we assume that (V,∈,=) is a Tarski
model of ZFC.

Nonetheless in these notes we want more than this. We want that in V
there is a transitive countable model M such that (M,∈) is a model of ZFC.
This can be achieved if for example we assume that in V there is a strongly
inaccessible cardinal (more on this will be said in Chapter 7). The existence of
an inaccessible cardinal is an axiom which an extreme platonist consider true.
So we will from now on work in the first order theory ZFC+ extending ZFC
with the statement There is a countable transitive set M ∈ V such that (M,∈)
is model of ZFC.

We will use the forcing method to build from the transitive and countable
ZFC-model M new countable transitive models N0, N1 ∈ V of ZFC such that
(N0,∈) |= CH and (N1,∈) |= ¬CH.

8. What will an extreme formalist think of this proof of the indepen-
dence of CH from the axioms of set theory? Our proof does not make
any sense for a formalist! Nonetheless, even if we will not spell out the details,
by means of standard logical arguments, our proof can be converted in a
proof that CON(ZFC+) implies also CON(ZFC + CH) and CON(ZFC + ¬CH).
This is meaningful for a firmalist in the following sense: if we know that no
contradiction can be derived in a sound and complete first order calculus from
the axioms of ZFC+, then such a contradiction can be derived in the same
calculus neither from the axioms ZFC + ¬CH, nor from the axioms ZFC + CH.
Moreover by means of arguments which are more sophisticated (and are rooted
in the reflection theorem for V ), one can rework our proof of the independence
of CH from the axioms of set theory and obtain a proof (also for a formalist)
that CON(ZFC) implies also CON(ZFC + CH) and CON(ZFC + ¬CH).

9. Why the existence of a ZFC-model which is a set in V is not enough
for our purposes, and we want to work with countable transitive
models of ZFC? We want to avoid to work with ill-founded models of ZFC.
The pathologies we do not want to run into are well explained by the non-
standard models of the first order theory of Peano’s arithmetic. We know
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that the structure of natural numbers N is a set in V , for example (N, <) can
be presented as the model (ω,∈) and the sum, product, exponentiation of
natural numbers can also be presented as suitable operations on elements of
ω which can be defined in V using formulae in the parameter ω. So let the
operations +, · be such that (ω,∈,+, ·) is a representative of the isomorphism
type of the structure (N, <,+, ·). Let S be the first order complete theory of
the structure (ω,∈,+, ·) in the language L = {+, ·, <}. It is well known that
there are ill-founded models of S, i.e. structures (M,<M ,+M , ·M) ∈ V such
that the order type of (M,<M) is not isomorphic to (ω,∈) and is ill founded:
it can be shown that the order type of (M,<M) is isomorphic to an order of
type N + I × Z, where I is a dense linear order without end-points and all
a ∈ N precede any (b, c) ∈ I × Z, and the order between elements in I × Z is
the lexicographic order. Notice that N + I × Z contains many non empty sets
without minimum, for example I ×Z. So this is the case also for (M,<M ). On
the other hand (M,<M ,+M , ·M ) is a model of Peano’s arithmetic, in particular
it models the principle of induction, which in this case amounts to say that for
all formulae φ(x, y1, . . . , yn) in L and a1, . . . , an ∈M if

(M,<M ,+M , ·M) |= ∃xφ(x, a1, . . . , an),

then

(M,<M ,+M , ·M) |= ∃x(φ(x, a1, . . . , an) ∧ ∀y[y <M x→ ¬φ(x, a1, . . . , an)]).

This means that there are ill-founded subsets of M with respect to the order
<M , but that the model (M,<M ,+M , ·M) is not able to define any such ill-
founded subset. Similar arguments can occur for models of ZFC. In particular
there can be models (N,EN) ∈ V of ZFC which are ill-founded: i.e. there
is X = {an : n ∈ ω} ∈ V subset of N such that an+1 EN an for all n ∈ ω.
However, since (N,EN) models the axiom of foundation, such a set X ∈ V
cannot be a definable subset of N , otherwise this X would contradict that N
models the foundation axiom. On the other hand if we assume that (N,∈,=) is
a transitive model of ZFC, we have that (N,∈,=) is really a well-founded model
of ZFC in V or even in the hyperuranium. This adherence between the first
order theory of (N,∈) (where the axiom of foundation states that all ordered
non empty sets in N have a minimal ∈-element) and its true properties from the
point of view of V (or of the even larger hyperuranium) is important because
it will enormously simplifies many of our considerations and calculations on
such type of ZFC-models (N,∈).

10. Why do we work with ZFC as a first order counterpart of the theory
of V , rather than with Morse Kelley MK+choice? It is just a matter of
habits, since there is a well developed study of the first order theory of ZFC, in
particular for what concerns the analysis of forcing. On the other hand, this is
not the case for the Morse-Kelley axiomatization of set theory.



Chapter 2

Boolean algebras

The core of of this chapter develops the basic properties of boolean algebras: first we
prove the Stone duality theorem linking boolean algebras to the category of compact
0-dimensional Hausdorff spaces. Next we give several different presentations of
these algebras in terms of their logical properties (Def. 2.1.1), of their ring structure
(Theorem 2.9.3), and as partial orders (Lemma 2.10.2). Finally we address the theory
of complete boolean algebras: we show that any complete boolean algebra (cba in the
sequel) can be represented as the family of regular open sets of a compact topological
space (Theorem 3.2.5 and Proposition 3.2.15), and we prove that every partial order
can be completed to a cba, which is unique up to isomorphism (Theorem 3.3.5).
Towards this aim we first recall some definitions about orders, topological spaces while
setting up the notation. Throughout the five sections of this chapter the reference
text for unexplained details on most of these matters is [1, Section 24-Boolean
algebras]; an introductoy and exhaustive text on boolean algebras is [3].

2.1 Basic definitions

We give the following equational characterization of a boolean algebra:

Definition 2.1.1. Let (B,∧,∨,¬, 0, 1) be a sextuple consisting of a set B, two total
binary operations ∧ and ∨ on B, a total unary operation ¬ on B and two elements 0
and 1 of B.

9
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(B,∧,∨,¬, 0, 1) is a boolean algebra if it satisfies the following equations:

a ∨ (b ∨ c) = (a ∨ b) ∨ c associativity

a ∧ (b ∧ c) = (a ∧ b) ∧ c

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) distributivity

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ b = b ∨ a commutativity

a ∧ b = b ∧ a

a ∨ 0 = a identity

a ∧ 1 = a

a ∨ ¬a = 1 complements

a ∧ ¬a = 0

A bounded distributive lattice is a structure (B,∧,∨, 0, 1) such that its two
operations ∧,∨ satisfy the identity laws, the commutativity and associativity laws,
and the distributivity laws.

Example 2.1.2. Given a (non-empty) set X and a topology τ on X:

� Let 0, 1, ∨, ∧, ¬ and ≤ be respectively ∅, X,∪,∩,¬ and ⊆, then the power set
P(X) of X is a (complete) boolean algebra and A ⊆ B if and only if A∩B = A
if and only if A ∪B = B.

� The family τ and the family of closed sets τ c are bounded distributive sublattices
of P(X) (with the same operations we have on P(X)).

� The family CLOP(X, τ) of clopen set of τ (with the same operations we have on
P(X)) is a boolean subalgebra of P(X) (though in general it is not complete).

Notation 2.1.3. It is often convenient to introduce further operations on a boolean
algebra. For example given a boolean algebra B and a, b ∈ B a \ b = a ∧ ¬b, and
a∆b = (a \ b) ∨ (b \ a) = (a ∨ b) \ (a ∧ b).

Notice that if B is P(X), the above operations turn out to be the natural set
theoretic operations on subsets of X.

The main results of this section are the following:

� Boolean algebras admits maximal ideals with corresponding dual ultrafilters
(the Prime ideal Theorem 2.7.4). This is crucial for many classical results on
first order logic whose proof depends on the axiom of choice (for example in the
proof of the compactness and/or completeness theorems for first order logic).
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� Every boolean algebra is isomorphic to the algebra of clopen sets of some
compact 0-dimensional space (The Stone duality Theorem 2.8.2). This is a
cornerstone result linking the logical and algebraic point of view on boolean
algebras to the topological analysis of compactness.

� Boolean algebras can also be described as the class of commutative rings
with idempotent multiplication (see Def. 2.9.1 and Theorem 2.9.3). This
characterization allows to infuse the study of boolean algebra with methods
coming from algebra and ring theory; for example we will see that it greatly
simplifies certain computations, among which those regarding the properties of
boolean ideals and of boolean quotients.

In the remainder of this section we assume the reader is familiar with the basic
properties of orders and topological spaces. We refer the reader to section 8 for the
missing details.

2.2 The order on boolean algebras

We start with the following:

Proposition 2.2.1. Let (B,∧,∨,¬, 0, 1) be a boolean algebra. Define a ≤ b by
a ∧ b = a for a, b ∈ B. Then:

(i) ≤ is an order relation on B,

(ii) a ∧ b defines the infimum of {a, b},

(iii) a ∨ b defines the supremum of {a, b},

(iv) a ≤ b if and only if a ∨ b = b.

Proof.

(i) ≤ is reflexive:

a = a ∧ 1 = a ∧ (a ∨ ¬a) = (a ∧ a) ∨ (a ∧ ¬a) = (a ∧ a) ∨ 0 = a ∧ a,

hence a ≤ a.

≤ is transitive: Assume a ≤ b (i.e. a∧ b = a) and b ≤ c (i.e. b∧ c = b). Then

a ∧ c = (a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b = a.

≤ is antisymmetric: Assume a ≤ b ≤ a, then a = a ∧ b = b ∧ a = b.

(ii) First of all a ∧ b ∧ a = a ∧ b and a ∧ b ∧ b = a ∧ b, hence a ∧ b is a lower bound
for a, b.

Assume c ≤ a, b. Then c ∧ a = c and c ∧ b = c, hence

c ∧ (a ∧ b) = (c ∧ a) ∧ b = c ∧ b = c,

therefore our thesis.
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(iii) First of all we show that a ∨ b is an upper bound for b, a:

b = b ∨ 0B = b ∨ (a ∧ ¬a) = (b ∨ a) ∧ (b ∨ ¬a) ≤ b ∨ a, (2.1)

where in the latter inequality we used the fact that c∧d ≤ c (being the infimum
of {c, d} by the previous item) for all c, d ∈ B; similarly we can prove a ≤ a∨ b.
The second observation is the following:

Assume c, d ≤ e, then c ∨ d ≤ e. (2.2)

This holds since:

(c ∨ d) ∧ e = (c ∧ e) ∨ (d ∧ e) = c ∨ d.

By 2.1, 2.2 we get that a ∨ b is the supremum of {a, b} (2.1 grants that it is an
upper bound, and 2.2 that is the smallest such).

(iv) a ≤ b if and only if b = max {a, b} = sup {a, b} = a ∨ b.

2.3 Boolean identities

Proposition 2.3.1. The following holds on a boolean algebra:

(i) a = a ∨ a = a ∧ a (Idempotence laws).

(ii) ¬a is the unique b ∈ B such that b ∧ a = 0B and b ∨ a = 1B

(Law of uniqueness for complements).

(iii) ¬¬a = a (Double negation law).

(iv) ¬(a ∧ b) = ¬a ∨ ¬b (First De Morgan law).

(v) ¬(a ∨ b) = ¬a ∧ ¬b (Second De Morgan law).

Proof.

(i) Immediate since a ∧ a = min {a, a} = a = max {a, a} = a ∨ a.

(ii) Assume b ∧ a = 0B and b ∨ a = 1B, we show that b = ¬a.

b = b ∧ 1B = b ∧ (a ∨ ¬a) = (b ∧ a) ∨ (b ∧ ¬a) = 0B ∨ (b ∧ ¬a) = (b ∧ ¬a).

Therefore b ≤ ¬a. On the other hand:

b = b ∨ 0B = b ∨ (a ∧ ¬a) = (b ∨ a) ∧ (b ∨ ¬a) = 1B ∧ (b ∨ ¬a) = (b ∨ ¬a).

Therefore b ≥ ¬a.
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(iii) By (ii) a = ¬¬a, since both satisfy the equations defining the complement of
¬a.

(iv) Remark that

(a ∧ b) ∨ (¬a ∨ ¬b) = (a ∨ ¬a ∨ ¬b) ∧ (b ∨ ¬a ∨ ¬b) ≥ 1.

Similarly one can prove that

(a ∧ b) ∧ (¬a ∨ ¬b) ≤ 0.

By (ii) we get that ¬(a ∧ b) = (¬a ∨ ¬b).

(v) Left to the reader (along the lines of the proof of the previous item).

2.4 Ideals and morphisms of boolean algebras

Ideals on boolean algebras are the kernel of boolean algebra morphisms. The usual
algebraic properties of morphisms of rings and groups works equally well for boolean
algebras, the reason being that boolean algebras are axiomatized by equational
theories, as rings and groups are.

Definition 2.4.1. Let B,C be boolean algebras. A map k : B→ C is a homomorphism
of boolean algebras if it preserves the boolean operations, an isomorphism if it is a
bijective homomorphism.

A subalgebra of a boolean algebra (B,∧,∨,¬, 0, 1,≤) is a subset A of B such that
the inclusion map of A into B defines an injective homomorphism.

Fact 2.4.2. A map φ : B→ C is an homomorphism of boolean algebras if it preserves
∨,¬ or if it preserves ∧,¬.

Proof. Left to the reader. (Hint: Use De Morgan’s laws).

Exercise 2.4.3. Prove that a boolean morphism φ : B→ C preserves the operation of
symmetric difference ∆.

Remark 2.4.4. Since boolean algebras are axiomatized by an equational theory,
the class of boolean algebras is closed under homomorphic images, products and
substructures (by the easy direction of Birkhoff’s theorem, see [?, Theorem XXX]).

Definition 2.4.5. Let B be a boolean algebra. I ⊆ B is an ideal if it is closed under
the ∨ operation and is downward closed (i.e. b ∈ I and a ≤ b gives that a ∈ I as
well).

Da svolgere per
verificare se difficile.
Una direzione OK
ma l’altra? – M

Exercise 2.4.6. I is an ideal if and only if the following two conditions are simultane-
ously met:

� a∆b ∈ I for all a, b ∈ I,

� a ∧ b ∈ I for all b ∈ I and a ∈ B.
– M
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2.5 Atomic and finite boolean algebras

Notation 2.5.1. Given a boolean algebra B, B+ = B \ {∅}. We will often look at B
as the partial order (B+,≤).

A subset X of B+ is dense if for all b ∈ B+ there is a ∈ X such that a ≤ b.

Definition 2.5.2. Let B be a boolean algebra. The atoms of B are the minimal
elements1 of (B+,≤) (if they exists).

� B is atomic if its atoms form a dense subsets of B+.

� B is atomless if it has no atoms.

Remark 2.5.3. The following holds:

� Let B be a boolean algebra. The following are equivalent:

– a ∈ B is an atom,

– for all b ∈ B it is not the case that 0 < b < a,

– a ∧ b = a or a ∧ b = 0 for all b ∈ B.

To see this oberve that if b ≤ a, then either b = 0 or b = a, hence a ∧ b = a or
a ∧ b = 0; if b ≥ a, a ∧ b = a; if b 6≥ a, a ∧ b 6= a; since a ∧ b ≤ a, we must have
that a ∧ b = 0.

� Let X be a non-empty set, then P(X) is atomic:

The order relation on P(X) given by X ≤ Y if X ∩ Y = X is the inclusion
relation; all singletons {x} for x ∈ X are atoms of P(X); P(X)+ = P(X)\{∅},
and any non-empty set Y ⊆ X has some y ∈ Y with {y} ⊆ Y .

� All finite boolean algebras B are atomic:

Assume b0 ∈ B is not refined by any atom. Inductively define a chain

{bn : n ∈ N}

such that bn+1 < bn is not refined by any atom. The procedure cannot
terminate, otherwise some bn+1 is refined by some atom a, hence so is b0,
contradicting our assumptions on b0. Hence {bn : n ∈ N} is an infinite subset
of B, a contradiction.

We may formalize properly this proof as follows: fix b0 such that no atom
refines b0. Consider the family

{f : dom(f)→ B : dom(f) ∈ N or dom(f) = N and f is such that

f(0) = b0 and f(i) > f(i+ 1) for all i+ 1 ∈ dom(f)}

ordered by inclusion. This partial order has upper bounds for all its subchains.
By Zorn’s Lemma the family has a maximal element h. It is easy to check that
dom(h) = N and h(i) > h(i+ 1) for all i ∈ N.

1Recall that a is a minimal element of an order (P,≤) if b < a for no b ∈ P .
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The structure of the class of finite boolean algebras is described by the following:

Proposition 2.5.4. Assume B is a finite boolean algebra. Then B ∼= P(AB), where
AB is the set of atoms of B.

The following exercise provide a concrete example of how this isomorphism can
be defined for a finite boolean algebra.

Exercise 2.5.5. Consider the set Div(30) = {1, 2, 3, 5, 6, 10, 15, 30} with operations
∧,∨,¬ given by n ∧m = MCD(n,m), n ∨m = mcm(n,m), ¬(n) = 30

n
.

1. Check that:

� B = 〈Div(30),∧,∨,¬, 1, 30〉 is a boolean algebra (look at the picture below

to understand what is the order structure of B, where the vertexes are ordered

according to whether one is below another and there is a line connecting the

two).

� n ≤ m if and only if n divides m.

� The atoms of Div(30) are 2, 3, 5.

� The map F : Div(30)→ P({2, 3, 5}) of the proposition is given by n 7→
{p : p is a prime number and divides n} and implements an isomorphism
of B with 〈P({2, 3, 5}),∩,∪, A 7→ {2, 3, 5} \ A, ∅, {2, 3, 5}〉.

1

2

10

53

6

30

15

∅

{2}

{2, 5}

{5}{3}

{2, 3}

{2, 3, 5}

{3, 5}

2. For which n Div(n) with the above operations is a boolean algebra? (Hint:
Show that Div(18) is not a boolean algebra. Notice that 18 has a prime factor
which divides it in power 2).

Now we prove the Proposition.

Proof. By the previous remark B is atomic. Define

F :B→ P(AB)

b 7→ {a ∈ AB : a ≤ b}

F is a morphism:

� F preserves ∧:

F (b ∧ c) = {a ∈ AB : a ≤ b ∧ c} = {a ∈ AB : a ≤ b and a ≤ c} =

{a ∈ AB : a ≤ b} ∩ {a ∈ AB : a ≤ c} = F (b) ∩ F (c),

where the second equality follows since b ∧ c = inf {b, c}.
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� F maps 1B to AB and 0B to ∅ (useful exercise for the reader).

� F preserves ¬:

F (¬b) = {a ∈ AB : a ≤ ¬b} = {a ∈ AB : a 6≤ b} = AB \ F (b),

where the second equality follows by the following argument: For a ∈ AB

we have that:

a 6≤ b

if and only if (since a is an atom)

a ∧ b = 0

if and only if

a = a ∧ 1 = a ∧ (b ∨ ¬b) = (a ∧ b) ∨ (a ∧ ¬b) = 0 ∨ (a ∧ ¬b) = a ∧ ¬b

if and only if

a ≤ ¬b.

F is an injection: If b 6= c, assume b∧¬c > 0B, and let a ∈ AB refine b∧¬c. Then
a ∈ F (b) \ F (c) since a ≤ b while a 6≤ c.

F is surjective: Given X ⊆ AB, let bX =
∨
X. The following holds:

For any a ∈ AB a ≤ bX if and only if a ∈ X.

If a ∈ X clearly a ≤ bX . On the other hand if a /∈ X, then a ∧ u = 0B for all
u ∈ X (since distinct atoms are pairwise incompatible), hence (by applying
|X|-many times the distributive law)

a ∧
∨

X =
∨
{a ∧ u : u ∈ X} = 0B.

Therefore a ∧ bX = 0B 6= a, i.e. a 6≤ bX .

We get that F (bX) = X.

2.6 Examples of boolean algebras

The first two examples comes from propositional logic, the third and fourth from
first order logic, the fifth from Lebesgue measure, the sixth from general topology.
We assume the reader is familiar with the background material needed to analyze
each of these examples.
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Example 2.6.1 (Lindenbaum algebras on finitely many propositional vari-
ables). The reader should be familiar with the basic concepts of propositional
calculus to follow this and the next example; a possible reference is [?, Section1 ].
Below, as a guiding example for the discussion to follow, we give the truth table of
the propositional formula φ

((B→ A) ∧ ((B ∨ C)→ A))

in propositional variables A,B,C (as well of all its propositional subformulae):

A B C (B→ A) (B ∨ C) ((B ∨ C)→ A) φ
1 1 1 1 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1
1 0 0 1 0 1 1
0 1 1 0 1 0 0
0 1 0 0 1 0 0
0 0 1 1 1 0 0
0 0 0 1 0 1 1

Recall that:

� for φ1, . . . , φn, ψ propositional formulae in propositional variables A1, . . . , An,
φ1, . . . , φn |= φ if the truth tables of φ1, . . . , φn and ψ in the variables A1, . . . , An
are such that every time a row assigns value 1 to each of the formulae φ1, . . . , φn,
that row assigns 1 also to ψ.

� φ is logically equivalent to ψ (φ ≡ ψ) if and only if φ |= ψ and ψ |= φ i.e. the
two formulae have the same truth table in variables A1, . . . , An.

Let An = {A1, . . . , An} be a set of n-many propositional variables; the Linden-
baum algebra Bn on An is defined as follows:

� Its domain is {[φ] : φ an An-formula}, where [φ] is the equivalence class given
by all formulae ψ logically equivalent to φ);

� 1Bn = [A1 ∨ ¬A1], 0Bn = [A1 ∧ ¬A1];

� [φ] ∧Bn [ψ] = [φ ∧ ψ], [φ] ∨Bn [ψ] = [φ ∨ ψ], ¬Bn [ψ] = [¬ψ].

Remark that:

[φ] ≤ [ψ] if and only if [φ ∧ ψ] = [φ] if and only if

φ ∧ ψ |= φ and φ |= φ ∧ ψ.

Now φ |= φ ∧ ψ if and only if φ |= ψ. Hence [φ] ≤ [ψ] if and only if φ |= ψ.
We get the following very nice fact:

Bn is the quotient of the preorder given by |= on the propositional An-
formulae.
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A second nice observation is the following:

The domain of Bn is in bijective correspondence with the set of truth
tables for An-propositional formulae. Moreover the atoms of Bn are in
bijective correspondance with the truth tables containing exactly one row
in which a 1 appears. Hence Bn has 2n-many atoms and 2(2n)-many
elements.

We can see it by the following argument: Clearly any An-formula has a truth table
and two formulae are logically equivalent if and only if they have the same truth
table.

Given n-many propositional variables there are 2n-possible assignments of truth
values to the propositional formulae. Hence each truth table on an A-propositional
formula has 2n-rows.

There are 2(2n) possible truth tables in 2n-rows, and each such truth table identifies
a unique equivalence class. Therefore:

The Lindenbaum algebra Bn has 2(2n)-elements.

Bn, being finite, is isomorphic to P(ABn). We already computed the size of Bn
has being 22n = |P(2n)|, hence Bn has exactly 2n atoms.

Let us identify which truth tables define atoms:

The atoms of Bn are identified by the truth tables with exactly one 1.

Assume [φ] ≤ [ψ] for some ψ whose truth table has exactly one 1 in the relevant
column. Then the truth table of φ can have 1 only in the places where these occurs in
the truth table of ψ, i.e. in at most one place, therefore either φ is not satisfiable (i.e.
its truth table consists just of 0 in the relevant column) or φ is logically equivalent
to ψ. This means that [ψ] is an atom.

Since there are 2n such atoms, one for each of the possible truth tables where 1
appears in exactly one row, we get that the truth tables with exactly one 1 appearing
in them define all the possible atoms of A.

Example 2.6.2 (Lindenbaum algebras on infinitely many propositional
variables). Let A = {An : n ∈ N} be an infinite set of propositional variables. Recall
that for A-propositional formulae:

� φ1, . . . , φn |= ψ if and only if whenever n is large enough so that all the
propositional variables occurring in φ ∪ ψ are among A1, . . . , An, the truth
tables of φ1, . . . , φn and ψ as computed with respect to A1, . . . , An are such
that every time a row assigns value 1 to each of the formulae φ1, . . . , φn, that
row assigns 1 also to ψ.

� φ is logically equivalent to ψ (φ ≡ ψ) if and only if φ |= ψ and ψ |= φ i.e. the
two formulae have the same truth table in variables A1, . . . , An for any large
enough n.

The Lindenbaum algebra B∞ on A is defined as follows:
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� Its domain is {[φ] : φ an A-formula}, where [φ] is the equivalence class given
by all formulae ψ logically equivalent to φ.

� 1B∞ = [A1 ∨ A1], 0B∞ = [A1 ∧ ¬A1];

� [φ] ∧B∞ [ψ] = [φ ∧ ψ], [φ] ∨B∞ [ψ] = [φ ∨ ψ], ¬B∞ [ψ] = [¬ψ].

This is an infinite atomless boolean algebra.

To prove that it is atomless, proceed as follows: Given a satisfiable formula φ,
assume that {A1, . . . , Am} contains all the propositional variables occuring in φ.
Then the truth table of φ in variables A1, . . . , Am has at least a 1 in the relevant
column. We can show that φ 6|= φ ∧ Am+1: Since φ is satisfiable, find a row l in
the truth table of φ over A1, . . . , Am such that φ gets value 1 in row l. Consider
now the truth table of φ ∧Am+1, φ as computed in variables A1, . . . , Am+1. Let k be
the row which assigns 0 to Am+1 and to each Aj for j = 1, . . . ,m exactly the same
value (0 or 1) it gets in row l of the truth table of φ over A1, . . . , Am. Then in this
row k, φ ∧ Am+1 gets value 0, while φ gets value 1. Hence φ 6|= φ ∧ Am+1. Clearly
φ ∧ Am+1 |= φ. Therefore [φ ∧ Am+1] < [φ].

This shows that [φ] is not an atom.

The inclusion map of the Lindenbaum algebrae Bn into BA is an injective ho-
momorphism for all n and BA is the union (and direct limit) of the algebrae Bn for
n ∈ N.

Example 2.6.3 (Lindenbaum algebras of L-theories). The reader should be
familiar with the basic concepts of first order logic to follow this and the next example;
a possible reference is [?, Sections 2 and 3]. Let L be a first order signature and T
be a satisfiable L-theory consisting of L-sentences. Recall that φ1, . . . , φn |=T ψ if
φ1, . . . , φn, T |= ψ, and φ ≡T ψ if φ |=T ψ and ψ |=T φ.

The Lindenbaum algebra BT is defined as follows:

� Its domain is {[φ]T : φ an L-sentence} where [φ]T is the equivalence class of φ
with respect to the equivalence relation ≡T .

� 1BT = [φ ∨ ¬φ]T , 0BT = [φ ∧ ¬φ]T .

� [φ] ∧BT [ψ] = [φ ∧ ψ]T , [φ] ∨BT [ψ] = [φ ∨ ψ]T , ¬BT [ψ] = [¬ψ]T .

Remark that [φ]T = 1BT if and only if T |= φ.

Exercise 2.6.4. T is complete if and only if BT has only 2-elements.

Exercise 2.6.5. Let S ⊆ T be satisfiable L-theories (consisting only of sentences) for
a given language L.

� Show that IT = {[φ]S : T |= ¬φ} is an ideal on the Lindenbaum algebra BS.

� Show also that BT ∼= BS/IT via the map [[φ]S]IT 7→ [φ]T .
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Example 2.6.6 (The algebras of definable subset of an L-structure.). Let
M be an L-structure with domain M .

The algebra BnM of n-dimensional L-definable subsets of Mn has domain{
TMφ(x1,...,xn,y1,...yk),〈b1,...,bk〉 : φ(x1, . . . , xn, y1, . . . yk) an L-formula, {b1, . . . , bk} ⊆M

}
with operations inherited as a subalgebra of P(Mn).

Recall that TMφ(x1,...,xn,y1,...yk),〈b1,...,bk〉 is the set

{〈a1, . . . , an〉 ∈Mn :M |= φ(x1, . . . , xn, y1, . . . , yk)[xi/ai, yj/bj]} .

Example 2.6.7 (The boolen algebras of characteristic functions). Let (X, τ)
be a topological space and consider the ring BX of characteristic 2 given by the
f : X → Z2 which are continuous with respect to τ (where Z2 is endowed with the
discrete topology). The boolean operations on BX are defined as follows: f ∨ g =
max(f, g), ¬f = χX − f , f ∧ g = f · g. The top elements is χX and the bottom
element is χ∅.

When X is endowed with the discrete topology, BX is P(X). When X is endowed
with a connected topology BX = {χX , χ∅}.

See Section 2.9 for more details.

Exercise 2.6.8. Assume (X, τ) is a topological space and consider the boolean algebra
BX defined in the above example 2.6.7. I ⊆ BX is an ideal with respect to the
boolean algebra structure on BX if and only if it is an ideal with respect to the ring
structure on BX (Hint: what is f∆g in the boolean structure of BX? Once you find
out, use exercise 2.4.6).

Example 2.6.9 (The algebra of Lebesgue measurable subsets of [0, 1], and
its quotient algebra modulo the ideal of null sets). The boolean algebra
M([0; 1]) given by the Lebesgue measurable subsets of [0; 1] is an example of an
atomic boolean algebra properly contained in P([0; 1]) which is not isomorphic to
P([0, 1]): M([0; 1]) is not complete, while P([0, 1]) is complete (see Section 3 for
a definition of completeness.). A counterexample to the completeness of M([0; 1])
is given by any non Lebesgue-measurable set V 6∈ M([0; 1]; V is a supremum in
P([0, 1]) of the family {{r} : r ∈ V } of atoms of M([0; 1]).

MALG =M([0; 1])/Null (where Null is the ideal of measure 0-subsets of [0; 1]) is
an example of an atomless boolean algebra which is also complete.

See Section 3.4.2, Prop. 3.4.5, Cor. 3.4.6 for more details on MALG.

Example 2.6.10 (The clopen sets of the Cantor set). The clopen sets on 2N

with product topology form an atomless countable boolean algebra.

The family of sets Ns =
{
f ∈ 2N : s ⊆ f

}
as s ranges in 2<N describe a basis

consisting of clopen sets of 2N.

Any clopen set can be uniquely described as a finite union of sets in this basis.

It can be shown that this boolean algebra is isomorphic to the Lindenbaum
algebra on infinitely many propositional variables.
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2.7 The Prime Ideal Theorem

Definition 2.7.1. Let B be a boolean algebra2.

� G ⊂ B is a prefilter in B if and only if for every a1, . . . , an ∈ G, a1∧· · ·∧an > 0B.

� G ⊂ B is ultra if for all b ∈ B either b ∈ G or ¬b ∈ G.

� G ⊂ B is a filter if it contains all its finite meets and is upward closed (i.e.
a ∧ b = a ∈ G entails that b ∈ G as well).

� G ⊂ B is an ultrafilter if it is a filter and is ultra.

� A filter G is principal if G = {c : c ≥ b} for some b ∈ B.

� Given A ⊆ B, Ă = {¬a : a ∈ A}.

Exercise 2.7.2. Assume G is a principal filter on a boolean algebra B with a ∈ G
an atom of B. Show that G = Ga = {b ∈ B+ : a ≤ b}, and that Ga is a principal
ultrafilter.

Exercise 2.7.3. Let B be a boolean algebra. Show that

� I ⊆ B is an ideal if and only if Ĭ is a filter.

� I is a prime or maximal ideal if and only if one among a,¬a ∈ I (maximality)
if and only if one among a, b ∈ I whenever a ∧ b ∈ I (primality).

Theorem 2.7.4 (Prime ideal theorem). Assume F is a prefilter on a boolean algebra
B. Then F can be extended to an ultrafilter G on B.

Proof. Let A be the family of prefilters on B containing F . We show that:

� any chain under inclusion contained in the partial order (A,⊆) admits an upper
bound in A,

� a maximal element of A is an ultrafilter on B containing F .

By Zorn’s Lemma, A has a maximal elements, hence the thesis.

A chain under inclusion of (A,⊆) admits an upper bound:

Assume {Fi : i ∈ I} ⊆ A is a chain (i.e. for i, j ∈ I either Fi ⊆ Fj or Fj ⊆ Fi).
Let H =

⋃
i∈I Fi. We show that H is a prefilter. Assume b1, . . . , bn ∈ H. Then

each bi ∈ Fji for some ji ∈ I. Since {Fi : i ∈ I} is a chain, there is some k ≤ n
such that Fjk ⊇ Fji for all i = 1, . . . , n. Hence each bi ∈ Fjk for all i = 1, . . . , n.
Since Fjk is a prefilter, b1 ∧ · · · ∧ bn > 0B. Hence H is a prefilter.

2This definition of filter generalizes the usual definition of a filter on a set X. In that case,
B = P(X).
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Any maximal element of (A,⊆) is an ultrafilter:

Assume G is a maximal element of (A,⊆), we must show that G is upward
closed, closed under meets, and contains either b or ¬b for all b ∈ B. First of
all we prove that if a prefilter G is ultra (i.e. such that for all b ∈ B either
b ∈ G or ¬b ∈ G, then it is a ultrafilter:

� Assume b ∈ G and a ≥ b (i.e. a ∧ b = b). Then ¬a 6∈ G, since

¬a ∧ b = ¬a ∧ (a ∧ b) = 0B

and G is a prefilter. Hence a ∈ G, since G is ultra.

� Assume a, b ∈ G. Then ¬(a ∧ b) 6∈ G, otherwise ¬(a ∧ b) ∧ a ∧ b = 0B.
Since G is ultra we get that (a ∧ b) ∈ G.

Now assume G is a maximal prefilter of A. We show that G is ultra: assume
not as witnessed by b. Then G ∪ {b} and G ∪ {¬b} are not prefilters. Hence
there are a1, . . . , an ∈ G and b1, . . . , bk ∈ G such that

a1 ∧ · · · ∧ an ∧ b = 0B

and
b1 ∧ · · · ∧ bk ∧ ¬b = 0B.

Hence

0B < a1 ∧ · · · ∧ an ∧ b1 ∧ · · · ∧ bk =

a1 ∧ · · · ∧ an ∧ b1 ∧ · · · ∧ bk ∧ (b ∨ ¬b) ≤
≤ (a1 ∧ · · · ∧ an ∧ b) ∨ (b1 ∧ · · · ∧ bk ∧ ¬b) = 0B,

where the first inequality holds becauseG is a prefilter and a1, . . . , an, b1, . . . , bk ∈
G. We reached a contradiction. Hence G is a prefilter which is ultra and thus
an ultrafilter.

The theorem is proved.

2.8 Stone spaces of boolean algebras

There is a natural functor that attaches to a boolean algebra the Stone space of
its ultrafilters. We prove here that these spaces are exactly the family of compact,
Hausdorff, 0-dimensional topological spaces. Finally we prove the Stone duality
theorem, which represents any boolean algebra as the family of clopen sets of its
Stone space.

Let B be a boolean algebra. We define

St(B) = {G ⊆ B : G is an ultrafilter},

and

τB to be the topology on St(B) generated by3{Nb = {G ∈ St(B) : b ∈ G} : b ∈ B}.

The topological space (St(B), τB) is the Stone space of B. We have:

3I.e., the smallest topology that contains {Nb : b ∈ B}.
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1. for all b ∈ B, Nb ∩N¬b = ∅;

2. for all b ∈ B, Nb ∪N¬b = St(B);

3. for all b1, . . . , bn ∈ B, Nb1 ∩ . . . ∩Nbn = Nb1∧...∧bn ;

4. for all b1, . . . , bn ∈ B, Nb1 ∪ . . . ∪Nbn = Nb1∨...∨bn .

Exercise 2.8.1. Prove the above facts for St(B).

Now we outline the key properties about the Stone space of a boolean algebra B.

Theorem 2.8.2 (Stone duality for boolean algebras). Given a boolean algebra B, we
have that:

1. (St(B), τB) is a Hausdorff 0-dimensional, compact topological space.

2. The map

φ :B→ CLOP(St(B))

b 7→ Nb

is an isomorphism, hence the clopen sets of τB are the sets Nb for b ∈ B, and
form a basis for τB.

3. There is a natural correspondence between open (closed) subsets of St(B) and
ideals (filters) on B:

� U ⊆ St(B) is open if and only if

{c ∈ B : Nc ⊆ U} is an ideal on B.

� F ⊆ St(B) is closed if and only if

{c ∈ B : Nc ⊇ F} is a filter on B.

4. G is an isolated point of St(B) if and only if G = Ga = {b ∈ B : a ≤ b} is a
principal ultrafilter generated by some atom a ∈ B.

Proof. We prove all items as follows:

1. Topological properties of St(B):

0-dimensional: We have already observed that Nb ∪N¬b = St(B) and Nb ∩
N¬b = ∅; thus these sets are clopen; they form a semibasis by definition of
τB; since Nb1 ∩ . . . ∩Nbn = Nb1∧...∧bn , this semibasis is closed under finite
intersections, hence it is a basis.

Hausdorff: If G,H are two different points of St(B), then there is b ∈ G∆H;
assume b ∈ G \H, then G ∈ Nb and H ∈ N¬b, since H is ultra and b 6∈ H.

Compact: Fix F a family of closed sets with the finite intersection property.
Let

G = {Nb : ∃C ∈ F (Nb ⊇ C)}.
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� We first claim that
⋂
F =

⋂
G holds.

Since every set in G contains some set in F , we get the inclusion ⊆.
Conversely, if C ∈ F , since C is a closed set and {Nb : b ∈ B} is
a basis of clopen, then we can write C =

⋂
{Nb : b ∈ A} for some4

A ⊆ B. Thus C ⊇
⋂
G (since C =

⋂
{Nb : b ∈ A}, every Nb with

b ∈ A contains C, hence belongs to G by definition of G). Since this
holds for all C ∈ F , we get the other inclusion.

� Second claim: G has the finite intersection property. In fact, let
Nb1 , . . . , Nbk be in G, and let C1, . . . , Ck ∈ F such that Ci ⊆ Nbi .
Then

∅ 6=
⋂

i=1,...,k

Ci ⊆
⋂

i=1,...,k

Nbi .

Now we can conclude the proof: let H = {b ∈ B : Nb ∈ G}, since G has
the finite intersection property,

Nb1∧...∧bk = Nb1 ∩ . . . ∩Nbk 6= ∅ for every b1, . . . , bk ∈ H,

so

∀b1, . . . , bk ∈ H(b1 ∧ . . . ∧ bk > 0B).

Thus H is a prefilter, so - by the prime ideal theorem - there exists an
ultrafilter G on B such that G ⊇ H. G ∈

⋂
G because ∀b ∈ H(b ∈ G), so

G ∈ Nb for all b ∈ H, hence G ∈ Nb for all Nb ∈ G. We conclude that

∅ 6=
⋂
G =

⋂
F .

A clopen set is of the form Nb for some b ∈ B: Let U be clopen in St(B).
Then U =

⋃
{Nb : Nb ⊆ U}, since it is open. Also U is a closed subset

of a compact space, hence U is compact and any of its open covering
admits a finite subcovering. Therefore there are b1, . . . , bk such that
U = Nb1 ∪ · · · ∪Nbk = Nb1∨···∨bk .

2. B is isomorphic to the clopen subset of St(B):

φ is an homomorphism: Observe that Nb∧c = Nb ∩ Nc, Nb∨c = Nb ∪ Nc,
N¬b = St(B) \Nb.

φ is injective: Assume b 6= c. Then either b ∧ ¬c > 0B or c ∧ ¬b > 0B,
assuming the first option, an ultrafilter G extending {b ∧ ¬c} is in Nb \Nc,
assuming the second option holds we can find G ∈ Nc \Nb.

4If C is closed, C = St(B) \ U for some U open. By definition U =
⋃{

Nbj : j ∈ J
}

for some
family J , since {Nb : b ∈ B} is a basis for τB; hence

C = St(B) \
⋃{

Nbj : j ∈ J
}

=
⋂{

St(B) \Nbj : j ∈ J
}

=
⋂{

N¬bj : j ∈ J
}
.
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φ is surjective: Immediate since any clopen set is of the form Nb = φ(b) for
some b ∈ B.

3. Correspondence between closed (open) subsets of St(B) with filters (ideals) on
B: Useful exercise for the reader, in essence it has already been proved when
we established the compactness of St(B).

4. G ∈ St(B) is an isolated point (i.e. such that {G} is open) of St(B) if and only
if G is a principal ultrafilter:

G is isolated if and only if {G} is clopen, hence {G} = Na for some a ∈ B.

a must be an atom: Otherwise there is 0B < b < a. Let c = ¬b ∧ a; then
b ∧ c = 0B and 0B < c < a. Find G0 and G1 in St(B) with c ∈ G0 and
b ∈ G1. Then a ∈ G0, G1, but G0 6= G1, since b ∈ G1, ¬b ∈ G0; we reached a
contradiction with {G} = Na.

We can also go the other way round, i.e. we take a topological space and attach
to it a boolean algebra.

Proposition 2.8.3. Let (X, τ) be a 0-dimensional compact topological space. Then
(X, τ) is homeomorphic to the Stone space of CLOP(X, τ) via the map

π : X −→ St(CLOP(X, τ))

x 7−→ Gx = {U ∈ CLOP(X, τ) : x ∈ U} ∈ St(CLOP(X, τ)).

Proof. We show that π is a well defined continuous bijection which is also open (i.e.
maps open sets in open sets), this suffices to prove the Proposition.

Well defined and injective: the fact that Gx is an ultrafilter is an easy exercise.
When x and y are distinct, since τ is Hausdorff and 0-dimensional, there is a
clopen set U containing x and not y. Then U ∈ Gx and U 6∈ Gy.

Surjective: Let G ∈ St(CLOP(X, τ)), set C =
⋂
G. We claim that C is a singleton.

C is non-empty since X is compact and G is a family of closed sets with the
finite intersection property, thus it must have a non-empty intersection. Now
assume x 6= y ∈ C. Find as in previous item U clopen such that x ∈ U and
y 6∈ U . Then U ∈ G iff (X \ U) 6∈ G, which gives that x ∈ C iff y 6∈ C, a
contradiction. Let x be the unique element of C. Then it is easily checked that
G = Gx.

Continuous and open: Notice that for any clopen set U and x ∈ X x ∈ U iff
U ∈ Gx, thus π[U ] = NU , from this we easily infer that π is continuous and
open.

In particular we have shown that the map B 7→ St(B) defines a natural bijection
between the class of boolean algebras and the class of compact 0-dimensional,
Hausdorff spaces. It can be shown that this map is a contravariant functor between
these two categories which identifies homomorphisms i : B→ C with continuos maps
f : St(C)→ St(B). But we won’t pursue this direction further here.

We give two other different presentations of the notion of boolean algebra, one
axiomatizable in the first order language for rings and another in the first order
language for partial orders.
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2.9 Boolean rings

Throughout this section we assume the reader is familiar with the notion of commu-
tative ring, of an ideal on it, and of their basic properties.

We want to show that boolean algebras can also be described as commutative
rings with idempotent multiplication.

Definition 2.9.1. Let R = 〈R,+, ·, 0, 1〉 be a commutative ring. R is boolean if it
has idempotent multiplication (i.e. a2 = a for all a ∈ R).

Remark 2.9.2. A commutative ring R with idempotent multiplication has automati-
cally characteristic 2: (a+ a)2 = a+ a for all a ∈ R, hence

0 = (a+ a)2 − (a+ a) = a2 + a2 + 2a− 2a = a2 + a2 = a+ a

for all a ∈ R. Hence in boolean rings a = −a and the sum operation and the
difference operation coincide.

Theorem 2.9.3. Let
(B,∧,∨,¬, 0, 1)

be a boolean algebra. Then
(B,∆,∧, 0, 1)

is a boolean ring.

Given a boolean ring
R = 〈R,+, ·, 0, 1〉 ,

define

� a ∨ b = a+ b+ a · b,

� a ∧ b = a · b,

� ¬a = 1 + a

for all a, b ∈ R. Then
R = 〈R,∨,∧,¬, 0, 1〉

is a boolean algebra.

We split each of the two statement of the theorem in separate Lemmas. We first
show that interpreting in a boolean algebra the boolean operation of symmetric
difference ∆ as a sum and that of meet ∧ as a multiplication, any boolean algebra is
naturally identified with the boolean ring of characteristic functions of clopen sets of
St(B).

Exercise 2.9.4. Let (X, τ) be a topological space.

C(X, 2) = {f : X → Z2 | f is continuous},

where Z2 = {0, 1} is the two elements ring endowed with discrete topology.
Show that C(X, 2) is a boolean ring when endowed with operations defined

pointwise (i.e. f ∗ g(H) = f(H)∗ g(H), for ∗ among +, ·), and the constant functions
c0 : H 7→ 0, c1 : H 7→ 1 as 0 and 1 of the ring.
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Lemma 2.9.5. Let (B,∧,∨,¬, 0, 1) be a boolean algebra. Then (B,∆,∧, 0, 1) is a
boolean ring isomorphic to the ring C(St(B), 2).

Proof. We leave to the reader to check that C(St(B), 2) is a boolean ring. Let
θ : B→ C(St(B), 2) be defined by b 7→ fb, with fb(G) = 1 iff b ∈ G.

fb is continuous for any b since f−1
b ({1}) = Nb and f−1

b ({0}) = N¬b. It is also easy to
check that θ is injective. Let us now check that θ is surjective. Let g : St(B)→ {0, 1}
be continuous. Let Ai = g−1({i}), i = 0, 1. Each Ai is clopen, by continuity of g.
Clearly A0 ∪ A1 = St(B) and A0 ∩ A1 = ∅. Hence A0 = Nb and N1 = N¬b for some
b ∈ B. Then θ(b) = g.

We now check that:
fa + fb = fa∆b; fa · fb = fa∧b,

so that the proof is completed: given an ultrafilter G ⊆ B, we have:

fa(G) + fb(G) = 1⇐⇒ (fa(G) = 0 ∧ fb(G) = 1) ∨ (fa(G) = 1 ∧ fb(G) = 0) ⇐⇒
⇐⇒ (a ∈ G ∧ b /∈ G) ∨ (a /∈ G ∧ b ∈ G) ⇐⇒
⇐⇒ a∆b ∈ G,

and

fa(G)·fb(G) = 1 ⇐⇒ (fa(G) = 1 ∧ fb(G) = 1)⇐⇒ (a ∈ G ∧ b ∈ G)⇐⇒ a∧b ∈ G.

Remark 2.9.6. The above Lemma greatly simplifies the proofs of certain properties
of boolean operations and of boolean morphisms: for example try to prove the
associativity of the symmetric difference operation ∆ on a boolean algebra B using
the equational presentation of boolean algebras given in Def 2.1.1, and compare
your attempts, with the argument that ∆ is associative being (modulo the above
isomorphism) the sum operation of a commutative ring.

Proposition 2.9.7. For a boolean ring B the following holds:

1. I is an ideal on the boolean algebra 〈B,∧,∨,¬, 0B, 1B〉 if and only if I is an
ideal on the ring 〈B,+, ·, 0, 1〉.

2. B does not have 0-divisors if and only if it is isomorphic to Z2.

3. The dual of a subset A of B is unambiguosly defined as Ă = {¬a : a ∈ A} =
{1− a : a ∈ A}. Moreover I is a (prime) ideal on the ring B if and only if Ĭ
is an ultrafilter on the boolean algebra B.

Proof.

1. Assume I is an ideal on the ring 〈B,+, ·, 0, 1〉, we show that I is an ideal on
the boolean algebra 〈B,∧,∨,¬, 0B, 1B〉: assume a, b ∈ I, then a + b, a · b ∈ I
as well, hence a ∨ b = a+ b+ a · b ∈ I; moreover a ∈ I and b ≤ a entails that
b = b · a ∈ I.

Conversely assume I is an ideal on the boolean algebra 〈B,∧,∨,¬, 0B, 1B〉 , we
show that I is an ideal on the ring B: if a, b ∈ I, a+b = a∨b∧¬(a∧b) ≤ a∨b ∈ I,
moreover if a ∈ I and b ∈ B a · b = a ∧ b ≤ a ∈ I, hence a · b ∈ I as well.
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2. x2 = x entails that the equation x(x− 1) = 0 holds for all x in a boolean ring.
If x belongs to a boolean ring with no zero-divisors, either x = 0 or x− 1 = 0.
Hence the boolean ring is {0, 1} = Z2.

3. The first observation is trivial, given that sum and subtraction are the same
operation on a boolean ring and ¬a = 1− a by definition.

The second observation follows by the fact that the unique boolean ring without
zero divisors is Z2. Now recall that I is a prime ideal on a ring B if and only if
B/I has no zero-divisors, and I is a maximal ideal on a ring B if and only if
B/I is a field. By the previous item, the quotient of the boolean ring B by a
prime ideal is Z2 which is a field. This entails that all prime ideals of B are
maximal, i.e. their dual is an ultrafilter.

The next proposition shows that ideals on boolean algebras and kernel of boolean
morphisms are the same, its proof takes advantage of the characterization of boolean
algebras as boolean rings.

Proposition 2.9.8. Let B,C be boolean algebras, φ : B→ C be a boolean morphism,
I ⊆ B an ideal. Then:

� kerφ = {b ∈ B : φ(b) = 0C} is an ideal on B,

� the map πI : b 7→ [b]I = {c ∈ B : c∆b ∈ I} defines a surjective morphism of
B onto the quotient boolean algebra B/I (with operations in B/I defined by
[b]I ∧ [c]I = [b ∧ c]I , [b]I ∨ [c]I = [b ∨ c]I , ¬[b]I = [¬b]I ;

� the map φ/ker(φ) : [b]kerφ 7→ φ(b) is a well defined injective morphism of B/ker(φ)

into C;

� φ = (φ/ker(φ)) ◦ πker(φ).

Proof. By Lemma 2.9.5 and exercises 2.4.3, 2.4.6 it suffices to prove the Proposition
for the usual notions of ideal and morphism on rings, since:

� Lemma 2.9.5 show that boolean algebras are boolean rings.

� Exercise 2.4.6 gives that I is an ideal on a boolean algebra (B,∨B,∧B,¬B, 0B, 1B)
if and only if it is an ideal on the boolean ring (B,∆B,∧B, 0, 1).

� Exercise 2.4.3 shows that a boolean morphism is also a ring morphism.

The proposition for ring morphisms and ring ideals is a standard result in ring
theory.

We now prove the converse:

Lemma 2.9.9. Assume R = 〈R,+, ·, 0, 1〉 is a boolean ring. Let a ∨ b = a+ b+ a · b,
a ∧ b = a · b, ¬a = 1 + a for all a, b ∈ R. Then R = 〈R,∨,∧,¬, 0, 1〉 is a boolean
algebra.
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Proof. Let us go through the equations of 2.1.1 with · in the place of ∧. The
associativity and commutativity law for ·, and the identity laws for 0, 1 are ring
axioms. The commutativity law for ∨ is trivially checked. We are left to check the
associativity law for ∨, and the laws of complementation and distributivity:

The associativity law for ∨ holds since

a ∨ (b ∨ c) = a ∨ (b+ c+ b · c) = a+ b+ c+ b · c+ a · b+ a · c+ a · b · c

while

(a ∨ b) ∨ c = c ∨ (b+ a+ b · a) = c+ b+ a+ b · a+ c · b+ c · a+ c · b · a.

The complementation laws are also immediate to check:

a · (1− a) = a− a2 = a− a = 0

while
a ∨ (1− a) = a+ 1− a+ a · (1− a) = 1 + 0 = 1.

Now

(a ∨ b) · c = (a+ b+ a · b) · c =

a · c+ b · c+ a · b · c = a · c+ b · c+ a · b · c2 =

a · c+ b · c+ (a · c) · (b · c) = (a · c) ∨ (b · c)

for all a, b, c, hence the first distributivity law (a ∨ b) · c = (a · c) ∨ (b · c) holds.
Also the second distributivity law (a · b) ∨ c = (a ∨ c) · (b ∨ c) holds:

(a · b) ∨ c = a · b+ c+ a · b · c,

while

(a ∨ c) · (b ∨ c) =

= (a+ c+ a · c) · (b+ c+ b · c) =

= a · b+ a · c+ a · b · c+ b · c+ c2 + b · c2 + a · b · c+ a · c2 + a · b · c2 =

= a · b+ a · c+ a · b · c+ b · c+ c+ b · c+ a · b · c+ a · c+ a · b · c =

= a · b+ a · b · c+ c

for all a, b, c.

2.10 Boolean algebras as complemented distribu-

tive lattices

We also give another characterization of boolean algebras in term of their order
relation. These axioms for boolean algebras can be expressed in a first order theory
with a binary relation symbol for the order relation. Nonetheless we expand the
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language adding symbols for the operations ∧,∨,¬ and constants 0, 1 definable in
this axiom system for boolean algebras and leave to the reader to check that this is
not necessary.

A join-semilattice (P,≤) is a partial order such that every pair of elements (x, y)
of P admits an unique least upper bound denoted by x ∨ y, the join of x and y.

Dually, a partial order (P,≤) is a meet-semilattice when any two elements x and
y in P have an unique greatest lower bound denoted by x ∧ y, the meet of x and y.

A partial order (P,≤) is a lattice if it is both a join-semilattice and a meet-
semilattice.

A lattice (P,≤) is bounded if it has a greatest element 1P and a least element 0P
which satisfy 0 ≤ x ≤ 1 for every x in P .

A lattice (P,≤) is distributive if for all x, y and z in P we have

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Let (P,≤) be a bounded lattice. A complement of an element a ∈ P is an element
b ∈ P such that a ∨ b = 1 and a ∧ b = 0.

Remark 2.10.1. In a distributive lattice, if a has a complement it is unique. In this
case we denote by ¬a the complement of a.

A lattice is complemented if it is bounded and every element has a complement.
A lattice (P,≤) is complete if every subset X = {xi : i ∈ I} of P has a meet (or

infimum)
∧
i∈I xi and a join (or supremum)

∨
i∈I xi.

Notice that if X = ∅, then
∧
∅ = 1 and

∨
∅ = 0, so a complete lattice is always

bounded.

Lemma 2.10.2. (B,∧,∨,¬, 0, 1) is a boolean algebra if and only if (B,≤) is a
complemented distributive lattice.

Proof. One direction is clear: say that a boolean algebra B is a field of sets if it is a
subalgebra of

〈P(X),∩,∪, A 7→ X \ A, ∅, X〉

for some set X. It is an easy exercise to check that boolean algebras which are
fields of sets are complemented distributive lattices. By Stone’s duality theorem any
boolean algebra is isomorphic to a field of sets. The converse direction is left to the

aggiungere referenza
su dove trovarla – M reader. – M

2.11 Suprema and infima of subsets of a boolean

algebra

Notation 2.11.1. Given a boolean algebra B, we denote by
∨
A the supremum

(least upper bound) under ≤ of a subset A of B (i.e. the least element a ∈ B such
that a ≥ b for all b ∈ A - if this least element exists), and by

∧
A its infimum (i.e.

the largest element a ∈ B such that a ≤ b for all b ∈ A - if this largest element exists).
Similarly

∧
A denotes the infimum of some A ⊆ B.
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The following proposition gives a simple topological method to compute the
supremum of a subset of a boolean algebra:

Proposition 2.11.2. Let B be a boolean algebra and X ⊆ B. Then a =
∨
X if and

only if
⋃
{Nb : b ∈ X} is a dense open subset of Na in the relative topology of Na as

a subset of (St(B), τB).

Proof. Assume A =
⋃
{Nb : b ∈ X} is a dense open subset of Na but a 6=

∨
X, we

will reach a contradiction.
The first assumption on A gives that Nb ⊆ Na for all b ∈ X, which occurs if and

only if a ≥ b for all b ∈ X, i.e. a is an upper bound of X. Since a 6=
∨
X, there

must be some e which is still an upper bound for X with e 6≥ a. Now if e is an
upper bound for X, then so is c = e ∧ a. Since e 6≥ a and e ∧ a ≤ a, we conclude
that c = e ∧ a < a is an upper bound for X. Hence if a is not the least upper bound
for X, there must some 0 < c < a which is still an upper bound for X. This gives
that a > d = a ∧ ¬c > 0, and also that for all b ∈ X Nd ∩Nb ⊆ Nd ∩Nc = ∅. We
get that A ∩Nd = ∅. But Nd is an open non-empty subset of Na, hence A is not an
open dense subset of Na, the desired contradiction.

Conversely assume A =
⋃
{Nb : b ∈ X} is not a dense open subset of Na, we

must argue that a 6=
∨
X. If a 6≥ b for some b ∈ X, certainly a 6=

∨
X, therefore we

can assume Na ⊇ Nb for all b ∈ X. Since A is not a dense open subset of Na, we can
find 0B < d ≤ a such that Nd ∩ A = ∅. We conclude that c = a ∧ ¬d is such that
Na ⊃ Nc ⊇ Nb for all b ∈ X, i.e. c witnesses that a is not the least upper bound of
X.

Corollary 2.11.3. Let B be a boolean algebra, the following holds for any X subset
of B:

1. r ∧
∨
X =

∨
{r ∧ b : b ∈ X} if

∨
X is well defined.

2. ¬
∨
X =

∧
{¬b : b ∈ X} if any among

∨
X or

∧
{¬b : b ∈ X} is well defined.

Proof.

1. Let a =
∨
X. By the previous proposition we get that A =

⋃
{Nb : b ∈ X}

is a dense open subset of Na. Therefore Nr ∩ A is a dense open subset of
Nr ∩Na = Nr∧a. Now

Nr ∩ A = Nr ∩
⋃
{Nb : b ∈ X} =

⋃
{Nb ∩Nr : b ∈ X} =

⋃
{Nb∧r : b ∈ X} .

By the previous proposition we conclude that a ∧ r =
∨
{r ∧ b : b ∈ X}.

2. Remark that a ≤ b if and only if ¬a ≥ ¬b. Now a =
∨
X if and only if⋃

{Nb : b ∈ X} is a dense open subset of Na. Therefore N¬b ⊇ N¬a for all
b ∈ X. Now assume there is some c > ¬a such that ¬b ≥ c for all b ∈ X. Then
¬c < a and b ≤ ¬c for all b ∈ X, contradicting a =

∨
X. We leave to the

reader to handle the case in which we assume
∧
{¬b : b ∈ X} is well defined.
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Remark 2.11.4. Take the boolean algebra B of clopen subsets of the Cantor space C
identified as the subset of [0; 1] given by

C =

{
af =

∞∑
i=0

2i · f(i)

3i+1
: f ∈ 2N

}
,

endowed with the euclidean topology. Let an = 3n+1−3
3n+1 , bn = an + 1

3n+1 , Un =
[an; bn] ∩ C. We get that

X = {Un : n ∈ N} ⊆ B

is such that C =
∨

BX, but ∪X = C \ {1} is a proper dense open subset of C in the
euclidean topology.

Moreover if we let X0 = {U2n : n ∈ N} we get that
⋃
X0 is open, but also that

no clopen subset of C contains X0 as a dense subset: Let A ⊇ X0 be a closed subset
of C. Then it must contain 1, which is an accumulation point of X0. If A ⊆ C is also
open, then A ⊇ C ∩ [3n−1

3n
; 1] for some large enough n, since

{
C ∩ [3n−1

3n
; 1] : n ∈ N

}
is a base of clopen neighborhood of 1 in C. This gives that U2k+1 ⊆ A for some large
enough k. But U2k+1 is disjoint from X0, hence X0 is not a dense open subset of any
clopen A containing it.

In particular X0 has no supremum in B.



Chapter 3

Complete boolean algebras

3.1 Regular open sets

Definition 3.1.1. A boolean algebra (B, 0, 1,∨,∧,¬,≤) is complete (or cba for
short) if it admits suprema and infima with respect to all of its subsets for the order
relation ≤.

Notation 3.1.2. Given a boolean algebra B, we often consider B+ when referring to
B as an order, otherwise some definitions could indeed become trivial.

For X ⊆ B, ↓ X = {b : ∃c ∈ X b ≤B c}, and ↑ X = {b : ∃c ∈ X b ≥B c}.
For b ∈ B+, the boolean algebra B � b is given by {a ∈ B : a ≤B b} =↓ {b}, with

the operations inherited from B. The top element of B � b is b.
X ⊆ B is predense if ↓ X is dense in B+ with respect to ≤B.
X ⊆ B is predense below b ∈ B if ↓ X is dense in (B � b)+.

We will need the following property of the Stone spaces of boolean algebras:

Fact 3.1.3. Assume B is a complete boolean algebra and X ⊆ B. The following
holds:

1.
∨
X =

∨
↓ X.

2. For all r ∈ B r ∧
∨
X > 0B if and only if r ∧ b > 0B for some b ∈ X.

3.
∨
X = 1B iff X ∩ B+ is a predense subset of B+ in the sense of the order.

4. More generally for any dense set D ⊆ B+ and any a ∈ B+ a =
∨
{q ∈ D : q ≤B a}.

Proof.

1.
∨
X ≤B

∨
↓ X since X ⊆↓ X. For the converse inequality, if d ≥ b for all

b ∈ X we also have that d ≥ c for all c ∈↓ X, hence
∨
X is an upper bound

for ↓ X, hence
∨
↓ X ≤B

∨
X.

2. Left to the reader: use Corollary 2.11.3.

3. Left to the reader: use Corollary 2.11.3.

4. Left to the reader: use Corollary 2.11.3.

33
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In particular the following holds:

Lemma 3.1.4. A complete boolean algebra B can be split in the disjoint sum of an
atomic boolean algebra and of an atomless boolean algebra. I.e. there is c ∈ B such
that B � ¬c is atomless, and B � c is atomic.

Proof. Let A = {a ∈ B : a is an atom of B} and c =
∨
A. Then b ∧ c = 0B entails

that b is not an atom of B � ¬c (otherwise b would also be an atom of B and thus be
a refinement of c), while b ≤ c entails that for some atom a ∈ A, a ∧ b > 0B which
occurs only if a ≤ b, since a is an atom. This gives that B � c is atomic and B � ¬c is
atomless.

Definition 3.1.5. Let B,C be boolean algebras A map k : B → C is a complete
homomorphism if it maps predense subsets of B+ to predense subsets of C+, or
equivalently if it preserves suprema and infima.

Exercise 3.1.6. Any complete homomorphism is also a homomorphism in the usual
sense.

Fact 3.1.7. An isomorphism of boolean algebras preserves suprema and infima.
Hence isomorphic images of complete boolena algebras are complete boolean algebras.

Proof. Left to the reader.

3.2 Complete boolean algebras of regular open

sets

We prove that every complete boolean algebra can be represented as the family of
regular open sets of some given topological space, and we characterize complete
boolean algebras as those whose Stone spaces have the property that their regular
open sets are clopen. The first step in this direction is to show that the regular
open sets of a given topological space have a natural structure of complete boolean
algebra.

Notation 3.2.1. Given a topological space (X, τ) and an arbitrary subset A of X,
we denote by Cl(A) (the closure of A) the smallest closed set containing A. We
denote by Int(A) (the interior of A) the biggest open set that is contained in A. An
open set A is regular open if A = Int(Cl(A)). For any A ⊆ X Reg(A) = Int(Cl(A))
denotes the regularization of the set A. We denote by RO(X, τ) the collection of
regular open sets in X with respect to τ . If no confusion can arise we write RO(X)
instead of RO(X, τ).

Remark 3.2.2. Any clopen subset of a topological space is regular. Any open interval
of R with the usual topology is regular, a standard example of an open non regular
set in the euclidean topology on R is (1; 2)∪ (2; 3): its closure is [1; 3] and the interior
of its closure is (1; 3). We will see that if U and V are open regular then so is U ∩ V .
Moreover any isolated point x ∈ X of a topological space X is such that {x} is
clopen and thus regular.
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Example 3.2.3. Let τ be the euclidean topology on R; then any interval is a regular
open set.

If a < b < c, we have that (a; b), (b; c) are regular open while (a; b) ∪ (b; c) is not
with its regularization being (a; c).

In general regular open sets are those open sets which can be written in the form⋃
j∈J(aj; bj) with the family {(aj; bj) : j ∈ J} consisting of pairwise disjoint open

intervals such that ai 6= bj for any i, j ∈ J .

Definition 3.2.4. Given a topological space (X, τ), we equip RO(X) with the
following operations:

U ∨ V =Reg(U ∪ V ),

U ∧ V =U ∩ V,∨
i∈I

Ui =Reg(
⋃
i∈I

Ui),∧
i∈I

Ui =Reg(
⋂
i∈I

Ui),

¬U =X \ Cl(U).

We prove the following:

Theorem 3.2.5. Assume (X, τ) be a topological space. Then (RO(X),∨,∧,¬, ∅, X)
is a complete boolean algebra.

We will need several facts on regular open sets, the first of which is the following
characterization:

Lemma 3.2.6. Let (X, τ) be a topological space. For any open A ∈ τ we have:

Reg(A) = {x ∈ X : ∃U ∈ τ open set containing x such that A ∩ U is dense in U} .

Proof. For one inclusion, take x ∈ Reg(A). The set U = Reg(A) is an open set
contaning x, and A ∩ U is dense in U because A is dense in Cl(A) and U ⊆ Cl(A) is
open.

For the converse inclusion, take x ∈ X and U an open set containing x such that
A∩U is dense in U , then A∩U is dense also in Cl(U), thus Cl(A∩U) = Cl(U) holds.
So U is an open subset of Cl(A), and we obtain x ∈ Reg(A).

Exercise 3.2.7. The above Lemma explains why (for the euclidean topology on R) 2
belongs to Reg((1; 2) ∪ (2; 3)) while 1 and 3 do not. Work out the details of why 2
satisfies the above characterization for points of Reg((1; 2) ∪ (2; 3)), while 1 and 3 do
not.

Remark 3.2.8. If U is an open neighborhood of x witnessing that x ∈ Reg(A) any
V ⊆ U open neighborhood of x is equally well a witness of x ∈ Reg(A), since
A ∩W = A ∩ U ∩W is a dense open subset of W for any open W ⊆ U .

Exercise 3.2.9. Prove the above observation.

We also need the following crucial property:
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Fact 3.2.10. Given a topological space (X, τ), assume U, V are open sets in τ . Then
U ∩ V is a dense open subset of V if and only if Reg(V ) ⊆ Reg(U). In particular
Reg(V ) = Reg(U) iff U ∩ V ⊇ W for some W open dense subset of U and open
dense subset of V .

Proof. Assume U ∩ V is a dense open subset of V . Let x ∈ Reg(V ). Let W be an
open neighborhood of x such that V ∩W is a dense subset of W . Then U ∩V ∩W is
also a dense open subset of W (if P ⊆ W is open non-empty, V ∩ P is a non-empty
open subset of V , since V ∩W is a dense open subset of W ; thus U ∩ V ∩ P is also
a non-empty open set, given that U ∩ V is dense in V ), and so a fortiori also U ∩W
is a dense open subset of W . In particular W witnesses that x ∈ Reg(U).

Conversely assume Reg(V ) ⊆ Reg(U). Since U is a dense open subset of Reg(U)
and V is a dense open subset of Reg(V ), U ∩ V is a dense open subset of Reg(V ),
hence also of V (since the intersection of two open dense subsets of some topological
space is still open dense).

Notation 3.2.11. Given a topological space (X, τ) and V ⊆ X,

V ⊥ = X \ Cl(V ).

For us priority is on the left, hence for example U⊥⊥⊥ is a shorthand for ((U⊥)⊥)⊥.

Fact 3.2.12. Given a topological space (X, τ), the following holds for any U, V ⊆ X:

1. for all U, V ⊆ X, U ⊆ V implies V ⊥ ⊆ U⊥,

2. (U ∪ V )⊥ = U⊥ ∩ V ⊥,

3. Reg(V ) = V ⊥⊥,

4. U⊥⊥⊥ = U⊥,

5. If U, V are open (U ∩ V )⊥⊥ = U⊥⊥ ∩ V ⊥⊥.

In particular we also have:

(A) Reg : P(X)→ P(X) is an idempotent operator, i.e.

Reg(Reg(V )) = Reg(V )

for any V ⊆ X.

(B) The intersection of any two regular open sets of (X, τ) is regular open.

Proof.

1: easy exercise.

2: We need the following basic topological fact:

For any topological space (X, τ) and A,B ⊆ X

Cl(A ∪B) = Cl(A) ∪ Cl(B).
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Proof. Clearly Cl(A ∪B) ⊇ Cl(A) ∪ Cl(B). For the converse inclusion observe
that A ∪B ⊆ Cl(A) ∪ Cl(B) and A ∪B is a dense subset of Cl(A ∪B). Hence

Cl(A ∪B) = Cl(Cl(A) ∪ Cl(B)) = Cl(A) ∪ Cl(B),

where:

� the first equality holds because

A ∪B ⊆ Cl(A) ∪ Cl(B) ⊆ Cl(A ∪B)

with A ∪B a dense subset of Cl(A ∪B);

� the second equality holds because Cl(Cl(Y )) = Cl(Y ) for all Y ⊆ X.

Hence

(U∪V )⊥ = X\Cl(U∪V ) = X\(Cl(U)∪Cl(V )) = (X\Cl(U))∩(X\Cl(V )) = U⊥∩V ⊥.

3:

x ∈ Reg(V )⇔ there is an open neighborhood N of x fully contained in Cl(V )

⇔ there is an open neighborhood N of x disjoint from X \ Cl(V )

⇔ x 6∈ Cl(X \ Cl(V ))

⇔ x ∈ V ⊥⊥.

4: Assume U is open, then we have U ⊆ Reg(U). So, as Reg(U) = U⊥⊥ holds, we
have

U ⊆ U⊥⊥ (3.1)

Now, if U is open, applying the first point to (3.1) we get U⊥⊥⊥ ⊆ U⊥.
Conversely, applying (3.1) to U⊥ we get U⊥ ⊆ U⊥⊥⊥, which concludes the
proof.

5: We use Lemma 3.2.6.

Assume first x ∈ U⊥⊥ ∩ V ⊥⊥ = Reg(U) ∩ Reg(V ). Then there are N0, N1

open neighborhoods of x such that U ∩N0 and V ∩N1 are open dense subsets
respectively of N0 and N1. Since x ∈ N0 ∩ N1, we get that U, V have both
a dense open intersection with N0 ∩ N1. Hence N0 ∩ N1 witnesses that x ∈
Reg(U ∩ V ) = U⊥⊥ as U ∩ V has a dense open intersection with it.

For the converse inclusion let x ∈ (U ∩ V )⊥⊥ = Reg(U ∩ V ). Then there is N
open neighborhood of x such that U ∩ V ∩N is dense in N , thus U ∩N and
V ∩N are both dense subsets of N ; this gives that x ∈ U⊥⊥ ∩ V ⊥⊥, as was to
be shown.

For the last two assertions:
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(A). By 3 and 4
Reg(Reg(V )) = V ⊥⊥⊥⊥ = V ⊥⊥ = Reg(V )

for any V ⊆ X.

(B). Combining (A) with 5

(U⊥⊥ ∩ V ⊥⊥)⊥⊥ = (U ∩ V )⊥⊥⊥⊥ = (U ∩ V )⊥⊥ = U⊥⊥ ∩ V ⊥⊥.

We prove first that RO(X) is a boolean algebra using Definition 2.1.1, and then
we prove that it is complete.

Proposition 3.2.13. The family RO(X), with the operations defined above, is a
boolean algebra.

Proof. We take U, V,W ∈ RO(X) and we go through the equations of Definition 2.1.1.

� Associativity of ∨. By Fact 3.2.10 it is enough to check that U ∪ V ∪W is
a dense open subset of Reg(U ∪ Reg(V ∪W )) and of Reg(W ∪ Reg(V ∪ U)).
This is immediate from the definitions. Alternatively we can use the following
algebraic identities:

U ∨ (V ∨W ) = (U ∪ (V ∪W )⊥⊥)⊥⊥

= (U⊥ ∩ (V ∪W )⊥⊥⊥)⊥

= (U⊥ ∩ (V ∪W )⊥)⊥

= (U⊥ ∩ (V ⊥ ∩W⊥))⊥

= ((U⊥ ∩ V ⊥) ∩W⊥)⊥

= ((U ∪ V )⊥ ∩W⊥)⊥

= ((U ∪ V )⊥⊥⊥ ∩W⊥)⊥

= ((U ∪ V )⊥⊥ ∪W )⊥⊥

= (U ∨ V ) ∨W.

� The associativity of ∧ is just the associativity of ∩.

� Distributivity. We only show that

(U ∧ V ) ∨ (U ∧W ) = U ∧ (V ∨W )

holds, the other equation is similar. To this aim observe that

V ∪W is dense in Reg(V ∪W )

⇒ U ∩ (V ∪W ) is dense in U ∩ Reg(V ∪W )

⇒ Reg(U ∩ (V ∪W )) = Reg(U ∩ Reg(V ∪W )) = U ∩ Reg(V ∪W ),

where the last equality holds because the intersection of open regular sets is
open regular. Hence U ∩ (V ∪W ) = (U ∩ V )∪ (U ∩W ) is a dense open subset
both of U ∩Reg(V ∪W ) = U ∧ (V ∨W ), as well as of Reg((U ∩V )∪ (U ∩W )) =
(U ∧ V ) ∨ (U ∧W ). By Fact 3.2.10 we conclude.
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� Commutativity. U ∧V = U ∩V = V ∩U = V ∧U and U ∨V = Reg((U ∪V )) =
Reg((V ∪ U)) = V ∨ U .

� Identity. U ∨ 0 = Reg(U ∪ ∅) = Reg(U) = U and U ∧ 1 = U ∩X = U .

� Complements. U ∨¬U = Reg(U ∪ (X \Cl(U))) = X (since U ∪ (X \Cl(U)) is a
dense subset of X: for A open, A∩U is empty iff A∩Cl(U) is empty, so either
A ∩ U is non-empty or A ⊆ U⊥); while U ∧ ¬U = U ∩ (X \ Cl(U)) = ∅.

It now remains to prove that RO(X) is complete.

Proposition 3.2.14. The algebra RO(X) is complete.

Proof. Given a family K = {Ui : i ∈ I} in RO(X) define V = (
⋃
i∈I Ui)

⊥⊥. For any
i ∈ I we have Ui ⊆

⋃
j∈I Uj, so that

Ui = U⊥⊥i ⊆ (
⋃
j∈I

Uj)
⊥⊥ = V

holds. This shows that V is an upper bound for the elements of K. If W is another
such upper bound, then Ui ⊆ W , so that

⋃
i∈I Ui ⊆ W , whence

V = (
⋃
i∈I

Ui)
⊥⊥ ⊆ W⊥⊥ = W.

The proof for ∧ is similar.

We have shown that for a given topology τ on X there are two natural boolean
algebras we can attach to it: CLOP(X, τ) and RO(X, τ). Observe that CLOP(X, τ)+

is always contained in RO(X, τ)+ and that if τ is 0-dimensional, any open set contains
a clopen set, thus CLOP(X, τ)+ is a dense subset of RO(X, τ)+.

The next lemma gives a necessary and sufficient condition so that CLOP(X, τ)
and RO(X, τ) coincide.

Proposition 3.2.15. Assume B is a boolean algebra. B is complete if and only if
the regular open sets of St(B) overlap with the clopen subsets of St(B).

Proof. Assume B is complete. Let A be an arbitrary open set, then:

A =
⋃
i∈I

Nbi

for a given family {bi : i ∈ I} ⊆ B. Since B is complete, let:

b =
∨
i∈I

bi.

Then Nb is clopen, and thus regular open. We show that Nb = Cl(A).
First we observe that

A =
⋃
i∈I

Nbi ⊆ Nb.
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In particular since Nb is closed Cl(A) ⊆ Nb.
To prove the converse inclusion we proceed as follows: first we observe that for

all c ∈ B
c ∧ b = 0 iff c ∧ bi = 0 for all i ∈ I.

This gives that

Nc ∩Nb = ∅ iff Nc ∩ A = ∅ iff Nc ∩ Cl(A) = ∅.

Thus
X \ Cl(A) =

⋃
{Nc : Nc ∩ A = ∅}

is disjoint from Nb. We can conclude that

Nb ⊆ Cl(A).

The converse follows immediately, since B ∼= CLOP(St(B)) = RO(St(B)), which is
complete.

We say that a topological space (X, τ) is extremally disconnected (or extremely
disconnected) if CLOP(X, τ) = RO(X, τ).

3.3 Boolean completions

In this section we prove that every pre-order can be completed to a complete boolean
algebra.

Notation 3.3.1. Let (Q,≤Q) be a pre-order (i.e. ≤Q is a transitive and reflexive
relation on Q).

For X ⊆ Q
↓ X = {p ∈ Q : ∃a ∈ X(p ≤Q a)}.

is the downard closure of X (↓ p stands for ↓ {p}).

Exercise 3.3.2. Let (Q,≤Q) be a pre-order. Show that:

� The family τQ of downward closed subsets of Q form a family of sets closed
under arbitrary unions and arbitrary interesections.

� The family {↓ q : q ∈ Q} is a base for the topological space (Q, τQ) with the
property that for each q ∈ Q, ↓ q is its smallest open neighborhood in τQ.

� (Q, τQ) is T0 if and only if ≤Q is an order (i.e. ≤Q is antysimmetric).

Recall that (X, τ) is T0 if given points x 6= y in X there is an open set which contains
one but not the other.

Definition 3.3.3. Let (Q,≤Q) be a pre-order. The order topology on Q is τQ.

Notation 3.3.4. Given a pre-order (Q,≤Q), we denote by RO(Q) (or RO(Q, τQ) in
case confusion can arise) the algebra of regular open sets of the order topology on
(Q,≤Q).
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Theorem 3.3.5. Let (Q,≤Q) be a pre-order. There exists an unique (up to isomor-
phism) cba BQ and a map j : Q→ BQ such that:

1. j preserves order and incompatibility (i.e. both a ≤Q b⇒ j(a) ≤BQ j(b) and
a ⊥ b⇔ j(a) ∧ j(b) = 0BQ hold).

2. j[Q] is a dense subset of the partial order (B+
Q,≤).

Note that while BQ is unique, there can be many j : Q→ BQ which satisfy the
above requirements.

We split the proof in two lemmas, one for the existence part and the other for
the uniqueness part.

Lemma 3.3.6. Let (Q,≤Q) be a pre-order. The map

jQ :Q→ RO(Q, τQ)

q 7→ Reg(↓ q)

is such that:

1. jQ preserves order and incompatibility.

2. jQ[Q] is a dense subset of the partial order (RO(Q, τQ)+,⊆).

Proof. By Lemma 3.2.6, we have that for all open sets A ∈ τQ

Reg(A) = {p ∈ Q :↓ p ∩ A is a dense subset of ↓ p} (3.2)

since ↓ p is the smallest open neighborhood of p (if the property given in Lemma 3.2.6
holds for some open neighborhood of p it holds as well for ↓ p).

We will repeatedly use the above characterization of regular open sets.

jQ is order preserving: if p ≤Q q, then ↓ p =↓ q ∩ ↓ p and clearly ↓ p is dense in
Reg(↓ p), so jQ(p) ≤ jQ(q) by Fact 3.2.10.

jQ is incompatibility preserving: Note that p, q are compatible if and only if
↓ p, ↓ q (which are open sets of τP ) have non-empty intersection, if and only if

Reg(↓ p) ∩ Reg(↓ q)

is non-empty (which is the case by the last item of Fact 3.2.12 and the
observation that for an open set A, A is empty if and only if Reg(A) is). Hence
the thesis.

jQ has a dense image: let X ⊆ Q be non-empty. Let p ∈ X; clearly ↓ X ⊇↓ p,
hence jQ(p) ≤ Reg(↓ X).

We are left to show the uniqueness of this boolean completion. It suffices to prove
the following:
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Lemma 3.3.7. Assume B is a cba and k : Q→ B preserves order and incompatibility
and is such that k[Q] is dense in B+. Then the map:

π : RO(Q) −→ B

A 7−→
∨
{k(p) : p ∈ A}

is an isomorphism.

Assume the Lemma holds and ji : Q→ Bi for i < 2 preserve order and incompat-
ibility and are such that ji[Q] is dense in B+

i (with both Bi cbas), we can compose
the isomorphisms given by the Lemma to get an isomorphism of B1 onto B2.

We prove the Lemma.

Proof. We prove the Lemma in several steps as follows:

π is order preserving: by definition.

π ◦ jQ = k: Let q ∈ Q. Then

π ◦ jQ(q) =
∨
{k(r) : r ∈ Reg(↓ q)} ≥ k(q)

since q ∈ Reg(↓ q). Assume the inequality is strict. Then

π ◦ jQ(q) ∧ ¬k(q) > 0B.

Now k[Q] is dense in B+, thus we can find r ∈ Q such that k(r) ∧ k(q) = 0B

and k(r) ≤ π ◦ jQ(q).

Since k(r) ∧ k(q) = 0B, r and q are orthogonal in Q.

On the other hand we also have that k(r) ∧ k(s) > 0B for some s ∈ Reg(↓ q),
since

k(r) ≤ π ◦ jQ(q) =
∨
{k(s) : s ∈ Reg(↓ q)} .

This occurs only if ↓ r ∩↓ s 6= ∅. Since s ∈ Reg(↓ q) we have that ↓ s ∩↓ q is a
dense subset of ↓ s. In particular ↓ s∩ ↓ q∩ ↓ r is non-empty. Thus there is
t ≤ r, q. This contradicts the orthogonality of q, r in Q.

π is surjective: let b ∈ B2, by the density of k[Q] we have that (see Proposition
2.11.2 and note that k[Q] is dense in B+)

b =
∨
{k(p) ∈ Q : k(p) ≤ b}.

It is enough to show that A = {p ∈ Q : k(p) ≤ b} is regular open to get
that π(A) = b. Clearly A is downward closed and thus open. Now assume
r ∈ Reg(A) \ A. Then k(r) 6≤ b. This gives that k(r) ∧ ¬b > 0 and thus that
some s is such that k(s) ≤ k(r) ∧ ¬b. Since k(s) and k(r) are compatible
in B+ we have that some t ∈ Q refines r and s. In particular t ≤ r and
0B < k(t) ≤ k(r)∧¬b. Since r ∈ Reg(A)\A, A∩ ↓ r is dense in ↓ r; since t ≤ r,
we can find t∗ ∈ A such that t∗ ≤ t. In conclusion t∗ ∈ A is incompatible with
all elements of A since k(t∗) ≤ k(t) is incompatible with b, a contradiction.



3.3. BOOLEAN COMPLETIONS 43

π is injective: if A 6= B are regular open, we may assume w.l.o.g. that there is
q ∈ Q such that jQ(q) ⊆ A and jQ(q) is orthogonal to B, which occurs if and
only if ↓ q ∩B = ∅. The latter gives that q is orthogonal to all elements in B.
Then π(A) ≥ π(jQ(q)) and π(jQ(q)) = k(q) is orthogonal to

∨
k[B] = π(B),

since k is order and incompatibility preserving. We get that π(A) 6= π(B).

π(A ∩B) = π(A) ∧ π(B): Clearly π(A∩B) ≤ π(A)∧π(B) since π is order preserving.
Now assume the above inequality is strict. Find r ∈ Q such that k(r) ≤
π(A)∧π(B)∧¬π(A∩B). Then k(r) is compatible with at least one among the
various k(s) ∧ k(t) for s ∈ A, t ∈ B (by definition of π and the distributivity of∨

over ∧). Thus r, s, t have a common refinement p in Q (by the density of
k[Q] in B+ and the backward preservation of compatibility by k).

Then p ∈ A ∩ B (since p ≤ s ∈ A and p ≤ t ∈ B), and k(p) is orthogonal to
π(A ∩B) since p ≤ r ≤ ¬π(A ∩B), a contradiction.

π(A⊥) = ¬π(A): Notice that

π(A⊥) =
∨
{k(q) :↓ q ∩ A = ∅}

while
π(A) =

∨
{k(q) :↓ q ⊆ A} .

Now observe that for all A ∈ RO(Q)

DA = {q :↓ q ∩ A = ∅} ∪ {q :↓ q ⊆ A}

is an open dense subset of Q (for any p ∈ Q, p is already in DA if ↓ p ∩ A = ∅,
otherwise there exists r ∈↓ p ∩ A, and r ∈ DA refines p). We get that k[DA]
is a dense subset of B+ when B+ is considered as a partial order, and thus∨
k[DA] = 1B by Proposition 2.11.2.

On the other hand

{q :↓ q ∩ A = ∅} ∩ {q :↓ q ⊆ A} = ∅

This gives that

π(A⊥)∨π(A) =
∨
{k(q) :↓ q ∩ A = ∅}∨

∨
{k(q) :↓ q ⊆ A} =

∨
k[DA] = 1B,

while

π(A⊥) ∧ π(A) =
∨
{k(q) :↓ q ∩ A = ∅} ∧

∨
{k(q) :↓ q ⊆ A} =∨

{k(q) ∧ k(r) :↓ q ⊆ A, ↓ r ∩ A = ∅} =∨
{0B :↓ q ⊆ A, ↓ r ∩ A = ∅} = 0B.

The proof of the Lemma is completed.

The proof of Theorem 3.3.5 is completed.
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Corollary 3.3.8. (Q,≤) is a separative partial order if and only if the map j : Q→
RO(Q) of Theorem 3.3.5 is an injection.

Proof. It is enough to show that Q is separative iff ↓ p = Reg(↓ p) for all p ∈ Q.

(⇒): Assume Q is separative, and towards a contradiction let r ∈ Reg(↓ p)\ ↓ p.
Then we can refine r to an s ⊥ p still in Reg(↓ p) since Q is separative and
r 6≤ p. This is the desired contradiction.

(⇐): Assume ↓ p = Reg(↓ p). And let p 6≤ q. Assume towards a contradiction that
for all r ≤ p, r and q are compatible in Q, i.e. ↓ q ∩↓ r is non-empty. Then
↓ q ∩↓ p is dense in ↓ p. Which (by Fact ??) gives that

↓ p = Reg(↓ p) ⊆ Reg(↓ q) =↓ q,

i.e. p ∈↓ q, contradicting our assumption that p 6≤ q.

Corollary 3.3.9. Using the terminology of 3.3.5, (Q,≤) is an atomless pre-order
iff BQ is atomless.

Proof. It follows since the map j of the theorem preserves the order and incompati-
bility relation and has a dense image.

We conclude this section with the following observation:

Remark 3.3.10. There is a nice theorem (see [1, Theorem 22.14] for a proof) asserting
that up to isomorphism there is a unique atomless complete boolean algebra B such
that B+ contains a countable dense subset. Here is a list of partial orders (P,≤) and
topological spaces (X, τ) such that B is isomorphic to the regular open sets in the
relevant topology:

1. The atomless partial order (τ \ {∅} ,⊆), where τ is the standard euclidean
topology on R.

2. The partial order (D,⊆) given by open intervals with rational endpoints: D
is countable and is a dense subset of τ \ {∅} under inclusion. This gives that
RO(D) and RO(τ \ {∅}) are isomorphic atomless complete boolean algebras
admitting a countable dense subset.

3. The boolean completion RO(2<ω) of the partial order (2<ω,⊇) (the latter is
a separative countable atomless partial order and is contained in its boolean
completion as a dense subset).

4. The regular open subsets of R in the euclidean topology τ (the map A 7→ Reg(A)
surjects the partial order (τ \ {∅} ,⊆) onto RO(R, τ)+ preserving order and
incompatibility).

5. The regular open sets of the product topology τ ∗ on 2ω (the map s 7→ Ns =
{f ∈ 2ω : s ⊆ f} is order and incompatibility preserving and maps 2<ω in a
dense subset of RO(2ω, τ ∗)+).
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Notice that in each case the regular open sets considered refer to different topological
spaces: the first three algebra of regular open sets are induced by the order topology
respectively on (D,⊆), on (τ \ {∅} ,⊆), on (2<ω,⊇); while in the fourth and the fifth
case these algebras are given by the regular open sets of the topological space (R, τ)
or of the space (2ω, τ ∗). Remark also that the map j : τ \{∅} → RO(τ \{∅}) given by
Theorem 3.3.5 identifies two open sets iff they have dense intersections. In particular
in this case the relevant j is not injective but it is still order and incompatibility
preserving.

In conclusion we get that the same atomless complete boolean algebra can be
obtained as the algebra of regular open sets of five distinct topologies on five distinct
topological spaces whose topologies are not always isomorphic when seen as partial
orders, but whose algebras of regular open sets on the other hand are all isomorphic.

This reflects a common state of affairs for all complete atomless boolean algebras.

3.3.1 Some remarks on partial orders and their boolean
completions

Summing up, in these first sections, we have proved among other things, the following
results:

Let (Q,≤Q) a pre-order. There exists an unique (up to isomorphism) cba
BQ such that exists a map j : Q→ BQ such that:

1. j preserves order and incompatibility.

2. j[Q] is dense in B+
Q.

3. Q is a separative partial order iff j is an injection.

4. Q is atomless iff BQ is atomless.

5. BQ is the cba given by the regular open sets of many topological
spaces.

6. St(BQ) = {G ⊆ BQ : G is an ultrafilter} with the topology τBQ
generated by the sets {Nb : b ∈ BQ} is such that

RO(St(BQ), τBq) = CLOP(St(BQ), τBq)
∼= RO(Q, τQ)

and (St(BQ) is an extremally disconnected compact Hausdorff topo-
logical space.

7. BQ ∼= C(St(BQ), 2) where the latter is

{f : St(BQ)→ Z2, f is continous}

(with Z2 = {0, 1} endowed of the discrete topology).
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3.4 Completeness and the measure algebra

3.4.1 κ-ompleteness and κ-CC imply completeness

Lemma 3.4.1. Let B a boolean algebra. If B is <κ-cc and B is <κ-complete then B
is complete.

Proof. Let λ be the the least cardinal for which there exists {bα : α < λ} a sequence
of elements of B such that

∨
α<λ bα does not exists aiming for a contradiction. For

each β < λ, let cβ =
∨
α<β bα, it exists since B is <λ-complete. Without loss of

generality, by refining the sequence if necessary, we can assume that the sequence
{cα : α < λ} is not eventually constant and therefore that cα+1 r cα 6= 0B, for every
α < λ. Now, define another sequence {aα : α < λ} as follows:

a0 = c0,

aα = cα+1 r cα if α > 0.

The set {aα : α < λ} turns out to be an antichain in B, which is a contradiction
because λ ≥ κ and B has the <κ-cc.

3.4.2 The algebra of Lebesgue measurable sets modulo null
sets.

Recall that a subset of [0, 1] is Borel if it can be obtained in countably many steps
starting from the basic open intervals applying the operations of countable unions
and taking the complement. We say that a A ⊆ [0, 1] is null (or measure-zero)
if for every ε > 0 there exists a family {Ii : i < ω} of open intervals such that
A ⊆

⋃
{Ii : i < ω} and

∑
i<ω Ii < ε. For every A ⊆ [0, 1], we say A is Lebesgue

measurable if and only if A ∆ X is null, for some Borel set X ⊆ [0, 1]. For every
Lebesgue measurable A ⊆ [0, 1], we denote the Lebesgue measure of A with µ(A)
and we define it as the infimum of

∑
n∈N In, where {Ii : i < ω} is a covering of A

consisting of basic open intervals.

Exercise 3.4.2. LetM([0, 1]) be the boolean algebra of Lebesgue measurable subsets of
[0, 1] with usual boolean operations of union, intersection and taking the complement.
The set Null of all null subsets of [0, 1], is an ideal of M([0, 1]).

We can consider M([0, 1])/Null, the boolean algebra of the Lebesgue measurable
subsets of [0, 1] modulo the ideal of null sets. The elements of M([0, 1])/Null are
equivalence classes of Lebesgue measurable subsets of the unit interval

[X]Null = {Y ⊆ [0, 1] : X ∆ Y is null}.

This is also known as the measure algebra and sometimes it is denoted with MALG.

Proposition 3.4.3. The measure algebra MALG is ccc, i.e., MALG has no uncount-
able antichains.



3.4. COMPLETENESS AND THE MEASURE ALGEBRA 47

Proof. Let A be an antichain of MALG. This means that [A]Null ∩ [B]Null ∈ Null i.e.
that µ(A ∩B) = 0 for all [A]Null, [B]Null ∈ A. For every n ∈ ω, let

An = {[X]Null ∈ A : µ(X) ≥ 1/n}.

We claim that | An | ≤ n. For, if | An | > n and [X1]Null, . . . , [Xn+1]Null ∈ An, then

µ(
n+1⋃
j=1

Xj) > 1,

though
⋃
j=1,...,n+1 Xj ⊆ [0, 1] which has measure 1, a contradiction. So, A =

⋃
n<ωAn

is a countable union of finite sets which implies that A is countable.

Proposition 3.4.4. The measure algebra MALG is countably complete, i.e. if
{An : n ∈ ω} ⊆ MALG,

∨
n∈ω An exists in MALG.

Proof. Let for each n, An = [Bn]Null for some measurable set Bn ⊆ [0, 1]. Check that
[
⋃
n∈ω Bn]Null is in MALG and is an exact upper bound of {An : n ∈ ω}.

Proposition 3.4.5. The measure algebra MALG is atomless.

Proof. It suffices to show that if µ(A) > 0, then A can be split in two pieces
of positive measure. Assume not and build by induction sets An and intervals
In = [in/2

n, in + 1/2n] such that µ(An) = µ(A) and An = A ∩ [in/2
n, in + 1/2n] as

follows:

� A0 = A, i0 = 0, hence I0 = [0, 1].

� Given An and In = [in/2
n, in + 1/2n], let j = 2in + 1. Then An = (A ∩

[in/2
n, j/2n+1)]) ∪ (A ∩ [j/2n+1, in + 1/2n]) with

µ(A ∩ [in/2
n, j/2n+1)] ∩ (A ∩ [j/2n+1, in + 1/2n]) = µ(

{
j/2n+2

}
) = 0.

Hence by assumption on A either µ(A) = µ(A ∩ [in/2
n, j/2n+1)]) or µ(A) =

µ(A ∩ [j/2n+1, in + 1/2n]). We let in+1 = in and In+1 = [in/2
n, j/2n+1)] if the

first case occurs, and in+1 = j and In+1 = [j/2n+1, in + 1/2n)] if the second
case occurs. We let An+1 = An ∩ In+1.

We obtain that µ(An) = µ(A) for all n, and that
⋂
n∈NAn ⊆ {x} for a unique point

x given by the intersection of all intervals In. By the countable completeness of µ
we get that

0 = µ({x}) ≥ µ(
⋂
n∈N

An) = inf
n∈N

(µ(An)) = µ(A) > 0,

a contradiction. Hence A can be split in two pieces of positive measure, concluding
the proof.

Corollary 3.4.6. The measure algebra is complete, atomless, and CCC.
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Chapter 4

Partial orders

In this chapter we analyze certain combinatorial properties of partial-orders; in
particular we focus on the one hand on the relations existing between a partial-order
and its boolean completion, and on the other hand on the quasi-order introduced by
Cohen to obtain the consistency of the failure of CH by means of forcing, and we
outline the key combinatorial features used to prove this result. The material of this
chapter overlaps with some parts of [7, Chapter III] or [6, Chapter II].

4.1 Basic definitions

A quasi-order, also called pre-order or qo, is a set P equipped with a reflexive and
transitive binary relation denoted by ≤P . An antisymmetric qo is a partial-order, or
even just po. Every qo has an associated strict relation denoted by <P and defined
by x <P y if and only if x ≤P y and y 6≤P x.

Driving examples of the kind of partial-orders we will focus on are given by
(τ \ {∅} ,⊆), where τ is a topology on some space X with no isolated points.

Exercise 4.1.1. Let (X, τ) be a topological space. Show that (τ \ {∅} ,⊆) is a partial
order.

Exercise 4.1.2. Let τ be the euclidean topology on R. Let for A,B ∈ τ A ⊆∗ B if
A ∩B is a dense subset of A. Show that (τ \ {∅} ,⊆∗) is a qo but not a po. (HINT:
the transitive and reflexive property of ⊆∗ are basic topological facts about density.
To see that ⊆∗ is not anti-symmetric consider an open interval I, and the same
interval I without a point).

Remark that if P is a partial order then the strict relation <P is just ≤P \∆P ,
where ∆P stands for the diagonal in P 2. Remark also that this is far from being true
in any qo, since for instance the total relation P 2 on P is a qo.

In a clear context we write ≤ instead of ≤P .

When x ≤ y holds we say that x is below y. When x is either below or above y,
we say that x and y are comparable. An order (P,≤) is total or linear when any two
elements are comparable.

Let (P,≤) be a qo.

49
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We say that two elements x, y in P are compatible and we write x||y if there is
z ∈ P such that both z ≤ x and z ≤ y hold. Otherwise x and y are incompatible,
which is denoted by x ⊥ y.

Exercise 4.1.3. Following the notation of Exercise 4.1.2, show that A,B ∈ τ \ {∅}
are compatible for ⊆∗ if and only if A ∩B is non-empty.

A chain of a quasi-order (P,≤) is a subset of P which is linearly ordered by ≤.
An antichain of (P,≤) is a subset of P consisting of incompatible elements.

A subset D of P is dense in P if for all x in P there is some y in D below x, it is
predense if its downward closure

↓ D = {q : ∃x ∈ D, q ≤ x}

is dense, it is a maximal antichain if it is a predense antichain.

Exercise 4.1.4. Let τ be the euclidean topology on R. Following the notation of
Exercise 4.1.2, show that:

� The intervals with rational end-points form a dense subset both for (τ \{∅} ,⊆)
and for (τ \ {∅} ,⊆∗).

� The set {(q; q + 1/n) : n ∈ [1; 100] ∩ N, q ∈ Q} is predense but not dense both
for (τ \ {∅} ,⊆) and for (τ \ {∅} ,⊆∗).

� The set {(n;n+ 1) : n ∈ Z} is a maximal antichain both in (τ \ {∅} ,⊆) and
for (τ \ {∅} ,⊆∗).

� Show that any antichain of (τ \ {∅} ,⊆) or of (τ \ {∅} ,⊆∗) must be countable
(HINT: an antichain A for both orders consists of pairwise disjoint non-empty
sets; by the first item any element of A must contain an interval with rational
end-points; if A 6= B ∈ A can they contain the same interval with rational
end-points? how many such intervals there are?).

Exercise 4.1.5. Let (X, τ) be a topological space. Show that any base for τ is a dense
subset of (τ \ {∅} ,v).

The following remark will play a crucial role in many of the arguments of these
notes:

Fact 4.1.6. Let (X, τ) be a topological space. Then:

� D ⊂ X is dense and open for τ if and only if σD = {O ∈ τ : O ⊆ D} is a
dense and open subset of the quasi-order (τ \ {∅},⊆).

� σ ⊆ τ \ {∅} is predense in the quasi-order (τ \ {∅},⊆) if and only if ∪σ = Dσ

is an open dense subset of X with respect to the topology τ .

We leave the proof as an exercise for the reader.
We say that (P,≤) is separative if for all x and y in P , if x is not below y then

there is some z below x that is incompatible with y. Formally,

∀x ∈ P ∀y ∈ P ( x 6≤ y → ∃z ≤ x(z ⊥ y)) .
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Exercise 4.1.7. Following the notation of Exercise 4.1.2, show that neither (τ \{∅} ,⊆)
nor (τ \ {∅} ,⊆∗) are separative.

(P,≤) is atomless if it does not have minimal elements in the following strong
sense: given any p in P there are elements q ⊥ r of P strictly below p.

An atom of a quasi order (P,≤) is an element p ∈ P such that any two q, r
refining p are compatible.

Exercise 4.1.8. Following the notation of Exercise 4.1.2, show that (τ \ {∅} ,⊆) and
(τ \ {∅} ,⊆∗) are atomless.

Exercise 4.1.9. Following the notation of Exercise 4.1.2, let σ be the family of open
sets of τ which have non-empty intersection with (0; 1)∪ {2}. Show that the interval
(1; 3) is an atom of (σ \ {∅} ,⊆) and (σ \ {∅} ,⊆∗).
Exercise 4.1.10. Let (X, τ) be a Hausdorff topological space. Show that a ∈ X is an
isolated point if and only if {a} is an atom of (τ \ {∅} ,⊆).

Exercise 4.1.11. Let 2<ω be the set of finite sequences of 0s and 1s, more precisely:

2<ω =
⋃
n∈ω

2n

where 2n is the set of functions with domain n and range 2. Let s ≤ t if t ⊆ s, that is
if t is an initial segment of s. Then (2<ω,≤) is a separative and atomless quasi-order.
(HINT: First prove that s ⊥ t iff s ∪ t is not a function and s||t iff s ∪ t = s or
s ∪ t = t).

It can be seen that the quasi-orders given in examples 4.1.11, 4.1.2 are quite
similar: they give rise to isomorphic boolean completions, (see Theorem 3.3.5 and
Remark 3.3.10).

Fact 4.1.12. Assume a be a minimal element of a quasi-order (P,≤), and D ⊆ P
be dense. Then a ∈ P .

Proof. Since D is dense, D ∩ (↓ {a}) 6= ∅. But a is a minimal element of P , hence
{a} =↓ {a} ⊆ D.

Fact 4.1.13. Assume D ⊆ E ⊆ F with (F,≤F ) a quasi-order. Assume D is a dense
subset of the quasi-order (E,≤F ), and E is a dense subset of the quasi-order (F,≤F ).
Then D is a dense subset of the quasi-order (F,≤F ). I.e the property of being dense
is transitive.

Proof. Exercise for the reader.

Zorn’s Lemma
Assume (P,≤) is a pre order and A is a subset of P . p ∈ P is an upper bound

for A if p ≥ a for all a ∈ A. p is an exact upper bound for A or a supremum of A
it is an upper bound for A and q ≥ p for all upper bounds q for A. Exchanging ≤
with ≥ one obtains the notions of lower bound and exact lower bound or infimum.

p ∈ A is a maximal element for A if it is an upper bound for A. Dually p is a
minimal element for A if it is a lower bound for A.

Da
spostare-eliminare –
M

We recall the following equivalent of the axiom of choice:
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Definition 4.1.14 (Zorn’s lemma). Let X be a non-empty set. Assume A ⊆ P(X)
is non-empty and such that all chains in the quasi-order (A,⊆) have an upper bound.
Then A admits a maximal element.

– M

4.1.1 The order topology

A quasi-order is equipped with a canonical topological structure. Let (P,≤) be a
quasi-order. For each p ∈ P we let:

↓ p :=↓ {p} = {q ∈ P : q ≤ p}.

The sets ↓ p form a semi-basis for a topology τP on P , which we call the order
topology. We remark the following:

� The open sets of P in this topology are the downward closed subsets of P with
respect to the order ≤ (dually it is easily checked that the closed sets in τ cP are
exactly the upward closed subsets of P ).

� For any p ∈ P , ↓ p is the smallest open set to which p belongs.

� A subset D of P is dense in the sense of the order iff it is dense in P with
respect to the order topology.

� The family of open sets of this order topology is closed under arbitrary inter-
sections, since the family of downward closed subsets of P has this property. In
particular the order topologies are always complete and distributive sublattices
of P(P ) (see Section 2.10 for a definition of complete and distributive lattice).

Remark 4.1.15. This topology is not to be confused with the one commonly associated
to a linear order. For example the family of open sets for the order topology induced
by the linear order (R, <) is given by the intervals of the form (−∞, a) or (−∞, a]
as a ranges in R ∪ {+∞,−∞}, this topology is clearly not the euclidean topology
on R, which is the one usually associated to the canonical linear order of R. The
order topology we introduced corresponds to the Alexandrov topology on a quasi
order, when reversing the order on (P,≤) (i.e. we consider as open sets what are the
closed sets for the Alexandrov topology). In these notes we are interested in order
topologies for orders which are not linear. For any quasi-order (P,≤) containing
p 6= q with p ≤ q the induced order topology is not Hausdorff: p ∈ U for any open
neighborhood of q, since p ∈ Nq.

4.2 Filters, antichains, and predense sets on quasi-

orders

Notation 4.2.1. Let (P,≤) be a quasi-order and X ⊆ P .
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� X is dense if it is dense in the order topology on P , i.e. if and only if for all
p ∈ P there exists q ∈ X q ≤ p.

� X is open if it is open in the order topology on P , i.e. if it is downward closed.

� X is predense if ↓ X is a dense open set of P in the order topology.

� X is a maximal antichain if it is a pre-dense antichain.

� X is dense below p ∈ P if X ∩ P � p is a dense subset of the quasi-order P � p.

� X is predense below p ∈ P if for all q ≤ p there is r ∈ X compatible with q, i.e.
if ↓ X is dense below p.

Exercise 4.2.2. Assume B is a complete boolean algebra. Then:

� X ⊆ B+ is predense in (B+,≤B) if and only if
∨
X = 1B. (HINT: If not

a = ¬
∨
X > 0B and b ∧ a = 0B for all b ∈↓ X, i.e. ↓ X is not dense in B+).

� X is predense below b ∈ B+ if and only if ↓ X∩ ↓ b is a dense subset of ↓ b if
and only if b =

∨
B {↓}X∩ ↓ b.

� If D ⊆ B+ is dense, there exists A ⊆ D maximal antichain of B+. (HINT:
Apply Zorn’s Lemma to the antichains contained in D ordered by inclusion, a
maximal element of this quasi-order is a maximal antichain A ⊆ D).

Definition 4.2.3. Let (P,≤P ), (Q,≤Q) be quasi orders. A map i : P → Q between
quasi-orders is:

� a morphism if it preserves the order relation,

� an embedding if it preserves the order and the incompatibility relations,

� a complete embedding if it maps predense subsets of P in predense subsets of
Q.

Remark that an embedding need not be injective, examples of non-injective
complete embeddings will be given later on (cfr. for example Remark 3.3.10).

Exercise 4.2.4. Consider the space 2ω endowed with the product topology τ . Let
for s ∈ 2<ω Ns = {f ∈ 2ω : s ⊆ f}. Show that the map s 7→ Ns is an embedding
of (2<ω,≤) into (τ \ {∅} ,⊆) with a dense image (HINT: the map s 7→ Ns is order
reversing and preserve incompatibility, hence it is an embedding of partial orders.
Prove that {Ns : s ∈ 2<ω} is a base for τ).

Definition 4.2.5. Let (P,≤) be a quasi-order.

� I is an ideal on P if it is a downward closed subset of P such that a, b ∈ I
entail that for some c ∈ I, a, b ≤ c. Dually a filter G on P is an upward closed
subset of P such that any two elements of G are compatible, otherwise said:

1. for all p, q ∈ G, there is r ∈ G(r ≤ p, q).
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2. for all p ∈ G and q ≥ p, q ∈ G.

� A prefilter on P is a subset H of P such that

↑ H = {q : ∃p ∈ H p ≤ q}

is a filter, equivalently a prefilter H is a subset of P such that any of its finite
subset has a lower bound in1 H.

Exercise 4.2.6. Recall that for s ∈ 2<ω Ns = {f ∈ 2ω : s ⊇ f}.

� Show that if G is an ultrafilter on RO(2ω), then {s : Ns ∈ G} is a filter on
(2<ω,⊇).

� Conversely for any f ∈ 2ω, show that Gf = {Ns : s ⊆ f} is a prefilter on the
boolean algebra CLOP(2ω) whose upward closure in CLOP(2ω) is a ultrafilter
in St(CLOP(2ω));

� Show also that for any f ∈ 2ω the upward closure in RO(2ω) of Gf is just a
filter on the boolean algebra RO(2ω) (HINT: to show that Gf does not generate
a ultrafilter on RO(2ω) look at Fact 4.3.3 to argue that Even and Odd are
regular open set not in ↑ Gc0 , where c0 is the constant sequence of 0).

Proposition 4.2.7. Let P be a quasi-order. Let G be a filter on P and X ⊆ P .
Then

G ∩X 6= ∅ ⇔ G∩ ↓ X 6= ∅.

Proof. if r ∈ G∩ ↓ X, then ∃q ≥ r such that q ∈ X. So, since G is a filter,
q ∈ G ∩X.

Definition 4.2.8. Let (P,≤) be a quasi-order. Let F = {Di : i ∈ I} be a family of
subsets of P . Let G be a filter. G is F -generic if G ∩Di 6= ∅, for all i ∈ I.

The following is a useful equivalent of Baire’s category theorem:

Lemma 4.2.9 (Generic filter Lemma). Let (P,≤) be a quasi-order and F = {Di :
i ∈ ω} be a family of predense subsets of P . Then for every p ∈ P there exists a
filter G on P F-generic with p ∈ G.

Proof. Using AC and recursion on ω, choose pn ∈ P for n ∈ ω so that p0 = p,
pn+1 ≤ pn and pn+1 ∈↓ Dn. Let

G =↑ {pn : n ∈ ω}.

G is upward closed by definition. We check now it is a filter. Let r0, r1 ∈ G and let
mi such that ri ≥ pmi , for i = 0, 1. Then ri ≥ pn for all n ≥ m0,m1 and i = 0, 1.

1The notions of filter, ideal, prefilter generalize to quasi-orders the corresponding notions
introduced just for boolean algebras.

Actually the notion of prefilter we introduced for quasi orders is slightly stronger than the notion
of prefilter on a boolean algebra: if B is a boolean algebra and H is a prefilter for the boolean
algebra B, it might not be a prefilter for the quasi-order (B+,≤), since it might not contain lower
bounds for its finite subsets, but just have the property that its finite subsets have positive meet.
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Corollary 4.2.10 (Baire’s category Theorem). Assume (X, τ) is a compact Hausdorff space. Then
the intersection of any countable family of dense open subsets is dense.

Proof. Let {Dn : n ∈ N} be a countable family of dense open subsets of X. Let A be an open
non-empty subset of X, we must find a point x ∈ A ∩

⋂
n∈NDn.

We use the following property of compact Hausdorff spaces (normality): any non empty open
set O admits an open subset B such that Cl(B) ⊆ O.

So fix B non-empty and open such that Cl(B) ⊆ A. Let σ be the restriction of τ to Cl(B) so
that (Cl(B), σ) is also a compact Hausdorff space. Notice that En = Dn ∩B is a dense open subset
of Cl(B) for all n ∈ N. Consider now the quasi-order (σ \ {∅} ,⊆) and the sets

Fn = {O ∈ σ \ {∅} : Cl(O) ⊆ En}

Claim 4.2.10.1. Fn is open dense in (σ \ {∅} ,⊆).

Proof. Clearly Fn is open. Let C ∈ σ be open non-empty. Hence En ∩ C is an open non-empty
subset of C. Since (Cl(B), σ) is compact Hausdorff, there is U ∈ σ \ {∅} such that Cl(U) ⊆ En ∩ C.
Then U ∈ Fn refines C. Hence Fn is dense since C was chosen arbitrarily in σ \ {∅}.

Now let G be a filter on (σ \ {∅} ,⊆) such that G ∩ Fn 6= ∅ for all n ∈ N, which exists by
Lemma 4.2.9. Notice that each Bn ∈ G ∩ Fn is such that Cl(Bn) ⊆ Cl(B) ∩En ⊆ A ∩Dn. Notice
also that the family {Cl(Bn) : n ∈ N} has the finite intersection property, since any finite subset of
this family Cl(Bi1) . . .Cl(Bik) is such that

Cl(Bi1) ∩ · · · ∩ Cl(Bik) ⊇ Bi1 ∩ · · · ∩Bik ⊇ U 6= ∅

for some U ∈ G, since G is a filter and Bi1 , . . . Bik ∈ G. Since Cl(B) is compact,
⋂
{Cl(Bn) : n ∈ N}

is non-empty. Any point in this intersection belongs to A ∩
⋂
n∈NDn.

The two exercises below show that the generic filter Lemma is non-trivial only if
we are considering atomless quasi-orders. We will see in Chapter 6 that the forcing
method invented by Cohen stems from a careful analysis of the notion of generic
filter.

The following exercises show that atoms of preorders give rise to trivial generic
filters.

Exercise 4.2.11. Let P be a preorder and a an atom of P . Then Ga =↑ {a} is a
D-generic filter, where D is the collection of dense subsets of P . (HINT: An atom of
P belongs to all dense subsets of P ).

The following exercise outlines in more details the relations existing between
atoms of a boolean algebra and the notion of genericity.

Exercise 4.2.12. Assume C is a boolean algebra. Then St(C) \ {G} is open dense
for any G ∈ St(C) which is a non-principal ultrafilter (i.e. such that a /∈ G for any
a atom of St(C)). (HINT: recall (or prove) that G is a non-principal ultrafilter if
and only if G is not an isolated point of St(C), moreover any non-isolated point of a
Hausdorff topological space has a complement which is open dense in St(C)).

Show the following:

1. Assume C is atomless, then the intersection of all dense open subsets of St(C)
is empty (HINT: already the intersection of

{St(C) \ {G} : G ∈ St(C)}

is empty).
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2. If a ∈ C is an atom, then Ga = {b ∈ B : a ≤ b} is a ultrafilter in St(C) meeting
all the dense open subsets of St(C).

We now come to a basic application of the generic filter Lemma which is at the
heart of Cohen’s forcing method.

Exercise 4.2.13. Show that the following sets are dense open in 2<ω.

� For f ∈ 2ω, Df = {s ∈ 2<ω : s ⊥ f},

� En = {s ∈ 2<ω : n ∈ dom(s)}.

Prove that there is no filter G on 2<ω which is {Df : f ∈ 2ω} ∪ {En : n ∈ ω}.
(HINT: Assume towards a contradiction that there exists a filter G such that

G ∩ Df 6= ∅ for every f ∈ 2ω and G ∩ En 6= ∅ for every n ∈ ω. Let
⋃
{s : s ∈

G} = g ∈ 2ω. Then G ∩Dg 6= ∅ and so there should be t ∈ G such that t ⊥ g, i.e.
∃n(t(n) 6= g(n)). But

G 3 t ⊆ g =
⋃

G,

a contradiction.)

We can even show that certain quasi-orders have a family of ℵ1-many dense sets
which cannot be met in a filter:

Fact 4.2.14. Consider the partial order ((ω1)
<ω;⊇) ordered by reverse inclusion.

There exists a family {Dα : α < ω1} of dense sets such that for every filter G ⊆ ω<ω1

there exists α such that G ∩Dα = ∅.

Proof. Set

Bα ={s ∈ (ω1)<ω : ∃n s(n) = α}
En ={s ∈ (ω1)<ω : |s| ≥ n}.

For all α and n, Bα and En are open by definition, let us see that they are dense.
Take s ∈ (ω1)

<ω. If there exists n < |s| such that s(n) = α then s ∈ Bα, otherwise
saα = s ∪ {(|s|, α)} ∈ Bα. Hence Bα is dense. We leave to the reader the proof that
En is dense for every n.

Assume now that there exists a filter G such that G ∩Bα 6= ∅ for every α ∈ ω1

and G ∩ En 6= ∅ for every n ∈ ω, then
⋃
G : ω → ω1 is a surjection, a contradiction.

So the family {Bα : α < ω1} ∪ {En : n ∈ ω} is the one we were looking for.

At this point we can already bring forward something that we will formalize in
the last chapter of these notes. Let M be a transitive countable model of ZFC and
assume that P ∈ M is atomless and separative. It can be seen that the family of
dense sets of P is uncountable. On the other hand there are only countably many
dense sets of P which can belong to M . The generic filter Lemma guarantees that
there exists a filter G that intersects all the dense sets of P which are in M .

Now observe the following:

Fact 4.2.15. Assume M is a countable transitive model of ZFC, P ∈M is atomless
and separative and G is an M -generic filter, i.e. G meets all the dense subsets of P
which belong to M . Then G 6∈M .
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Proof. It is always the case that P \G is an open dense subset of P whenever G is
a filter on P and P is atomless and separative (Given any p ∈ P find r, q ≤ p and
incompatible, then at least one between r and q is not in G). Thus G ∈M implies
P \G ∈M . However G ∩ (P \G) = ∅, thus G cannot be M -generic.

Hence whenever M is a countable transitive model of ZFC, P ∈M is atomless
and separative, and G is an M -generic filter, we can define

M [G] =
⋂
{N ⊇M : N is transitive ∧ N � ZFC ∧ G ∈ N}.

Our arguments show already that M [G] strictly contains M (since G ∈M [G] \M),
provided that there is some transitive set N ⊇ M ∪ {G} which is a model of ZFC.
We will further show that M [G] is itself a model of ZFC and that (depending on
the choice of the P ∈ M for which G is M -generic) we can define M [G] so that it
satisfies CH or its negation by carefully choosing P .

4.3 The quasi-orders Fn(X, Y )

Definition 4.3.1. Given sets X, Y and a cardinal κ, let Fn(X, Y, κ) be the quasi-
order of functions with domain a subset of X of size less than κ and ranging in Y .
The order on Fn(X, Y, κ) is given by the reverse inclusion.

We write simply Fn(X, Y ) instead of Fn(X, Y, ω) and for any p ∈ Fn(X, Y ), we
put

↓ p = {f ∈ Y X : p ⊂ f}.
So 2<ω is the set of functions in Fn(ω, 2) whose domain is a natural number.

Remark 4.3.2.

1. The order (2<ω,⊆) is a dense suborder of (Fn(ω, 2),⊆), in particular they
have the same boolean completion, which can be represented as RO(2ω) the
family of regular open sets in 2ω with the product topology. The map s 7→
Ns = {f ∈ 2ω : s ⊆ f} implements an order and incompatibility preserving
embedding of Fn(ω, 2) into RO(2ω) with a dense image, since the family

{Ns : s ∈ 2<ω}

forms a basis of clopen sets (and thus regular open) for the product topology on
2ω. We leave to the reader to check that this map is order and incompatibility
preserving.

2. If Y is finite, the space Y X endowed with the product topology is a compact
0-dimensional Hausdorff space with no isolated points, in particular any clopen
set in 2X is a finite union of sets of the the form ↓ p for some p ∈ Fn(X, 2).
For any p ∈ Fn(X, 2), we can write ↓ p as a closed set:

Np =
⋃
{2X \Nt | t 6= p, dom(t) = dom(p)},

since there are only finitely many t ranging in 2 with the same domain as p.

The compact Hausdorff space 2ω endowed with the product topology is also
known in the literature as the Cantor space.
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3. The family of clopen sets in the product topology on 2X is a boolean algebra
with the standard set-theoretic operations and the sets ↓ p as p ranges in
Fn(X, 2) form a dense subset of the positive elements of this boolean algebra.
Its boolean completion is the space of regular open sets of 2X with the product
topology.

Fact 4.3.3. Some regular open sets of 2ω are not closed.

Proof. A counterexample is given by Odd and Even, where Odd (resp.Even) is the
set of sequences in 2ω that differ from 0ω and start with an odd (resp. even) number
of zeros.

These two sets are open, disjoint and their closures intersect only in 0ω.
In particular, 0ω is the unique point in the closure of Odd and Even such that

no open set containing it has a dense intersection with Odd or a dense intersection
with Even. While any element of Odd (resp. Even) has a clopen neighboorhood
fully contained in Odd (resp. Even). This means that Odd and Even are regular
and open, but they are not closed.

Exercise 4.3.4.

� The map

i : 2<ω −→ 2ω

s 7−→ sa1a0ω

is continuous, injective and has a dense image in the Cantor space.

� The map

i∗ : RO(2<ω) −→ RO(2ω)

A 7−→
⋃
{Ns | s ∈ A}.

is an isomorphism of complete boolean algebras.

In particular, RO(2ω) is another possible representation of the boolean completion
of the quasi-orders 2<ω, Fn(ω, 2) and as a boolean algebra RO(2ω) is a proper
superalgebra of the boolean algebra given by the clopen subsets of 2ω. The positive
elements of the latter however form a dense suborder of RO(2ω)+.

The latter observation outlines a distinction between 2ω and the Stone space of the Boolean
completion of the quasi-order 2<ω, a distinction which is common to the Stone spaces of a Boolean
algebra and the Stone space of its boolean completion. We spell out the details in the following
observation:

Remark 4.3.5. Let B = RO(2ω) be the boolean completion of 2<ω and St(B) its associated Stone
space. Then St(B) is a 0-dimensional compact Haussdorff space, and there is a natural projection

π : St(B)→ 2ω

G 7→ fG =
⋃
{s ∈ 2<ω : Ns ∈ G}

This projection is:

� Continuous closed and open, since Ns ∈ G iff s ⊂ fG for all s ∈ 2<ω.
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� Surjective: given f ∈ 2ω, consider an ultrafilter G that contains Ns for every s ⊂ f ; then
π(G) = f .

� However π is not injective: for example there are G and H ultrafilters in St(B) such that
π(G) = π(H) = 0ω, but Odd ∈ G, Even ∈ H.

This occurs since B can be identified with the family of regular open sets of 2ω and St(B) is a
Stone space whose clopen sets overlap with its regular open sets, while we already remarked that
the clopen subsets of 2ω form a strictly proper subalgebra of the regular open subsets of 2ω.

4.3.1 The quasi-order Fn(ω2 × ω, 2)

Fn(ω2 × ω, 2) = {s : s : ω2 × ω → 2 ∧ dom(s) is finite}.

We can naturally identify

(2ω)ω2 = {f : dom(f) = ω2 ∧ ∀i ∈ dom(f)(f(i) ∈ 2ω)}

with the space 2ω2×ω. With this identification its product topology is generated
by the family {Ns : s ∈ Fn(ω2 × ω, 2)}, where in this case we use this natural
identification to let

Ns = {f ∈ (2ω)ω2 : ∀(α, n) ∈ dom(s) f(α)(n) = s(α, n)}.

Moreover the following holds:

Lemma 4.3.6. The map s 7→ Ns defines a dense embedding of the quasi-order
Fn(ω2 × ω, 2) into RO(2ω2×ω). In particular RO(Fn(ω2 × ω, 2)) and RO(2ω2×ω) are
isomorphic complete boolean algeberas.

Proof. Notice that the family {Ns : s ∈ Fn(ω2 × ω, 2)} is a base for the product
topology on 2ω2×ω consisting of clopen (and thus also regular open) sets.

In particular this gives that the target of the map is dense. It is an easy exercise
to check that the map is also order and incompatibility preserving.

We define the following subsets of RO(2ω2×ω):

� Dn,α = {Ns : s ∈ Fn(ω2 × ω, 2) (α, n) ∈ dom(s)};

� Eα,β = {Ns : s ∈ Fn(ω2 × ω, 2) ∃n s(α, n) 6= s(β, n)}.

Let D be the family

{Dn,α : n ∈ ω, α ∈ ω2} ∪ {Eα,β : α 6= β ∈ ω2}.

Assume that we could find a filter G which is D-generic, then, letting gα =⋃
{〈n, s(α, n)〉 : s ∈ G, n ∈ ω}, we would have that {gα : α < ω2} are different

elements of 2ω, this would entail the failure of CH.

Exercise 4.3.7. Show that {Ns : s ∈ Fn(ω2 × ω, 2)} is a dense subset of RO(2ω2×ω)
and that the map s 7→ Ns is injective and order and incompatibility preserving.

Show also that Eα,β and Dn,α are dense in RO(2ω2×ω) for all α 6= β < ω2 and
n < ω.
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4.4 Quasi-orders with the countable chain condi-

tion

Definition 4.4.1. Let (P,≤) be a quasi-order. P has the countable chain
condition (CCC) if every antichain of P is countable.

Remark 4.4.2. Every countable quasi-order has the CCC.

So, for example, 2<ω has the CCC, while (ω1)<ω does not have it, indeed, the set

{{(0, α)} : α < ω1}

is an uncountable antichain.

We have only defined the CCC for quasi-orders; actually, this definition can be
generalized to topological spaces.

Definition 4.4.3. A topological space has the CCC if the quasi-order (τ \ {∅},⊆)
has the CCC.

Moreover the following holds:

Lemma 4.4.4. Assume P is a quasi-order with the CCC. Then RO(P )+ has the
CCC as well.

Proof. Assume A ⊆ RO(P )+ is an antichain. For each a ∈ A find pa ∈ P such
that i(pa) ≤ a where i : P → RO(P ) is the canonical immersion of P in its
boolean completion. Since i is order and incompatibility preserving {pa : a ∈ A} is
an antichain in P , and thus is countable. Moreover the map a 7→ pa is injective
since a 6= b entails a ∧ b = 0 which gives that pa and pb are incompatible in P . We
conclude that A is countable as well.

Definition 4.4.5. If S is a set of finite sets then it is a ∆-system if there is some
(possibly empty) r such that for any a, b ∈ S, if a 6= b, then a ∩ b = r. r is the root
of the system.

Lemma 4.4.6. (∆-system lemma) Let κ be an uncountable regular cardinal, and
let A be a family of finite sets with |A| = κ. Then there is a B ∈ [A]κ such that B
forms a ∆-system.

Proof. Since cf(κ) = κ > ω and there are only ℵ0 possible |X| for X ∈ A, we may
fix n ∈ ω and D ∈ [A]κ such that |s| = n for all s ∈ D. Now, we prove it by induction
on n.

1. n = 1: Then D is already a ∆-system with empty root.

2. n > 1: For each p ∈ X, let Dp = {X ∈ D : p ∈ X}. There are two cases.

� Case I: |Dp| = κ for some p. Fix p, and let E = {X \ {p} : X ∈ Dp},
which is a family of κ sets of size n− 1. Applying the lemma inductively,
fix C ∈ [E]κ that forms a ∆-System with some root r. Then {Z ∪ {p} :
Z ∈ C} ∈ [D]κ forms a ∆-system with root r ∪ {p}.
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� Case II: |Dp| < κ for all p. Then, for any set S with |S| < κ, {X ∈ D :
X ∩ S 6= ∅} =

⋃
p∈S Dp has size less than κ, since κ is regular; thus, there

is an X ∈ D such that X ∩ S = ∅. Then, by recursion on β, we may
choose Xβ ∈ D for β < κ so that for each β, Xβ ∩

⋃
α<βXα = ∅. But

then {Xβ : β < κ} is a ∆-system with empty root.

The proof is completed.

Corollary 4.4.7. If X ⊆ [ω1]<ω has cardinality ℵ1, then there exists Y ⊆ X, with
|Y | = ω1, such that there exists r ∈ [ω1]<ω such that ∀a, b ∈ Y (a ∩ b = r).

We can now prove the following:

Proposition 4.4.8. For every set X, Fn(X, 2) has the CCC.

First of all remark the following

Fact 4.4.9. Assume f : X → Y is a bijection. Then f̂ : Fn(X, 2)→ Fn(Y, 2) is an
isomorphism of quasi-orders, where f̂(s) is the sequence with domain f [dom(s)] such
that f̂(s)(y) = s ◦ f−1(y) for all y in its domain.

Proof. A useful exercise for the reader.

Proof. In view of the above fact it is enough to show that Fn(κ, 2) has the CCC for
all cardinals κ. If κ ≤ ℵ0 we are done, since Fn(κ, 2) is countable in this case, so
we suppose κ > ω. Take {sα : α < ω1} ⊆ Fn(κ, 2) with sα 6= sβ if α 6= β. We claim
that there are at least two compatible elements in {sα : α < ω1}. First, we find a set
X ⊆ κ such that |X| ≤ ℵ1 and dom(sα) ⊆ X for any α < ω1. Let, for any α < ω1:

dom(sα) = {(βα0 , . . . , βαkα)},

with kα less than ω. Let

X = {βαj : α < ω1 ∧ j ≤ κα}.

Notice that |X| ≤ ℵ1 and dom(sα) ⊆ X for any α < ω1. We have to distinguish two
cases:

1. |X| ≤ ℵ0. We will prove that this case leads to a contradiction. For all
r ∈ [X]<ω, let Zr = {sα : dom(sα) = r}. Obviously Zr ⊆ 2r and |2r| = 2|r| < ω.
Thus ∀r ∈ [X]<ω(|Zr| < ω). We have that

{sα : α < ω1} =
⋃

r∈[X]<ω

Zr.

But |
⋃
r∈[X]<ω Zr| ≤ ℵ0, since the Zr’s are finite and [X]<ω is countable.

However an uncountable set cannot be equal to a countable one, so we reached
a contradiction.
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2. |X| = ℵ1. Let n be such that the set

Z = {α : | dom(sα)| = n}

has cardinality ℵ1. Such an n must exist due to the regularity of ω1. Now, for
all α ∈ Z, consider

sα = {(βα0 , iα0 ), . . . , (βαn−1, i
α
n−1)}.

Define
D = {dom(sα) : α ∈ Z}.

We claim that |D| = ℵ1. To this aim, consider the function ϕ : Z → D,
α 7→ dom(sα). ϕ is a finite to one function, since if dom(sα) = dom(sγ) then

sα = {(β0, i
α
0 ), . . . , (βn−1, i

α
n−1)}

and
sγ = {(β0, i

γ
0), . . . , (βn−1, i

γ
n−1)}.

But (iαj : j < n) and (iβj : j < n) are both sequences in 2n, so there can be at
most 2n-many of them. Now if (iαj : j < n) = (iγj : j < n), then sα = sγ, thus
α = γ.
Thus we can apply the ∆-system lemma to D and we obtain a set B ⊆ D of
size ℵ1 and a root r ∈ [X]<n such that (defining W = ϕ−1[B])

∀α, γ ∈ W (α 6= γ ⇒ dom(sα) ∩ dom(sγ) = r).

Now let tα = sα � r for all α ∈ W . The map α 7→ tα has uncountable domain
and finite range since tα ∈ 2r, so there must exists an uncountable W ′ ⊂ W
and some t ∈ 2r such that tα = t for all α ∈ W ′. In order to complete the
proof, it is sufficient to show that for all α, γ ∈ W ′ sα ∪ sγ is a condition in
Fn(κ, 2), i.e. that it is a function. Now observe that dom(sα) ∩ dom(sγ) = r
and that

sα ∪ sγ = (sα ∪ sγ � r) ∪ (sα ∪ sγ � (κ \ r)).

Notice that for all β 6∈ r at most one among sα and sγ is defined on β, thus
(sα ∪ sγ) � (κ \ r) is a function. Notice also that (sα ∪ sγ) � r = t is a function.
Thus sα ∪ sγ is also a function since (sα ∪ sγ) � r and (sα ∪ sγ) � (κ \ r) are
functions with a disjoint domain, and thus their union is also a function.

Corollary 4.4.10. The boolean algebra RO(2ω2×ω) has the CCC.

Proof. By Lemma 4.4.4, P = Fn(ω2×ω, 2) embeds as a dense suborder of RO(2ω2×ω)
via the map s 7→ Ns. In particular RO(P ) and RO(2ω2×ω) are isomorphic boolean
algebras, by Theorem 3.3.5. We conclude that RO(2ω2×ω) is CCC using Lemma 4.4.4
for RO(P ).



Chapter 5

Boolean Valued Models

This chapter consists of three sections:

1. In the first section we give the formal definition of boolean semantic for any first
order language, and we present the soundness theorem for the semantic for the
language of set theory. The boolean valued semantic selects a given complete
boolean algebra B and assigns to every statement φ a boolean value in B. The
boolean operations will reflect the behavior of the propositional connectives;
it will require more of attention to give a meaning to atomic formulae and to
quantifiers, and we need that B has an high degree of completeness in order
to be able to interpret quantifiers in boolean semantics. The standard Tarski
semantics will be recovered when we choose the boolean algebra {0, 1} as B.

2. The second section carves a bit more into the theory of B-valued models M
and their Tarski quotient M/G induced by an ultrafilter G ∈ St(B). We supply
some guiding examples of such models, among which we analyze the space
of analytic functions over the real numbers Cω(R). We show that this is a
boolean valued model which is not properly behaving, this will lead us to the
key property of fullness.

3. In the third section we state a necessary and sufficient condition (that of being
a full model) on a B-valued model M which gives a complete control on how
truth in M/G is determined by the topological properties of G as a point of
St(B) via a  Loś theorem for full boolean valued models. We also prove a version
of the Forcing theorem relating the boolean value of a formula φ in a B-valued
model M to the topological density of the family of G such that M/G |= φ. We
then provide three interesting distinct examples of full boolean valued models
and obtain that  Loś theorem for ultraproducts

∏
x∈XMx/G of Tarski models

Mx by an ultrafilter G on P(X) is a special application of the  Loś theorem
for full P(X)-valued models. We also introduce Cohen’s forcing relation on a
B-valued model M and compare it to the B-valued semantics for M .
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5.1 Boolean valued models and boolean valued

semantics

In this section we give the formal definition of a boolean valued model for any
first order relational language (i.e. a language containing non function symbols),
and we introduce a sound semantic for these languages. We limit ourselves to
analyze relational languages to avoid some technicalities arising in the semantical
interpretation of function symbols in boolean valued models.

Definition 5.1.1. Let L = {Ri : i ∈ I, cj : j ∈ J} be a language with no function
symbol (a relational language in the sequel) and B a Boolean algebra. A B-valued
model M for L consists of:

1. A non-empty set M . The elements of M are called names.

2. The Boolean value of the equality symbol. That is, a function

M2 −→ B

〈τ, σ〉 7−→ Jτ = σKMB
.

3. The interpretation of symbols in L. That is:

� for each n-ary relation symbol R ∈ L, a function

Mn −→ B

〈τ1, . . . , τn〉 7−→ JR(τ1, . . . , τn)KMB
;

� for each constant symbol c ∈ L, a name cM ∈M .

We require that the following conditions hold:

1. For all τ, σ, π ∈M ,

Jτ = τKMB = 1, (5.1)

Jτ = σKMB = Jσ = τKMB , (5.2)

Jτ = σKMB ∧ Jσ = πKMB ≤ Jτ = πKMB . (5.3)

2. If R ∈ L is an n-ary relation symbol, for all 〈τ1, . . . , τn〉, 〈σ1, . . . , σn〉 ∈Mn,(
n∧
i=1

Jτi = σiK
M
B

)
∧ JR(τ1, . . . , τn)KMB ≤ JR(σ1, . . . , σn)KMB . (5.4)

We define now the semantic of a boolean valued model: assume we have fixed an
L-structure M , its Tarski semantic can be seen as a function that takes a L-statement
ϕ and assigns 1 or 0 to ϕ according to the fact that M � ϕ or M 6� ϕ. We want to
generalize this framework letting this evaluation function be defined on arbitrary
B-valued models while assigning its values inside B. To deal with the semantics of
quantifiers we need to evaluate the formule in RO(B) rather than B, however only
a certain amount of completeness on B and M is needed to assign a correct truth
value to all formulae. We adopt the following strategy to define the semantics of a
boolean valued structure for L:
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� Given 〈M,=M , RM
i : i ∈ I〉 B-valued model for a relational language L = {Ri :

i ∈ I}, we expand L to LM = L ∪ {ca : a ∈ M} adding constant symbols for
all elements of M so that ca is always assigned to a. In such a way we can
interpret in M formulae with constant symbols in the place of free variables.

� FRV(L) denotes the set of free variables for the formulae of the language L,
and any map ν : FRV(L)→M is an assignment.

� Given an assignment ν, a free variable x, and b ∈M , νx/b denotes the assignment
ν ′ such that ν ′(y) = ν(y) for all y 6= x in FRV(L) and such that ν ′(x) = b.

� If ȳ = (y0, . . . , yn−1) is an n-tuple of free variables ν(ȳ) is a short-hand for
(ν(y0), . . . , ν(yn−1)).

� If ā = (a0, . . . , an−1) is an n-tuple of elements of M cā is a short-hand for the
n-tuple of constant symbols of LM (ca0 , . . . , can−1).

Definition 5.1.2. Let M = 〈M,=M , R
M
i : i ∈ I〉 be a B-valued model for the

relational language L = {Ri : i ∈ I}.
We identify B as a dense1 subalgebra of RO(B) and evaluate all formulae of LM

without free variables (but possibly with constant symbols) as follows:

- JR(ca1 , . . . , can)KMRO(B) = RM
i (a1, . . . , an).

- Jϕ ∧ ψKMRO(B) = JϕKMRO(B) ∧RO(B) JψKMB .

- J¬ϕKMB = ¬B JϕKMB .

- Jϕ→ ψKMRO(B) = ¬B JϕKMRO(B) ∨B JψKMRO(B).

- J∃xϕ(x, cā)K
M
RO(B) =

∨
b∈M Jϕ(cb, cā)K

M
RO(B).

- J∀xϕ(x, cā)K
M
RO(B) =

∧
b∈M Jϕ(cb, cā)K

M
RO(B).

If φ(x1, . . . , xn) is a formula of LM with free variables x1, . . . , xn and ν is an assign-

ment, we let ν(φ(x1, . . . , xn)) =
q
φ(cν(x1), . . . , cν(xn))

yM

RO(B)
.

M is a well behaved B-valued model if JφKMRO(B) ∈ B for all LM -sentence φ.

To simplify notation we shall confuse from now on the constant symbol ca ∈ LM
with its intended interpretation a ∈M . When working with well behaved B-valued
models, we write henceforth JφKMB rather than JφKMRO(B). We also feel free to omit
subscripts and superscripts if no confusion on the intended meaning can arise.

Remark 5.1.3. Some comments:

- The definition of J∃xϕ(x, ā)KMRO(B) and J∀xϕ(x, ā)KMRO(B) requires the evaluation
to take values possibly not in B. This motivates the definition of well behaved
boolean valued model.

1E.g. B+ seen as a partial order is a dense subset of RO(B)+, which is the case by Cor. 3.3.8
since (B+,≤) is a separative partial order.
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- Clearly the definitions of Jφ ∨ ψKMB and Jφ→ ψKMB is redundant once we have

defined J¬ϕKMB and Jϕ ∧ ψKMB . Also J∀xϕ(x, ā)KMB is redundant once we have

defined J¬ϕKMB and J∃xϕ(x, ȳ)KMB .

- If B = {0, 1}, the semantic we have just defined is the usual Tarski semantic
for first order logic.

We conclude this section showing that the semantic we just defined is a natural
generalization of Tarski semantic which is sound with respect to first order calculus.

Definition 5.1.4. A statement ϕ in the language L is valid in a boolean valued
model M for L and the boolean algebra B if JϕK = 1B. A theory T is valid in M if
every axiom ϕ ∈ T is valid.

Theorem 5.1.5. (Soundness Theorem) Let L be a relational first order language.
If a L-formula ϕ is provable syntatically by a L-theory T , and T is valid in a B-valued
model M , then ν(ϕ) = 1B for all assignments ν : FRV(L)→M .

To prove the theorem we first need two basic results on boolean algebras:

Exercise 5.1.6. In a boolean algebra B, for any a, b ∈ B:

a ≤ b⇔ ¬a ≥ ¬b.

Exercise 5.1.7. Let B be a boolean algebra and define the operation u→ v = ¬u ∨ v
for u, v ∈ B. Then

u→ v ≥ w ⇔ u ∧ w ≤ v.

We now prove the soundness theorem:

Proof. First of all we have to fix a deductive system for first order calculus. We
choose the following which is taken (with slight modifications) from [9, Section 2.6].
Axioms

1. x = x.

2. ϕ(a)→ ∃xϕ(x).

3. x = y → [ϕ(x)→ ϕ(y)].

Rules

4. ϕ ` ϕ ∨ ψ.

5. ϕ ∨ ϕ ` ϕ.

6. (ϕ ∨ (ψ ∨ χ)) ` ((ϕ ∨ ψ) ∨ χ).

7. ϕ ∨ ψ,¬ϕ ∨ χ ` ψ ∨ χ.

8. ∀x(ϕ(x)→ ψ) ` (∃xϕ(x))→ ψ.
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We first prove that for all assignments ν : FRV→M , and all axioms φ in the above
list ν(φ) = 1B. Regarding the rules, we prove for any rule that

ϕ ` ψ ⇒ JϕK ≤ JψK .

The proof is rather straightforward, we sketch some of its parts:

1. x = x. It follows by the definition of boolean valued model that

Ja = aK = 1B

for all a ∈ M . We thus get that ν(x = x) = 1B for all valuations ν and free
variables x.

2. ϕ(a)→ ∃xϕ(x). We have by definition J∃xϕ(x)K =
∨
b∈M Jϕ(b)K ≥ Jϕ(a)K, so

we conclude using Exercise 5.1.7.

3. x = y → [ϕ(x)→ ϕ(y)]. By Exercise 5.1.7 it is sufficient to show that

Ja = bK ≤ Jϕ(a)↔ ϕ(b)K

or equivalently
Ja = bK ∧ Jϕ(a)K = Ja = bK ∧ Jϕ(b)K

for all a, b ∈M . This is proved by induction on the complexity of ϕ, noticing
that for atomic formulae this follows by the definition of boolean valued model.
Let in what follows

ν = (a1, . . . , ai−1, a, ai+1 . . . , an), ν ′ = (a1, . . . , ai−1, b, ai+1, . . . , an) ∈Mn.

Negation: If φ ≡ ¬ψ, by induction we have

Ja = bK ∧ Jψ(ν)K = Ja = bK ∧ Jψ(ν ′)K

which clearly holds if and only if

Ja = bK ∧ J¬ψ(ν)K = Ja = bK ∧ J¬ψ(ν ′)K .

Conjunction: If φ ≡ ψ ∧ θ we have:

Ja = bK ∧ Jφ(ν)K = (Ja = bK ∧ Jψ(ν)K) ∧ (Ja = bK ∧ Jθ(ν)K) =

(Ja = bK ∧ Jψ(ν ′)K) ∧ (Ja = bK ∧ Jθ(ν ′)K) = Ja = bK ∧ Jφ(ν ′)K

Existential: If φ(x1, . . . , xn) ≡ ∃yψ(y, x1, . . . , xn) we have that:

Ja = bK ∧ Jφ(ν)K =
∨
c∈M

(Jψ(y/c, ν)K ∧ Ja = bK) =

=
∨
c∈M

(Jψ(y/c, ν ′)K ∧ Ja = bK) =

= Jφ(ν ′)K ∧ Ja = bK .
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4. ϕ ` ϕ ∨ ψ. Immediate since u ∨ v ≥ u for all u, v ∈ B.

5. ϕ ∨ ϕ ` ϕ. Immediate since u ∨ u = u for all u ∈ B.

6. (ϕ∨(ψ∨χ)) ` ((ϕ∨ψ)∨χ). Immediate since J(ϕ ∨ (ψ ∨ χ))K = J((ϕ ∨ ψ) ∨ χ)K.

7. ϕ ∨ ψ,¬ϕ ∨ χ ` ψ ∨ χ.

This follows easily form the following exercise on boolean algebras:

Exercise 5.1.8. Show that for all a, b, c in a boolean algebra B

(a ∨ b) ∧ (¬a ∨ c) ≤ b ∨ c.

8. ∀x(ϕ(x)→ ψ) ` (∃xϕ(x))→ ψ.

J∀x(ϕ(x)→ ψ)K = J∀x(¬ϕ(x) ∨ ψ)K =
∧
b∈M

(J¬ϕ(b)K ∨ JψK) =

(using the fact that x is not free in ψ)

= (
∧
b∈M

J¬ϕ(b)K) ∨ JψK = (¬
∨
b∈M

Jϕ(b)K) ∨ JψK = J(∃xϕ(x))→ ψK .

The proof is complete.

Regarding the completeness theorem for the boolean valued semantics, we have
it automatically since (as we already observed) the Tarski models are a subfamily of
the boolean valued models. All in all we have:

Theorem 5.1.9. (Soundess and Completeness) Let L be a relational first order
language. A L-formula ϕ is provable syntatically by a L-theory T if and only if for
all boolean algebras B ν(ϕ) ≥ ν(ψ) for every assignment ν : FRV(L) → M on a
B-valued model M for L and every ψ ∈ T .

5.2 Examples of boolean valued models: boolean

valued extensions of R
We start to introduce the main ideas behind the forcing method making an excursion
in other areas of mathematics and borrowing our language and terminology from
analysis and sheaf theory.

First of all we need to introduce the definition of morphism between B-valued
models:

Definition 5.2.1. Fix a relational language L = {Ri : i ∈ I, cj : j ∈ J}. Let
i : B → C be an homomorphism of boolean algebras. Let M be a well behaved
B-valued model for L with domain M , and N be a well behaved C-valued model for
L with domain N .
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� k : M → N is an i-morphism if for all R ∈ L of arity n and a1, . . . , an ∈M

JR (k(a1), . . . k(an))KNC ≥ i(JR (a1, . . . an)KMB ),

and for all a, b ∈M

Jk(a) = k(b)KNC ≥ i(Ja = bKMB ),

for all a, b ∈M .

� k : M → N is an i-embedding if all the above inequalities are reinforced to
equalities.

� k is an isomorphism if i is an isomorhism and for all b ∈ N there is a ∈ M
such that

Jk(a) = bKNB = 1B.

Exercise 5.2.2. Show that an Id2-morphism (for Id2 : 2→ 2 the identity map) is a
morphism of Tarski models in the classical sense, and similarly for embeddings, and
isomorphisms.

Consider the dense linear order (R, <). Recall that the theory of dense linear
orders without maximum and minimum admits quantifier elimination, so if we want
to study the first order properties of the models of this theory we need just to look
at the quantifier free formulae. In any case even ignoring this property of the theory
of dense linear orders, focusing on the analysis of the quantifier free formulae which
holds in (R, <) gives an idea of how we can employ boolean valued models to enlarge
the domain of certain given first order structures.

Recall that a function f : R→ R is analytic in R if and only if for every x0 ∈ R

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)n.

Let Cω(R) be the set of all analytic functions over R. Let B = RO(R) the boolean
algebra of regular open sets of the real line. We aim to see Cω(R) as a RO(R)-boolean
valued extension of R which naturally contains R as a substructure. First of all we
need to say what is the boolean value that Cω(R) gives to the formula x < y when
x 7→ f and y 7→ g. A natural answer is the following:

b ∈ B forces that f < g if the set of x ∈ b such that f(x) < g(x) is an
open dense subset of b (recall that b is a regular open subset of R).

For example let f(x) = sin(x) and g(x) = −1 for all x, then R forces that g < f
since the set of points x ∈ R on which f(x) ≤ g(x) is closed and nowhere dense. On
the other hand if f(x) = sin(x) and g(x) = cos(x) we have that f(x) < g(x) if and
only if x ∈ (π/4 + 2k · π, 5 · π/4 + 2kπ) as k ranges in Z. Notice that the above set
is open regular and thus

a =
⋃
k∈Z

(π/4 + 2kπ, 5/4π + 2kπ)
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is the largest regular open subset of R which forces sin(x) < cos(x). Notice that the
complement ¬Ba in B of this set is exactly the set of points on which cos(x) < sin(x)
and that what is left out by a ∪ ¬Ba is the closed nowhere dense set of points in
which f(x) = g(x) which are the extremes of the intervals defining a.

Guided by this example we can now give an interpretation of the forcing relation
and a precise meaning to formulae with parameters in Cω(R) as follows:

� Jf R gK is the largest regular open set a such that the set of x ∈ a on which
f(x) R g(x) is an open dense subset of a for R any relation among <,=.

� Jφ ∧ ψK = JφK ∩ JψK.

� J¬φK = ¬B JφK.

Now we are left to see that R can be copied inside Cω(R). The natural idea is that
R is “represented inside Cω(R)” by the constant functions ca(x) = a for all a ∈ R.
Indeed we can check that aRb holds in R iff Jca R cbK = R for any binary relation R
among <,=. So we get that essentially any of the above relations holds on two real
numbers iff R forces the corresponding relation to hold of the corresponding constant
functions. In particular the map a 7→ ca defines an i-morphism of the 2-valued model
(R, <) in the B-valued model (Cω(R), <B) where i : 2→ B is the unique complete
homomorphism and has to map j 7→ jB for j = 0, 1.

Finally we want to show that this boolean expansion of R does not overlap with
R: a natural way to say this is to find some function which is forced by 1B to be
different from all costant functions. It is easily seen that the sinus function or any
analytic function which is nowhere locally costant has this property. In particular our
RO(R)-boolean expansion Cω(R) of R appears to have added lmany new elements
with respect to R.

This describes the passage from a first order structure M to an associated boolean
valued model MB, which in this case is given by the analytic functions on R. However
there is a disturbing issue of this boolean expansion, i.e. that we are not able to
decide many basic facts, for example is sin(x) < cos(x)? We have already seen that
the boolean value Jsin(x) < cos(x)K and Jsin(x) > cos(x)K are both positive while
Jsin(x) = cos(x)K = 0B. In particular the boolean expansion already carries enough
information to decide whether sin(x) and cos(x) represent different objects, but
is not yet able to decide whether sin(x) < cos(x) or the other way round. If we
choose to restrict our attention to a small intervall like (π/4, 5/4 · π), this interval
will force that sin(x) < cos(x), but it will not yet be able to decide other basic
relations among other functions, for example whether sin(2x) < cos(2x). Making
our interval smaller and smaller we end up “forcing” more and more properties
regarding the mutual relationship between functions in Cω(R). It seems that if we
take a decreasing sequence of intervals {In : n ∈ N} with diameter converging to 0
and such that Cl(In+1) ⊆ In, in the limit the unique point x ∈

⋂
n In will be able

to decide all basic relations among the analytic functions. This is not yet the case
though: for example no open neighborhood of π/4 forces sin(x) < cos(x) and no
open neighborhood of x forces sin(x) > cos(x). So actually in order to be able to
decide all basic relations on the elements of Cω(R) it is not enough to select a point
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and look at the filter of all of its regular open neighborhoods, we really need to select
a ultrafilter on RO(R). In this case, since for all f, g ∈ Cω(R) we have that

Jf < gK ∨ Jf > gK ∨ Jf = gK = 1B,

we will have that any G ∈ St(B) will always be able to decide whether f < g, f = g
or f > g for all f, g ∈ Cω(R). Moreover any such G ∈ St(RO(R)) will always choose
a unique point Gx ∈ R ∪ {±∞} which will be the unique point in⋂

{Cl(A) : A ∈ G}.

Note however that the same point can be associated to incompatible ultrafilters on
RO(R), e.g. let G be a ultrafilter extending the regular open neighborhoods of π/4
with (−∞; π/4) and H extend the same filter of neighborhoods with(π/4; +∞).

5.3 Quotients of boolean models, fullness,  Loś the-

orem

This section explores the notion of quotient of a boolean valued mdoel and characterize
by means of the fullness property the boolean valued modles whose semantics behaves
properly with respect to quotients.

Definition 5.3.1. Let B be a boolean algebra and let L = {Ri : i ∈ I, cj : j ∈ J} be
a relational language where Ri is a mi-ary relation symbol for every i ∈ I and each cj
is a constant symbol. Suppose that M = (M,Ri : i ∈ I, cj : j ∈ J) is a B-model for
L. Let F be a filter on B. The F -quotient M/F = (M/F , Ri/F : i ∈ I, [cMj ]F : j ∈ J)
is defined as follows:

- M/F = {[h]F : h ∈M} where [h]F = {f ∈M : Jf = hK ∈ F};

- Ri/F ([f1]F , . . . , [fmi ]F ) holds if and only if JRi(f1, . . . , fn)K ∈ F for every i ∈ I.

When G is a ultrafilter on B we say that M/G is the Tarski quotient of M by G.

Exercise 5.3.2. Check that the F -quotient of a B-valued model is a well defined
B/F -valued model; hence it is a Tarski model when F is a ultrafilter.

5.3.1 Examples of quotients

The process we described in the previous section is rather flexible and can accomodate
many first order structure defined on the domain R (or even on many other domains,
as we shall see below). For example we could repeat verbatim the same construction
for the structure:

(R,Z, 0, 1,+, ·, <)

to obtain the RO(R)-boolean expansion:

(Cω(R),ZRO(R), c0, c1,+B, ·B, <)
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where + and · are interpreted by the ternary relations of their respective graphs, +B

is the ternary boolean relation

(f, g, h) = Reg({x ∈ R : f(x) + g(x) = h(x)}),

and similarly for ·B. ZB is the predicate assigning to each f ∈ Cω(R) the boolean
value

q
ZRO(R)(f)

y
= Reg({x ∈ R : f � a is locally constant with value in Z for some open a 3 x}).

The latter predicate has either value R or ∅, in any case an open regular subset of R.
Here we use a specific property of analytic functions: an analyitc function is constant
if and only if it is locally constant in some open set of its domain.

We can also check that for all G ∈ St(RO(R))

(Cω(R)/G,ZB/G, [c0]G, [c1]G,+B/G, ·B/G, <B /G)

is also an ordered ring with a distinguished predicate ZB/G.
We let the map iG : R→ Cω(R)/G be defined by a 7→ [ca]G. Then it is not hard

to check that iG is an injective homomorphism of rings which preseves the order
relation and is also such that iG[Z] = ZB/G.

Exercise 5.3.3. Prove in detail all the above facts about the structures

(Cω(R),ZB, 0, 1,+B, ·B, <B).

and

(Cω(R)/G,ZB/GG, [0]G, [1]G,+B/G, ·B/G, <B /G).

More precisely let RO(R) be the complete boolean algebra of regular open subset
of R and show that the map i : R → Cω(R) sending a 7→ ca is an i-embedding of
B-valued models, where i : 2→ B is the unique embedding of 2 into B. Show also that
iG(a) = [a]G defines an injective morphism of ordered rings such that iG[Z] = ZB/G
(HINT: notice that an analytic function is locally constant with value in Z iff it is
everywhere constant with the same value; the left to right inclusion does not require
this property the right to left inclusion does).

Exercise 5.3.4. Let C(R) be the family of continuous real valued functions and B be
the cba given by the regular open sets of R with usual euclidean topology. Show that

(C(R),ZB, 0, 1,+B, ·B, <B).

is a B-valued model (where the definition of the additional predicates are the same
as in the previous exercise but now apply to continuous functions rather than just
analytic functions). Show also that for some (actually any) ultrafilter G on B, iG[Z]
is a proper subset of ZB/G (HINT: for this strict inclusion note that if one chooses
G an ultrafilter which concentrates on

⋃
n∈Z(2n; 2n+ 1) and chooses f to be locally

constant on the interval (2n; 2n+ 1) with value n and a translate of the identity on
the intervals (2n+ 1; 2n+ 2), then [f ]G ∈ ZB/G but f is not in iG[R]).
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5.3.2 Counterexamples

We have no reasons to expect that a formula which is not quantifier free true in a
B-valued model M is also true in M/G, for some G ∈ St(B). In general this is false,
as the following example shows:

Example 5.3.5. Fix the language L = {<,C} consisting of two relation symbol,
where < is binary and C is unary. Let B = RO(R) and consider the B-valued
model for the language L given by M = (Cω(R),=, <B, CB) with the following
interpretation of the atomic formulae:

Jf = gK =Reg({x ∈ R : f(x) = g(x)}),
Jf <B gK =Reg({x ∈ R : f(x) < g(x)}),

JCB(f)K =Reg(
⋃
{U : f �U is constant}).

We leave to the reader to check that (Cω(R),=, <B, CB) is a B-valued model. Now,
fix any f ∈ Cω(R) and look at the formula φ := ∃y (f < y ∧ C(y)).

J∃y (f <B y ∧ CB(y))K =
∨

g∈Cω(R)

Jf <B g ∧ CB(g)K ≥

=
∨
a∈R

Jf <B caK ∧ JCB(ca)K ≥

where ca is the constant function ca(x) = a

=
∨
a∈R

Jf <B caK ≥

≥
∨
n∈Z

Jf < canK ≥ where an = max(f � [n− 1;n]) + 1

≥Reg(
⋃
n∈Z

(n− 1;n)) = R.

Therefore, we have that M |= φ(f) and in particular

M |= ∃y (idR < y ∧ C(y)),

where idR is the identity function x 7→ x.
Now, consider F = {(a; +∞) : a ∈ R} ⊆ RO(R). Since F satisfies the finite
intersection property (that is, F is closed under intersection of finite subsets), we
can extend F to some G ∈ St(RO(R)). Consider the quotient M/G. The identity
function idR has the property that for any a ∈ R

J¬(idR <B ca)K = (a,+∞) ∈ G.

It follows that M/G |= ¬∃y ([idR]G < y ∧ C(y)).

5.3.3  Loś theorem for full boolean valued models

Example 5.3.5 shows that quotients of boolean valued models may not preserve
validity of formulae with quantifiers. To overcome this issue we are led to the
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definition of full boolean valued models as those boolean valued models for which the
above problem does not occur. We show that fullness characterizes the preservation
of satisfiability in any quotient and we give several examples of full boolean valued
models.

Definition 5.3.6. Fix a language L and a boolean algebra B, a well behaved B-
valued model M for L is full if for every formula φ(x, ȳ) and f̄ ∈ M |y| there are
h1, . . . , hk ∈M

q
∃xφ(x, f̄)

yM

B
=

k∨
i=1

Jφ(hi, ā)KMB .

Theorem 5.3.7 ( Loś theorem). Let B be a boolean algebra. Assume M is a full B-
valued model. For any G ∈ St(B), f1, . . . , fn ∈M , and for all formulae φ(f1, . . . , fn)

M/G |= φ([f1]G, . . . , [fn]G) iff Jφ(f1, . . . , fn)KMB ∈ G.

Proof. By induction on the complexity of φ(f1, . . . , fn).

� If φ(f1, . . . , fn) = R(f1, . . . , fn) for some relational symbol R, then

M/G |= R([f1]G, . . . , [fn]G) iff JR(f1, . . . , fn)KMB ∈ G

by definition.

� If φ(f1, . . . , fn) = ψ(f1, . . . , fn) ∧ χ(f1, . . . , fn), then

M/G |= φ([f1]G, . . . , [fn]G) iff M/G |= ψ([f1]G, . . . , [fn]G), χ([f1]G, . . . , [fn]G)

iff Jψ(f1, . . . , fn)KMB ∈ G and Jχ(f1, . . . , fn)KMB ∈ G
iff Jψ(f1, . . . , fn) ∧ χ(f1, . . . , fn)KMB ∈ G

� If φ(f1, . . . , fn) = ¬ψ(f1, . . . , fn), then

M/G |= φ([f1]G, . . . , [fn]G) iff M/G |= ¬ψ([f1]G, . . . , [fn]G)

iff M/G 6|= ψ([f1], . . . , [fn])

iff Jψ(f1, . . . , fn)KMB /∈ G
iff J¬ψ(f1, . . . , fn)KMB ∈ G

� If φ(f1, . . . , fn) = ∃xψ(x, f1, . . . , fn), then

M/G |= ∃xψ(x, [f1]G, . . . , [fn]G) iff M/G |= ψ([h], [f1]G, . . . , [fn]G)

for some h ∈M
iff Jψ(h, f1, . . . , fn)KMB ∈ G

for some h ∈M
which implies J∃xψ(x, f1 . . . , fn)KMB ∈ G
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The viceversa also holds, by fullness: let h1 . . . , hk ∈M be such that

J∃xψ(x, f1, . . . , fn)KMB =
k∨
i=1

Jφ(hi, f1, . . . , fn)KMB .

Assuming J∃xψ(x, f1, . . . , fn)KMB ∈ G, since G is a ultrafilter, there is some

j ≤ k such that Jφ(hj, f1, . . . , fn)KMB ∈ G. Then by inductive assumptions

M/G |= ψ([hj]G, [f1]G, . . . , [fn]G),

which yields that
M/G |= ∃xψ(x, [f1]G, . . . , [fn]G),

as was to be shown.

5.3.4 Forcing and fullness

The following Lemma outlines a fundamental link between full B-valued models and
the topological properties of St(B).

Lemma 5.3.8 (Forcing lemma I). Let B be a boolean algebra, M be a full B-model,
and G ∈ St(B). Then, for any formula φ the following statements are equivalent:

1. JφK ≥ b.

2. Dφ = {G ∈ St(B) : M/G |= φ} is dense in Nb.

3. Dφ ⊇ Nb.

Proof. 1⇔ 3 This is a straightforward consequence of  Loś’ theorem.

1⇔ 2 Fix some formula φ. Let b ∈ B such that JφK ≥ b, and assume that Dφ is
not dense in Nb, aiming for a contradiction. Then, by our assumption, there
exists some c ∈ B+, c ≤ b such that Nc 6= ∅ and Nc is disjoint from Dφ. Now
for every G ∈ Nc M/G 6|= φ. By  Loś theorem it follows that for all G ∈ Nc,
J¬φK ∈ G and thus J¬φK ∧ c ∈ G. Therefore, we have that

0B < J¬φK ∧ c ≤ J¬φK ∧ b ≤ J¬φK ∧ JφK = 0B,

which is a contradiction.

On the other hand, assume that JφK 6≥ b, that is J¬φK ∧ b > 0. So, let
d = J¬φK ∧ b and look at Nd, which is contained in Nb. Now, observe that if
d ∈ G then also J¬φK ∈ G which implies that M/G |= ¬φ. It follows that for
every G ∈ Nd, M/G |= ¬φ and therefore Dφ ∩Nd = ∅. This proves that Dφ is
not dense in Nb.

According to Lemma 5.3.8, if M is full, to check that a formula φ is valid in M
it suffices to show that it is valid in M/G for densely-many G ∈ St(B).
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Lemma 5.3.9 (Forcing lemma II). Let B be a boolean algebra. Given a well behaved
B-valued model M for L, φ(x0, . . . , xn) a formula of the language L, a0, . . . , an ∈M ,
define:

b 
 φ(a0, . . . , an) (to be read as b forces φ(a0, . . . , an))

iff b ≤ Jφ(a0, . . . , an)K.
Then the following holds:

1. b 
 φ iff the set of G ∈ St(B) such that M/G |= φ is dense in Nb,

2. b 
 φ ∧ ψ iff b 
 φ and b 
 ψ,

3. b 
 ¬φ iff c 6
 φ for any c ≤ b,

4. b 
 φ ∨ ψ iff the set of c ≤ b such that c 
 φ or c 
 ψ is dense below b in B+.

5. b 
 ∃xφ(x) iff the set of c ≤ b such that c 
 φ(σ) for some σ ∈ M is dense
below b.

6. For all G ∈ St(B) and all φ formulae with parameters in M and no free variable,
M/G |= φ if and only if b 
 φ for some b ∈ G.

7. For all φ formulae with parameters in M JφK =
∨
{b : b 
 φ}.

Proof. Left to the reader.

Exercise 5.3.10. Show that a well behaved B-valued model M is full if and only if
the conclusion of  Loś theorem holds for M. (HINT: it is not so trivial; there is a
compactness argument to infer that M/G |= ∃xψ for all G ∈ NJ∃xψK if and only if
there are h1, . . . , hk ∈M such that

NJ∃xψK =
k⋃
i=1

NJψ[hi/x]K.

5.3.5 The mixing property and fullness

Fullness for a boolean valued model M for L is a desirable feature of M but needs
to be checked on the infinitely many formulae of L. It is oftentimes simpler and
convenient to establish a property of the model which implies a strong form of fullness.
The mixing property gives a sufficient condition for having the fullness property
which is, usually, easier to check.

Definition 5.3.11. Let κ be a cardinal, L be a first order language, B a κ-complete
boolean algebra, M a B-valued model for L.

� M satisfies the κ-mixing property if for every antichain A ⊂ B of size at most
κ, and for every subset {τa : a ∈ A} ⊆ M , there exists τ ∈ M such that
a ≤ Jτ = τaK for every a ∈ A.

� M satisfies the < κ-mixing property if it satisfies the λ-mixing property for all
cardinals λ < κ.
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� M satisfies the mixing property if it satisfies the |B|-mixing property.

In [4] models with the < ω-mixing property are called models which admit gluing.
Whether a B-valued model M for some signature L has the mixing property

depends only on the interpretation of the equality symbol by J· = ·KMB .

Proposition 5.3.12. Let B be a complete boolean algebra and let M be a B-
valued model for L. Assume that M satisfies the κ-mixing property for some
κ ≥ min {|B|, |M |}. Then M is full.

Proof. Fix a formula φ(x, y1, . . . , yn) in L and σ1, . . . , σn ∈ M . Fix moreover an
enumeration 〈τi : i ∈ γ〉 of M . Since J∃xφ(x, σ1, . . . , σn)K =

∨
i∈I Jφ(τi, σ1, . . . , σn)K ,

we can refine the family {J(φ(τi, σ1, . . . , σn)K : i ∈ γ} to an antichain {aj : j ∈ J} as
follows: let

J := γ \

{
i ∈ I : Jφ(τi, σ1, . . . , σn)K \

∨
j<i

Jφ(τj, σ1, . . . , σn)K = 0B

}
.

In particular, J is well-ordered with the order induced by γ and we have that
min J = 0. Define

a0 := Jφ(τ0, σ1, . . . , σn)K

and, for J 3 i > 0,

ai := Jφ(τi, σ1, . . . , σn)K \
∨

J3j<i

Jφ(τj, σ1, . . . , σn)K .

If A := {aj : j ∈ J}, it is clear that
∨
A = J∃xφ(x, σ1, . . . , σn)K and |A| ≤ |M |, |B| ≤

κ. Since M satisfies the κ-mixing property, there exists τ ∈M such that

ai ≤ Jτ = τiK

for every i ∈ J . In particular, since ai ≤ Jφ(τi, σ1, . . . , σn)K, we have that

ai = ai ∧ Jτ = τiK ≤ Jφ(τi, σ1, . . . , σn)K ∧ Jτ = τiK ≤ Jφ(τ, σ1, . . . , σn)K

for every i ∈ J . Hence Jφ(τ, σ1, . . . , σn)K ≥
∨
i∈J ai =

∨
A = J∃xφ(x, σ1, . . . , σn)K

and so M is full.

Remark 5.3.13. The result just proven actually shows that the mixing property
implies a strong version of fullness, that is: for every formula φ(x0, x1, . . . , xn) and
for every τ1, . . . , τn ∈M there exists an element τ0 such that∨

σ∈M

Jφ(σ, τ1, . . . , τn)K = Jφ(τ0, τ1, . . . , τn)K .

This is actually the definition of fullness one can find for instance in [5]. It is easy
to see that this property is true in every full model M satisfying the < ω-mixing
property.
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5.4 Examples of boolean valued models with the

mixing property

5.4.1 Example I: spaces of measurable functions

Let

L∞+([0, 1]) = {f : [0, 1]→ R∪{∞} : f is Lebesgue measurable and µ(f−1[{∞}]) = 0}.

Recall that MALG = Bor([0, 1])/NULL is a complete boolean algebra (cfr Corol-
lary 3.4.6). L∞+([0, 1]) is a natural enlargement of L∞([0, 1]), the space of essen-
tially bounded measurable functions (i.e those mesurable f : [0, 1] → R such that
µ({x : |f(x)| > C}) = 0 for some C > 0).

Proposition 5.4.1. (L∞+([0, 1]), <B, CB) is a MALG-valued model for L = {<,C}
with the mixing property.

Proof. Let B = MALG in what follows. Assume {[Xi]NULL : i < ω} is a maximal
antichain (recall that MALG has the CCC).

Let {fi : i ∈ ω} be a countable family of functions in L∞+([0, 1]). W.l.o.g. we
can suppose that {Xi : i ∈ ω} consists of a partition of R in measurable pieces.

Set g =
⋃
n∈ω fn. Then g : [0; 1] → R ∪ {∞} is meaasurable and g−1[{∞}] =⋃

n∈ω f
−1
n [{∞}] has measure 0, hence g ∈ L∞+([0, 1]). Clearly Jg = fnK ≥ [Xn] for

all n ∈ ω.

Exercise 5.4.2. Explain what goes wrong if you try to prove the same for L∞([0, 1])
(HINT: In this case we can only guarantee that g is measurable and g � Xi ∈ L∞(Xi)
but g �

⋃
i∈ωXi may not be essentially bounded in

⋃
i∈ωXi, use the counterexample

to the fullness of Cω(R) replacing Id with the function x 7→ 1/x).

Proposition 5.4.3. (L∞+([0; 1]),+B, ·B, 0, 1) is a MALG-model for the theory of
fields.

Proof. We just prove that (L∞+([0; 1]),+, ·, 0, 1) satisfies the existence of the inverse
for every nonzero element. Let B = MALG for ease of notation. We must show that
J∀x(x 6= 0→ ∃y(x · y = 1))K = 1B. Since

J∀x(x 6= 0→ ∃y(x · y = 1))K =
∧

g∈L∞+([0,1])

J(g 6= 0)→ ∃y(g · y = 1))K ,

it suffices to prove that J(g 6= 0)→ ∃y(g · y = 1))K = 1B for all g ∈ L∞+([0, 1]). Fix
g ∈ L∞+([0, 1]) and define

A0 := {x : g(x) = 0}
A1 := [0, 1] r A0.

Consider the following function

g−1(x) =

{
0 if x ∈ A0,

1
g(x)

otherwise.
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Now, observe that Jg = 0K = [A0]NULL and therefore

Jg = 0 ∨ ∃y(g · y = 1)K =[A0]NULL ∨ J∃y(g · y = 1)K =

=[A0]NULL ∨
∨

h∈L∞+

Jg · h = 1)K ≥

≥[A0]NULL ∨
q
g · g−1 = 1

y
=

=[A0]NULL ∨ [A1]NULL = 1B.

Exercise 5.4.4. (L∞([0, 1]),+MALG, ·MALG, 0, 1) is also a MALG-model for the theory of
fields. (HINT: show that locally any function is invertible, i.e. given f show that one
can split {x : f(x) 6= 0} in countably many pairwise disjoint sets An for n ∈ ω such
that f � An has an inverse gn which is in L∞(An). The problem is that g =

⋃
n∈ω gn

is measurable but possibly not in L∞(
⋃
nAn). On the other hand g will always be

in L∞+(
⋃
nAn)....).

Exercise 5.4.5. Prove that the model of exercise 5.4.4 is not full (HINT: show that
the quotients L∞([0, 1])/G by any ultrafilter G are not fields, since the germ in G of
some f ∈ L∞([0, 1]) has an inverse in L∞+([0, 1])/G \ L∞([0, 1])/G).

5.4.2 Example II: standard ultraproducts

We can now sketch an argument to show that the familiar notion of ultraproduct
of Tarski models is a special case of a quotient of a boolean valued model with the
mixing property.

Let X be a set. Then P(X) is an atomic complete boolean algebra. Notice that
all theorems proved so far applies equally well to atomic complete boolean algebras
even if in the examples we focused on atomless, complete boolean algebras. A key
observation is that {{x} : x ∈ X} is a maximal antichain and a dense open set in
P(X)+. Now observe that St(P(X)) is the space of ultafilters on X and X can
be identified inside St(P(X)) as the open dense set {Gx : x ∈ X} where Gx is the
principal utrafilter on P(X) given by all supersets of {x}. Another key observation
is the following:

Fact 5.4.6. Let (Mx : x ∈ X) be a family of Tarski-models in the first order relational
language L. Then N =

∏
x∈XMx is a P(X)-model with the mixing property (letting

for each n-ary relation symbol R ∈ L, JR(f1, . . . , fn)KP(X) = {x ∈ X : Mx |=
R(f1(x), . . . , fn(x))}).

Proof. We leave the proof as an instructive exercise for the reader.

Let G be any non-principal ultrafilter on X. Then, using the notation of the
previous fact, N/G is the familiar ultraproduct of the family (Mx : x ∈ X) by G and
the usual  Loś Theorem for ultraproducts of Tarski models is the specialization to the
case of the full P(X)-valued model N of Theorem 5.3.7. Notice that in this special
case, if the ultraproduct is an ultrapower of a model M , the embedding a 7→ [ca]G
(where ca(x) = a for all x ∈ X and a ∈ M) is elementary. This is not always the
case for all the other examples of full B-valued models we are giving in these notes.
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5.4.3 Example III: C(St(B), 2ω)

We introduce a last example of full boolean valued model, which is more in the
spirit of what we are aiming for, since it can give an approach to forcing completely
equivalent to the one we pursue in the next chapter.

Exercise 5.4.7. Let B be an arbitrary (complete) boolean algebra. Let M =
C(St(B), 2ω) be the family of continuous functions from St(B) into 2ω. Fix R
a binary clopen relation on 2ω. The continuity of f, g grants that the set

RM(f, g) = {G : f(G) R g(G)} = (f × g)−1[R]

is clopen in St(B) (where f × g(G) = (f(G), g(G))). So we can define RM(f, g) =
Jf R gK. Also since the diagonal is closed in (2ω)2,

=M (f, g) = Reg({G : f(G) = g(G)})

is well defined.
Check that (C(St(B), 2ω),=M , RM) is a full B-valued extension of the struc-

ture (2ω,=, R) (where 2ω is copied inside C(St(B), 2ω) as the set of constant func-
tions). Check also that whenever G is an ultrafilter on St(B), the map iG : 2ω →
C(St(B), 2ω)/G given by x 7→ [cx]G (the constant function with value x) defines an
injective morphism of the 2-valued structure (2ω,=, R) into the 2-valued structure
(C(St(B), 2ω)/G,=

M /G, R
M/G).

The above exercise outlines a general strategy to expand many first order structure
on 2ω to extensions C(St(B), 2ω)/G indexed by G ∈ St(B) in such a way that the first
properties of the structure C(St(B), 2ω)/G are finely controlled by the topological
properties of St(B) and the algebraic properties of B via the embeddings iG.

The general idea of forcing is to develop this technique in order to be able to
replace first order structures with domain 2ω by any first order model (M,E) of
ZFC. For the sake of simplicity we assume now that M is transitive and E is ∈�M .
(M,∈,⊆,=) is expanded to a boolean extension (MB,∈B,⊆B,=B) defined by means
of a boolean algebra B ∈ M in such a way to define a forcing relation which ties
the logical property of the boolean structure (MB,∈B,⊆B,=B) to the topological
properties of the space St(B) or, equivalently (via the Stone duality), to the algebraic
properties of B. We can then pass to a natural quotient structure MB/G, which is now
a Tarski model for the language of M and which naturally contains an isomorphic
copy of M . The definition of MB will be done reversing the arrows and exploiting
the Stone duality between 0-dimensional compact Haussdorff spaces and boolean
algebras. We will develop the theory of boolean valued models for set theory defining
MB as an appropriate bunch of functions from M to B, rather than as a set of
continuous functions from St(B) to (what should be) some compactification of M .



Chapter 6

Forcing

In this chapter we will present the technique of Forcing. Forcing has a crucial role in
the development of modern set theory and it has had and has an immense number of
applications in this field of research. For example, forcing is the standard tool to prove
the consistency with the standard axioms of ZFC of a mathematical statement which
can be formulated as a first order ∈-formula φ in the language of set theory. Many
mathematical theories can get a natural interpretation as subtheories of ZFC. In this
way forcing provides an extremely powerful tool to investigate the undecidability of a
given mathematical problem, since this problem can in most cases be formulated as a
first order statement in the theory ZFC. The first and most celebrated example of an
unexpected undecidability result is the proof of the independence of the continuum
hypothesis CH from ZFC, and the aim of these notes is to develop forcing far enough
in order to be able to give a complete proof of this result. The general idea of
forcing is the following: we want to get a model of some first order statement φ in
the language of set theory which we aim to show to be consistent with ZFC. To
do so we enlarge the universe V which is the “standard” model of set theory to
another universe of sets N ⊃ V which is still a model of ZFC so that we are able to
force N to be a model of φ. If we adopt a platonistic stance towards set theory, the
statement “N ⊃ V ” is nonsense since all possible sets are already elements of V ,
and so there cannot be a proper superuniverse N of V . To overcome this difficulty
we assume that in V there is a countable transitive model M ∈ V of ZFC and we
extend M to a generic extension N ⊃M which is also in V and which is a model of
ZFC + φ. This approach requires us to work in a theory which is slightly stronger
than ZFC, since by Gödel’ incompleteness theorem, ZFC cannot (unless ZFC is not
consistent) derive the statement there is a countable transitive model of ZFC, while
we will assume that V models ZFC+, where ZFC+ stands for ZFC plus the latter
statement. Nonetheless requiring V to be a model of ZFC+ in our eyes allows for
a simpler exposition of the semantic of the forcing method and does not weaken
substantially the undecidability results we are able to obtain with respect to ZFC+

(the statement there is a countable transitive model of ZFC follows from the theory
ZFC+there exists an inaccessible cardinal —see Section 7.3— and is equiconsistent
with ZFC). The interested reader can find in the first pages of [6, Chapter 7] several
arguments which translate the undecidability results obtained by means of forcing
over the theory ZFC+, to undecidability results obtained over ZFC.

81
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The general strategy to prove the undecidability of φ by means of forcing is to
start from given known countable transitive models of ZFC M0,M1 and to produce
by means of forcing generic extensions Ni ⊇Mi such that N0 models ZFC+φ and N1

models ZFC + ¬φ. In this chapter we just assume that there is one given countable
transitive model of ZFC M and we will build all our generic extensions over this M .

We also need to give some intuition on the reasons why enlarging V to a larger N
we can hope to be able to show that N is a model of φ. The strategy we will follow is
that leading from a two valued logic where all statements are either true or false to a
boolean valued logic where statements φ get evaluated as elements JφK ∈ B for some
boolean algebra B, we consider φ true if JφK = 1B, false if JφK = 0B, undetermined
otherwise. Now observe that B corresponds to the clopen sets of St(B) its space of
ultrafilters and that selecting a point G ∈ St(B) allows us to decide which as yet
undecided statements φ are true or false according to G: they will be considered true
by G if and only if JφK ∈ G. So we are led to the consideration that boolean algebras
B allow to define a B-valued logic in which we haven’t yet compromised ourselves on
the truth values of certain first order statements φ (those for which 0B < JφK < 1B),
and that the points G ∈ St(B) will force us to accept φ as true iff JφK ∈ G. Now the
idea of the forcing method is to employ these boolean valued logics as follows: We
start from a transitive model M of ZFC (where we are not able to compute φ), we
choose in M a boolean algebra B for which we are able to calculate its combinatorial
properties. We extend M to a boolean valued model MB which is a definable class
in M and contains an isomorphic copy of M as a B-valued substructure. MB is such
that for all formulae φ we are able to define an evalution map JφK which links (in a
manner which is possible to compute inside M) the B-valued semantics of MB to the
combinatorial properties of B in M . We can pick any G ∈ St(B), and we get that G
decides that φ holds iff JφK ∈ G. Things can be done so properly that our heuristic
assertion “G decides that φ holds” can be expanded in the precise statement: “The
Tarski structure MB/G ⊃ M is a first order model of ZFC in which φ holds and
which properly contains M”.

There are different approaches to the technique of forcing. We will follow the
one through boolean algebras and boolean valued models, as in [5]. To this aim
it is fundamental to exploit the theory of boolean valued models we developed in
Chapter 5.

The remainder of this chapter consists of four sections:

1. In the first section we define a procedure which given any (transitive) first order
structure M which is a model of ZFC and a boolean algebra B ∈ M (which
M models to be complete) produces a full boolean valued model of set theory
MB, i.e. a boolean valued model of the language of set theory according to the
semantic we defined in the previous chapter. We also try to give an heuristic
for forcing following Cohen’s original argument to introduce a new element
of 2ω to M by describing it inside M using the poset of finite strings of 0, 1.
Moreover we explain how the semantics of MB is governed by means of the
notion of M -genericity introduced by Cohen.
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2. In the second section we develop in full details the key ideas in Cohen’s
development of the forcing method, which allows one to start from a countable
transitive model M of ZFC, and to pass to the quotient MB/G obtained by
selecting some G ∈ St(B). Under the key assumption that G is an M -generic
filter for B, we can prove that MB/G is well founded and show that its transitive
collapse, the generic extension M [G], is countable and is the least transitive
model of ZFC containing M and G. Cohen’s forcing theorem shows that there
is a fine tuning between the first order properties of the structure (M [G],∈)
and the combinatorial properties of B.

3. In the third section we define a boolean algebra B ∈ M in such a way that
MB models ¬CH and another boolean algebra C ∈M in such a way that MC

models CH.

4. In the fourth section we show that no matter how we select M countable
transitive model of ZFC and B ∈M , the axioms of ZFC all gets boolean value
1B in the boolean valued model MB and thus, by means of the forcing theorem,
also hold in M [G] for any M -generic filter G for B.

6.1 Boolean valued models for set theory

We have seen the definition of a boolean valued model for the language L = {∈,⊆}.
Now we want something more adherent to the intended meaning we have in mind
for the symbols ∈,⊆. To achieve this, we need to add some requests to Def. 5.1.1.

Definition 6.1.1. A boolean valued model for set theory is a boolean valued
model M (with its associated cba B) for L = {∈,⊆,=}, where, for any σ, τ, η ∈M :

1. Jτ ⊆ σK ∧ Jσ ⊆ τK = Jτ = σK.

2. Jτ ∈ σK ∧ Jσ ⊆ ηK ≤ Jτ ∈ ηK.

We exhibit the boolean valued models for set theory we’ll be working with in the
sequel of this chapter.

Definition 6.1.2. Let M be any transitive1 first order model of ZFC and B ∈M be
such that M models B to be a complete boolean algebra. We let:

MB
0 = ∅.

MB
α+1 = {f : MB

α 7→ B : f is partial}.

MB
β =

⋃
α<β

MB
α , where β is limit.

Finally:

MB =
⋃

α∈OrdM

MB
α .

1As we shall see below the requirement that M is transitive is redundant and we put it here just
to give a clearer intuition of how the class MB is generated inside M .
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Remark 6.1.3.

- It is an instructive exercise to show that the class MB is definable in M using
the transfinite recursion theorem (applied in M) to obtain it as the extension
in M of a formula in the parameter B. Formally this argument can be carried
in any first order model of ZFC, thus the requirement that M is transitive in
the above definition is redundant (even though if M is ill-founded it is not at
all transparent what is the correct interpretation of the objects of M defined
by means of the transfinite recursion theorem). However in these notes we are
interested just in transitive well founded models of ZFC.

For the sake of completeness, here is how the class V B can be defined as the
extension of a formula in the parameter B inside V : let F : V → V be defined
as follows:

F (g) = {f : X → B : f is a partial function}
if for some ordinal α, g : α + 1→ V is a function and X = g(α),

F (g) =
⋃

ran(g) otherwise.

Then G : Ord → V defined by G(α) = F (g � α) enumerates the V B
α and

V B =
⋃
α∈OrdG(α).

- If V is the standard model of set theory, the definition of V B
α+1 gives the

“boolean powerset” of V B
α for the boolean algebra B much in the same way as

Vα+1 = P(Vα) is the power set of Vα for the boolean algebra {0, 1}: indeed,
given a set X, P(X) can be identified as the set of the characteristic functions
of its elements. We generalize the notion of power set using the identification of
a “boolean” subset of X with its “characteristic” (partial) function f : X → B,
with the further hidden complication that for any partial function f : X → B,
the evaluation of how much an element of X on which f is undefined belongs
to f is postponed to a later stage (i.e. Definition 6.1.25). We need to consider
the family of partial functions from X to B to define the boolean power set of
X for technical reasons which will become transparent in the sequel.

Every element X ∈ V can be identified by a partial characteristic function which
takes as domain X and has value constantly 1; we use these type of functions to
define canonical B-names for elements of V inside V B.

Definition 6.1.4. Given a boolean algebra B ∈ V , for every element u of V we
define by induction on its rank:

ǔ = {〈v̌, 1B〉 : v ∈ u}.

For example, if a = {∅, {∅}}, then

∅̌ = ∅,

ˇ{∅} = {〈∅̌, 1B〉} = {〈∅, 1B〉},

ǎ = {〈∅̌, 1B〉, 〈 ˇ{∅}, 1B〉} = {〈∅, 1B〉, 〈{〈∅, 1B〉}, 1B〉}.
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Definition 6.1.5. V̌ = {x̌ : x ∈ V }.

There is also another way to define V B which is more convenient since it will give a ∆1-definition
in the parameter B of the class V B inside V .

Definition 6.1.6. Given a set X of partial functions in V , we define:

∗⋃
X =

⋃
{dom(z) : z ∈ X}.

and for f a partial function

trcl∗(f) = f ∪
⋃
{
( ∗⋃)n

f : n ∈ ω, n > 0}.

Exercise 6.1.7. Show that the operation f 7→ trcl∗(f) is ∆1-definable in no parameters in any model
of ZFC, and thus is absolute between transitive structures which model the relevant fragment of
ZFC.

We leave as an instructive exercise to check the following:

Fact 6.1.8. τ ∈ V B if and only if

τ is a function ∧ ran(τ) ⊆ B ∧ ∀σ ∈ trcl∗(τ)[σ is a function ∧ ran(σ) ⊆ B].

The latter property is ∆1-definable in the parameter B in any model of ZFC.

Remark 6.1.9. τ ∈ V̌ if and only if τ ∈ V B and

∀σ0, σ1 ∈ trcl∗(τ)(σ0 ∈ dom(σ1)⇒ σ1(σ0) = 1B).

Hence
V̌ ⊆ V B.

The elements of V B are called the family of B-names. Remark that in order to
define the class of B-names we do not need B to be complete.

6.1.1 External definition of forcing

This section is of a rather peculiar nature: we try to give some more intuition on
forcing. This forces us to mix some precise mathematical definitions with rather
general considerations. Moreover at some points along our presentation we sug-
gest some themes whose elaboration is not strictly necessary. In order to keep a
straight division between the different levels of our discourse, we adopt the following
typographical convention:

� The parts which introduce definitions and prove facts which will be needed
also in the remainder of this chapter will maintain the usual font.

� The parts which are in our eyes of central interest to understand the basic
ideas of forcing, but are not introducing mathematical definitions and re-
sults which will be needed in the remainder of this chapter will be put in
font UTOPIA.

� The parts which are not of central importance will be put in a smaller font, we leave to the

reader to evaluate how much effort to devote to their comprehension.
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Assume we want to construct a new element r of 2ω not in V . This is clearly
not possible since all sets are in V and r is a set. Let us sidestep this problem,
assuming that there is M ∈ V countable and transitive such that M |= ZFC (this
is the case if there is an inaccessible cardinal in V , by the results of Section 7.3).
So we can assume r ∈ V \ M is a “new” element r of 2ω with respect to the
ZFC-model M .

The fact that M is a transitive model of ZFC simplifies enormously the com-
parison of M with V : All the standard absoluteness properties established in [6,
Chapter IV] and in Chapter 7 holds between between the transitive ZFC-models
M ⊆ V , giving that most computations yields the same results when carried
inside M or in V .

Exercise 6.1.10. Assume M is a transitive model of ZFC. The following notion are
absolute for M and V :

� (B,∧,¬, 0B, 1B) ∈ M is a boolean algebra. (HINT: the property of being a
boolean algebra can be formalized as a Σ0 property of the tuple (B,∧,¬, 0B, 1B)
which requires just to quantify over Bn for a large enough n and over ∧,∨ ⊆ B3

and ¬ ⊆ B2, each of these sets is an element of M)

� (P,≤P ) is a partial order (with P,≤P∈M)..

� i : P → Q is an order and incompatibility preserving map with a dense image
between the partial orders (P,≤P ) and (Q,≤Q) (with i, P,≤P , Q,≤Q∈M).

� a ∈ P is an atom of the partial order (P,≤P ) (with a, P,≤P∈M).

� (P,≤P ) ∈M is an atomless partial order.

� (P,≤P ) ∈M is a separative partial order.

� G ∈M is a filter on a partial order (P,≤P ) ∈M (or a ultrafilter on a boolean
algebra B).

� b =
∨
A for A ∈ P(B) ∩M .

� X ⊆ P is predense in the partial order (P,≤P ) (with X,P,≤P∈M).

� X ⊆ P is predense in the partial order P below the condition p (with X,P,≤P∈
M).

� A ⊆ P is a (maximal) antichain in the partial order (P,≤P ) (with A,P,≤P∈
M).

� O ⊆ P is open in the partial order (P,≤P ) (with O,P,≤P∈M)..

Hence for B ∈M a boolean algebra St(B)M = St(B) ∩M , since:

St(B)M =
{
G ∈ P(B)M : M |= G is a ultrafilter on B

}
=

= {G ∈ P(B) ∩M : V |= G is a ultrafilter on B} = St(B) ∩M,

where in the second equality, we used that P(X)M = P(X) ∩M for all X ∈M (see
also [6, Lemma IV.2.9]).
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Take the poset (2<ω,⊇). By the first Item in Remark 4.3.2, its boolean comple-
tion is isomorphic to the regular open sets of 2ω in the product topology. Notice
that, by absoluteness arguments, since M ⊆ V are both transitive models of
ZFC, 2<ω = (2<ω)M = (2<ω)V .

Consider in M the sets

Df = {s ∈ 2<ω : s 6⊆ f} ∈M

for each f ∈ (2ω)M , and the sets

En = {s ∈ 2<ω : n ∈ dom(s)} ∈M.

These are easily seen to be dense subsets of 2<ω (see Exercise 4.2.13) which be-
long to M applying the comprehension axiom in M to the formula defining
them.

On the other hand in V , given r ∈ 2ω \M define

G = {s ∈ 2<ω : s ⊆ r} .

Then G ∈ V and r = ∪G, thus G 6∈ M , else r = ∪G ∈ M as well. G is a filter on
2<ω and G meets all the dense sets Df for all f ∈ (2ω)M : pick f ∈ (2ω)M , since
r = ∪G 6= f , we can find n such that r(n) 6= f(n), thus r � n + 1 ∈ G ∩ Df . G
meets also the dense sets En for n ∈ ω, since r � n+ 1 ∈ G ∩ En for all n ∈ ω.

Now assume H ∈ M is a filter on 2<ω meeting all the dense set En for all
n ∈ ω (H exists by Lemma 4.2.9 applied in M which is a model of ZFC with
{En : n ∈ ω} ∈M which is a countable set also according toM). Then h = ∪H ∈
2ω and H ∩ Dh is empty, else for some s ∈ H and n ∈ dom(s), s(n) 6= h(n) with
h ⊇ s, which is a contradiction.

Hence G ∈ V \M is a filter on 2<ω which meets a family2 of dense subsets of
2<ω which cannot be simultaneously met by any filterH ∈M on 2<ω meeting all
the dense sets En.

So let us make a step further, and let us assume that r ∈ 2ω \M is such that
G = {s : s ⊆ r} is a filter on 2<ω meeting all the dense subsets of 2<ω which
belong to M (this is possible since M is countable in V ). Notice that r = ∪G.

Before proceeding in our analysis of this specific example we need to introduce
some general concepts.

M-generic ultrafilters, and the induced valuation map

Let us recall Definition 4.2.8 and specify it to the context we are interested.

Definition 6.1.11. Let M be a transitive model of ZFC and P ∈ M be a partial
order. A filter G ⊆ P is M -generic for P if G∩D 6= ∅ for all D ∈M predense subset
of P .

For a boolean algebra C ∈M , G ∈ St(C) is M -generic for C if it is M -generic for
C+.

2The family {En : n ∈ ω} ∪
{
Df : f ∈ (2ω)M

}
. Note that this family belongs to M but has size

continuum in M : the map f 7→ Df from (2ω)M into the above family is also an element of M and
is an injection.
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Exercise 6.1.12. Let M be a countable transitive model of ZFC and B ∈M a boolean
algebra. Given D ∈M family of subsets of B show that

({G ∈ St(B) : ∀X ∈ D (G ∩X 6= ∅)})M = {G ∈ St(B) : ∀X ∈ D (G ∩X 6= ∅)}∩M.

Hence letting

D = {X ∈M ∩ P(B) : M |= X is a predense subset of B} ∈M,

we have that G ∈ St(B) is M -generic if G ∩X 6= ∅ for all X ∈ D and

{G ∈ St(B) : G is M -generic for B}∩M = {G ∈ St(B) : M |= ∀X ∈ D (G ∩X 6= ∅)} .

Using Exercise 4.2.12, show that this latter set is empty if B is atomless, and consists
just of the principal ultrafilters on B of the form Ga (each of which belongs to M) for
a atom of B, if B is atomic. Show also that in any case the set of G ∈ St(B) which
are M -generic is a dense subset of St(B) in V , with the property that none of the
M -generic filters is in M if B is atomless.

A basic intuition on M -genericity is that dense open subsets of St(B) are the
large sets and M -generic filters denote the points of St(B) which are in all large
subsets of St(B) which M knows of.

Recall that any complete boolean algebra splits in the disjoint sum of an atomless
cba and of an atomic cba (Lemma 3.1.4). We will see that the forcing method gains
traction (i.e. it can be used to produce new interesting model of ZFC) just when it
is applied to atomless cbas.

Remark 6.1.13. In the remainder of this chapter we focus on the notion of M -
genericity for atomless cbas in M . In this case the notion of M -genericity can be
used to describe inside M (by means of MB) enlargements of M obtained by adding
to M some G ∈ St(B) which is M -generic.

The following exercise briefly explains what happens if B is atomic:

Exercise 6.1.14. Assume C ∈M is such that M models C is an atomic cba. Then

�

A = {a ∈ C : a is an atom} =
⋂{

D ⊆ C+ : D is dense
}

is open dense in C+.

� For any atom a ∈ C
Ga = {b ∈ C : a ≤ b} ∈ St(C) ∩M

is M -generic for C.

� Any G ∈ St(C) which belongs to V and which is M -generic for C is of the form Ga for some
a ∈ C atom of C.

The following exercise shows that the notion of being a complete cba is not absolute between
M and V .

Exercise 6.1.15. Assume B ∈ M is an infinite boolean algebra. Then B is not complete in V .
(HINT: Assume the set A ∈ M of atoms of B is infinite. Pick Y ⊆ A with Y 6∈ M . Then Y
cannot have a suprema b ∈ B ⊆M , else Y = {a ∈ A : a ≤ b} ∈M . Assume B has a finite set A of
atoms. Then c =

∨
A ∈M and B � ¬c ∈M is atomless. Hence we can assume that B is atomless.

Enumerate in M an infinite antichain A = {an : n ∈ ω} ∈M of B (which exists since B is atomless
and infinite in M). Find X ⊆ ω such that X /∈M . Then

∨
{an : n ∈ X} does not exists: assume

a = {an : n ∈ X}. Then a ∈ B ⊆M and {an : n ∈ X} = {c ∈ A : c ≤ a} ∈M , giving that X ∈M
as well).
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Definition 6.1.16. Let M be a countable transitive model of ZFC and C be a
complete boolean algebra in M .

For σ, τ ∈MC, define σ EC τ iff σ ∈ dom(τ) and

rkC(τ) = sup
{

rkC(σ) + 1 : σ EC τ
}
.

Fact 6.1.17. Let M be a countable transitive model of ZFC and C be a complete
boolean algebra in M . Then EC ⊆ (MC)2 is definable in M , and well founded in M
and V as witnessed by the rank function

rkC : MC → Ord ∩M,

which is as well a definable class function in M .

Proof. Clearly EC is definable by the Σ0-property φ(x, y) ≡ x ∈ dom(y). The
map rkC is defined by transfinite recursion inside M using the absolute function
FM : MC ×M →M given by

FM(σ, h) = ∪{h(z) + 1 : z ∈ dom(σ)}

and setting

rkC(σ) = F (σ, rkC � predEC(σ)) =

FM(σ, rkC � dom(σ)) = ∪
{

rkC(z) + 1 : z ∈ dom(σ)
}
.

Definition 6.1.18. Let M be a countable transitive model of ZFC and C be a
complete boolean algebra in M . Let G ∈ St(C).

valG :MC → V

σ 7→ valG(σ) = σG

is defined in V by recursion on EC for τ ∈MC by the rule

τG = {σG : τ(σ) ∈ G}

for any given τ ∈MC.
For any G ∈ St(C)

M [G] = {τG : τ ∈MC}.

Remark 6.1.19. The definition of M [G] is by recursion with parameters M,C, G, and
can be carried in any model of ZFC to which all the relevant parameters belong:

valG is defined by recursion on EC using the function F : MB × V → V given by

(f, g) 7→ {g(z) : z ∈ dom(f) and f(z) ∈ G}

by the rule

valG(τ) = F (τ, valG � predE(τ)) = F (τ, valG � dom(τ)).

In particular M [G] can be defined in V (but a priori not in M whenever G 6∈M).
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Moreover:

Fact 6.1.20. Following the above assumptions M [G] is transitive for any M -generic
ultrafilter G ∈ St(C) and

M = {valG(ǎ) : a ∈M} .

Proof. a ∈M [G] entails

a = σG ⊆ valG[dom(σ)] ⊆M [G].

For the second fact see below (equation 6.1).

A basic exercise which shows that M [G] has nice closure properties is the following:

Exercise 6.1.21. Let M be a transitive model of ZFC and G be M -generic for some
B ∈M which M models to be a complete boolean algebra. Define up : (MB)2 →MB

and op : (MB)2 →MB by the rules

up(σ, τ) = {〈σ, 1B〉 , 〈τ, 1B〉} ,

op(σ, τ) = {〈up(σ, τ), 1B〉 , 〈up(σ, σ), 1B〉} .

Show that up, op are definable class functions in M and that up(σ, τ)G = {σG, τG},
op(σ, τ)G = 〈σG, τG〉 for all σ, τ ∈MB.

Describing an M-generic filter G for 2<ω inside M .

Is it conceivable to describe the properties of an r /∈ M defining an M-generic
filter G = {s : s ⊆ r} for 2<ω reasoning just about what M can say using first
order logic about itself?

The (may be surprising) answer is yes. This is what Cohen has shown with
the invention of the forcing method. How can we hope to describe insideM this
r 6∈M?

First of all we can develop the notion of boolean valued model relative to M
for B = RO(2ω)M (which is a complete atomless boolean algebra in M). To this
aim let

Os =
{
f ∈ (2ω)M : s ⊆ f

}
= Ns ∩M

(i.e. Os is what M thinks is the basic open set of (2ω)M = 2ω ∩ M induced by
functions extending the finite string s of 0, 1).

Then E = {Os : s ∈ 2<ω} ∈ M (since M |= ZFC and E is defined inside M
as a subset of RO(2ω)M = B obtained by applying the comprehension axiom
inside M). Moreover M models that E is a dense subset of B+, since M (being a
transitive model of ZFC) models also that:

{
Os =

{
f ∈ (2ω)M : s ⊆ f

}
: s ∈ 2<ω

}
is a basis consisting of clopen sets for the complete boolean algebra
RO(2ω)M = B.
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Also (once again because M is a transitive model of ZFC) the map

k :2<ω → B s 7→ Os

belongs to M , since it is obtained as a subset of 2<ω × RO(2ω)M (a set in M) ap-
plying an instance of the comprehension axiom in M to a formula with param-
eters in M . Moreover M models that the map k implements an isomorphism of
(2<ω,⊇) with (E,⊆) since this is a Σ0-property of this map which is true in V and
thus also in M .

We can also check the following:

Fact 6.1.22. Assume G is M-generic for (2<ω,⊇). Then Ḡ =↑ {Os : s ∈ G} is a
ultrafilter on B which is M-generic for B+.

Proof. By assumption G meets all dense subsets of 2<ω in M . Assume we are given
D ⊆ B+ dense open subset of B+ and in M , we get that D ∩ E ∈M is also a dense
subset of (E,≤B), and thus

{s ∈ 2<ω : Os ∈ D ∩ E} ∈M

is a dense subset of 2<ω in M . Thus G meets this dense set, so there is some s ∈ G
such that Os ∈ D ∩ E ∩ Ḡ.

In V , let us fix some Ḡ M-generic for B+, and let us consider the map

valḠ :MB → V

σ 7→ valḠ(σ) = σḠ

given by the rule τ 7→
{
σḠ : τ(σ) ∈ Ḡ

}
. Let us check what this map does on the

elements of M̌ = V̌ M = V̌ ∩M : By definition:

valḠ(∅̌) =
{
σ : σ ∈ dom(∅̌) and ∅̌(σ) ∈ Ḡ

}
,

but ∅̌ = ∅ is the empty function, in particular it has empty domain. We get that

valḠ(∅̌) =
{
σḠ : σ ∈ dom(∅̌) and ∅̌(σ) ∈ Ḡ

}
= ∅.

Next:
valḠ( ˇ{∅}) =

{
σ : σ ∈ dom( ˇ{∅}) and ˇ{∅}(σ) ∈ Ḡ

}
,

but ˇ{∅} =
{〈
∅̌, 1B

〉}
and 1B ∈ Ḡ, thus

valḠ( ˇ{∅}) =
{
σḠ : σ ∈ dom( ˇ{∅}) and ˇ{∅}(σ) ∈ Ḡ

}
=
{
∅̌Ḡ
}

= {∅}

Now by induction on the ranks, assuming y̌Ḡ = y for all y ∈ x, we get that

x̌Ḡ =
{
σḠ : σ ∈ dom(x̌) and x̌(σ) ∈ Ḡ

}
=

=
{
y̌Ḡ : y̌ ∈ dom(x̌) and x̌(y̌) = 1B ∈ Ḡ

}
= {y̌Ḡ : y ∈ x} = x. (6.1)
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Thus M̌ = (V̌ )M ⊆MB is giving B-names for the objects of M .
Now let us take the following B-name:

Ġ = {〈š, Os〉 : s ∈ 2<ω} ∈MB.

Ġ ∈ MB since it is obtained applying the replacement axiom to the function
2<ω →M given by s 7→ 〈š, Os〉. Such a function is a definable class inM and thus
its image belongs to M . It is immediate to check that Ġ satisfies the clause for
the definition of B-names in M .

We obtain:

ĠḠ =
{
šḠ : Ġ(š) = Os ∈ Ḡ

}
=
{
s : Os ∈ Ḡ

}
= G.

We have the surprising fact that the objectG ∈ V \M is described by an element
of MB! Similarly

Ḣ =
{〈
b̌, b
〉

: b ∈ B+
}
∈MB

is such that
ḢḠ =

{
b̌Ḡ : Ḣ(b̌) = b ∈ Ḡ

}
=
{
b : b ∈ Ḡ

}
= Ḡ.

To get another example, let r = ∪G, then G = {s ∈ 2<ω : s ⊆ r}, we will ex-
hibit a B-name for r in MB. Consider the operations on MB-names defined by

up(σ, τ) = {〈σ, 1B〉 , 〈τ, 1B〉}

and
op(σ, τ) = {〈up(σ, τ), 1B〉 , 〈up(σ, σ), 1B〉}

introduced in exercise 6.1.21. Now let

ṙ =
{〈

op(ň, ǐ), O〈n,i〉
〉

: n < ω, i < 2
}
∈MB,

where O〈n,i〉 =
{
f ∈ (2ω)M : f(n) = i

}
. Then (by exercise 6.1.21)

ṙḠ =
{

op(ň, ǐ)Ḡ : O〈n,i〉 ∈ Ḡ, n < ω, i < 2
}

=

=
{
〈n, i〉 : O〈n,i〉 ∈ Ḡ, n < ω, i < 2

}
=

=
{
〈n, i〉 : O〈n,i〉 ⊇ Os for some s ∈ G, n < ω, i < 2

}
=

= {〈n, i〉 : s(n) = i for some s ∈ G, n < ω, i < 2} = r.

In particular, if we let M [Ḡ] ⊆ V be the family of objects of the form τḠ for
some τ ∈ MB, we have that r,G, Ḡ ∈ M [Ḡ], and also that whenever a, b ∈ M [Ḡ],
then also {a, b} , 〈a, b〉 ∈M [Ḡ].

Our future investigations will show that MB gives a family of B-names for all
elements of M [Ḡ], and that all the familiar operations on sets we can conceive
are reflected in corresponding operations onMB. This will renderMB a boolean
valued model for ZFC, and M [Ḡ] a transitive model of ZFC. How will we be able
to control the semantic of MB and that of M [Ḡ]? The guiding idea will be the
following:
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� TheB-names define inM a family of “names” for the objects ofM [Ḡ] which
labels elements of M [Ḡ] via the map valḠ.

� The first order properties which M [Ḡ] assigns to valḠ(σ) for a σ ∈ MB are
conditional on the choice of Ḡ.

� These properties vary continuously with respect to St(B) as Ḡ ranges among
the M-generic ultrafilters.

� These properties can be described insideM by means of a natural boolean
valued semantics on the class MB of B-names, a semantics which is first
order definable in M .

For example let H̄ ∈ St(B) be an M-generic filter on B such that O〈0,1−r(0)〉 ∈
H̄ (H̄ exists since there are densely many M-generic filters for B in V ), H ={
s ∈ 2ω : i(s) ∈ H̄

}
, t = ∪H.

Since H̄ is M-generic for B, we can also define

valH̄(τ) = τH̄ =
{
σH̄ : τ(σ) ∈ H̄

}
,

and we can check that valH̄(ǎ) = a for all a ∈M , but also that

ṙH̄ = t,

ĠH̄ = H,

ḢH̄ = H̄.

This shows that certain properties of the object valK(τ) which is named by the
B-name τ depend crucially on the decision anM-generic filterK-makes. In our
case, if O〈0,0〉 ∈ K, we get that ṙK(0) = 0, while if O〈0,1〉 ∈ K, ṙK(0) = 1. On the
other hand certain properties of τ cannot be changed by varying the M-generic
filters for B. For example whichever K we choose, we will always get that ṙK is a
function in (2ω)V \M .

One can introduce in V the following forcing relation for b ∈ B, φ(x0, . . . , xn)
a first order formula and τ1, . . . , τn ∈ V B:

b 
 φ(τ1, . . . , τn)

if and only if

M [K] |= φ(valK(τ1), . . . , valK(τn)) for all M-generic filters K for B such that b ∈ K.

The intuition is that b decides (or “forces”) certain facts (those described by φ)
about the B-names τ1, . . . , τn to be true in M [K] of the objects (τ1)K , . . . , (τn)K ,
no matter how an M-generic filter K 3 b evaluates τ1, . . . , τn. Formally

b 
 φ(τ1, . . . , τn)

stands for:

V |= ∀K ∈ St(B) (K is M-generic for B ∧ b ∈ K)→ Sat(M [K], φ, 〈(τ1)K , . . . , (τn)K〉),

where Sat(x, y, z) is the satisfaction predicate for structures of the form (N,∈)
introduced in Section 7.2.

So far the above observations show among other things:
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1. 1B 
 ṙ : ω̌ → 2̌ is a function,

2. for all f ∈ (2ω)M , 1B 
 Ġ ∩ Ďf 6= ∅,

3. for all i < 2, n ∈ ω, O〈n,i〉 
 ṙ(ň) = ǐ.

4. b 
 φ ∧ ψ iff b 
 φ and b 
 ψ.

5. . . .

This forcing relation tells us that when b is chosen by some G, all the properties
which b assigns to a certain B-name will hold for the interpretation of that B-
name by G. This is very useful and allows to compute in V what properties of
a B-name τ are decided by a condition in B and in which ways. Moreover this
forcing relation has the same flavor of the boolean valued semantics we met so
far, and one of our main objective (i.e. Cohen’s forcing theorem) amounts to
show that:

The forcing relation on B+×Form×(MB)<ω defined in V obeys to the
laws given by Lemma 5.3.9, if (following the notation of the Lemma)
we replace all over M/G by M [G], and G ∈ St(B) by G ∈ St(B) is M-
generic for B.

However we have a great problem to match for the above forcing relation:

The semantic for MB we defined above has not been defined inside
M .

To define the forcing relation b 
 φ(τ1, . . . , τn), we need to be able to quantify
over allGwhich areM-generic for B. This can be done meaningfully in V (where
the above set is a dense subset of St(B)), however in M the set of such G defines
the empty-set (since B is atomless), and M [G] cannot be defined.

This problem cause serious difficulties if our aim is to endowMB of the struc-
ture of a boolean valued model definable in M .

Can we expand the above forcing relation so to be able to give to MB

the structure of a B-valued model? Concretely, by means of the above
forcing relation can we define insideM a class functionGφ : (MB)n →
B which assigns a boolean value to a formula φ(x1, . . . , xn) evaluated
in the tuple (τ1, . . . , τn) with assignment xi 7→ τi?

In V we can define the set

Aφ(~τ) = {b ∈ B+ : V |= b 
 φ(~τ)}.

Aφ(~τ) ∈ P(B) is a subset of M , since B ∈ M and M is transitive. However we
have no special argument to expect that Aφ(~τ) ∈ M , since this set is defined
using in V an instance of the comprehension axiom for a formula defining 

which requires to quantify over sets not in M . In particular if this set is in M , we
must find some argument to be able to assert it.

Nonetheless it appears that the reasonable definition of a B-valued semantic
for MB is given by letting Jφ(~τ)K =

∨
Aφ(~τ) (as in the last item of the Forcing

Lemma 5.3.9), for example this holds for:



6.1. BOOLEAN VALUED MODELS FOR SET THEORY 95

1.
q
ṙ(ň) = ǐ

y
=
∨

B

{
b : b 
 ṙ(ň) = ǐ

}
=
∨

B

{
b : b ≤ O〈n,i〉

}
= O〈n,i〉,

2.
q
ṙ : ω̌ → 2̌

y
=
∨

B

{
b : b 
 ṙ : ω̌ → 2̌

}
=
∨

B {b : b ≤ 1B} = 1B,

3. . . .

In the above equalities we ended up having Aφ(~τ) ∈M for

φ(ṙ, ň, ǐ) ≡ ṙ(ň) = ǐ

and also for
φ(ṙ, ω̌, 2̌) ≡ ṙ : ω̌ → 2̌ is a function.

Is this a peculiarity of these formulae?
Let us work now under the assumption that Ax∈y(τ, σ), Ax=y(τ, σ), Ax⊆y(τ, σ)

are in M for all σ, τ ∈MB.

Fact 6.1.23. Assume M is a transitive countable model of ZFC, and B ∈ M is a
complete boolean algebra such that M models B is complete. Assume further that

AR(σ, τ) = {b ∈ B : b 
 σ R τ} ∈M

for R among ∈,=,⊆ and σ, τ ∈ MB. Then we can set Jσ R τK =
∨
AR(σ, τ), and

we get that

1. For all τ, σ, π ∈MB,

Jτ = τK = 1B,

Jτ = σK = Jσ = τK ,
Jτ = σK ∧ Jσ = πK ≤ Jτ = πK .

2. For R among ∈,=, and for all 〈τ1, τ2〉, 〈σ1, σ2〉 ∈ (MB)2,

Jτ1 = σ1K ∧ Jτ2 = σ2K ∧ Jτ1 R τ2K ≤ Jσ1 R σ2K .

In particular, letting RB(τ, σ) = Jτ R σK for R among ∈,=, (MB,=B,∈B) is in V a
B-valued model.

Exercise 6.1.24. Prove the above inequalities (HINT: First show that it suffices to
prove that b 
 φ entails b 
 ψ for all the above inequalities and for all b ∈ B+ (where
φ stands for the lefthand term of the inequality and ψ for the righthand term). Then
apply the definition of the forcing relation).

We are led to the following driving questions:

1. Can we define in M class functions AR : (MB)2 → P(B)M such that

AR(τ, σ) =
{
b ∈ B+ : b 
 σ R τ

}
for R among ∈,=,⊆?
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2. Can we prove in general, that Aφ(~τ) ∈ M for all formulae φ(~τ) with param-
eters in MB?

3. Assume both questions have a positive answer. Can we also prove that
the boolean valued semantic for φ(~τ) given by (MB,∈B,=B,⊆B) (whereq
σ RB τ

y
=
∨
AxRy(σ, τ) for R among =,∈,⊆) assigns to each formula φ(~τ)

the boolean value
∨
Aφ(~τ)?

4. Assume that the first question has a positive answer. Can we also prove
that (MB,∈B,=B) is a full B-valued model in V ?

We show in the next sections that all these questions have a positive answer,
proving the following result:

M can define a structure of full B-valued model on MB which assign
to any formula φ(x1, . . . , xn) of the language of set theory a satisfac-
tion class definable in M{

(τ1, . . . , τn, b) ∈ (MB)n × B : M |= Jφ(τ1, . . . , τn)K = b
}

with the feature that

M |= Jφ(τ1, . . . , τn)K ≥B b

if and only if
V |= b 
 φ(τ1, . . . , τn).

In particular the forcing relation b 
 φ(τ1, . . . , τn) and the relations
RB(σ, τ) = Jσ R τK for R ∈ {=,∈} can also be defined inside M mak-
ing (MB,=B,∈B) a full B-valued model in V given by a triple of defin-
able classes in M .

This will be done as follows: after having defined in M a boolean valued seman-
tics onMB, makingMB a full B-valued model for the first order language {∈,⊆},
we show that whenever G is M-generic for B, MB/G is isomorphic to M [G] via
the map [τ ]G 7→ τG (where [σ]G =

{
τ ∈MB : Jτ = σK ∈ G

}
). By Łoś Theorem 5.3.7

and by the Forcing Lemmas 5.3.8 and 5.3.9, all the desired properties of MB can
be easily inferred, since the set of M-generic filters for St(B) is dense.

6.1.2 Internal definition of forcing: the boolean valued se-
mantics of V B

To simplify matters and notations we will assume all over this section to be working
in V , the standard model of ZFC which contains all sets, however all of our definitions
and results can be declined and rephrased for any arbitrary first order model of ZFC
since they will be based just on the assumption that V is a model of ZFC. We will
need in the next sections the relativization of many of these definitions and results
to a countable transitive set M ∈ V which is itself a model of ZFC.
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The aim of this section is to define a boolean semantic on the class V B making it
a full boolean valued model for the language in the signature {∈,⊆}. In the next
section we will show that this semantic, when defined in a countable transitive model
M of ZFC, induces the forcing relation on MB defined in the previous section.

Definition 6.1.25. Let τ, σ ∈ V B. We define simultaneously, by induction on the
pairs (rk(τ), rk(σ)) well ordered in type Ord by the square order3 on Ord2:

1.
Jτ ∈ σK =

∨
τ0∈dom(σ)

(Jτ = τ0K ∧ σ(τ0)).

2.

Jτ ⊆ σK =
∧

σ0∈dom(τ)

(τ(σ0)→ Jσ0 ∈ σK) =
∧

σ0∈dom(τ)

(¬τ(σ0) ∨ Jσ0 ∈ σK).

3.
Jτ = σK = Jτ ⊆ σK ∧ Jσ ⊆ τK.

Remark 6.1.26. The definition of all three relations is by a simultaneous induction.
More precisely Let Fj : V × V B × V B → B for j = 0, 1 be defined by{
F0(g, τ, σ) =

∨
η∈dom(σ) σ(η) ∧ g(η, τ) if ∃α g : (V B

α )2 → B and dom(σ)× {τ} ⊆ dom(g),

F0(g, τ, σ) = 0B otherwise;

{
F1(g, τ, σ) =

∧
η∈dom(τ)(τ(η)→ g(η, σ)) if ∃α g : (V B

α )2 → B and dom(τ)× {σ} ⊆ dom(g),

F1(g, τ, σ) = 0B otherwise.

Now let G : (V B)2 → B3 be defined by transfinite recursion by the following
clauses:

G(τ, σ) =(G0(τ, σ), G1(τ, σ), G2(τ, σ))

where

G0(τ, σ) = F0(G2 � dom(σ)× {τ} , τ, σ),

G1(τ, σ) = F1(G0 � dom(τ)× {σ} , τ, σ),

G2(τ, σ) = F1(G0 � dom(σ)× {τ} , τ, σ) ∧ F1(G0 � dom(σ)× {τ} , σ, τ).

We leave to the reader to check that such a G is a definable class in V in the
parameter (B,∧,∨,¬, 0B, 1B), and that G0(τ, σ) = Jτ ∈ σK, G1(τ, σ) = Jτ ⊆ σK,
G2(τ, σ) = Jτ = σK.

3The square order <2 is given by (α, β) <2 (γ, δ) iff max {α, β} < max {γ, δ} or max {α, β} =
max {γ, δ} and (α, β) is lexicographically below (γ, δ).
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It can also be observed that the relations Jτ ∈ σK and Jτ ⊆ σK are ∆1-definable in the parameter

B and thus are absolute between M and V if M is a transitive model of ZFC to which B belongs.

However this is slightly more subtle since B could be a complete boolean algebra in M while it

is not such in V , thus it is less transparent why the definition of Jτ ∈ σK and Jτ ⊆ σK which are

using in an essential way the completeness of B can even be formulated in V where B might not

be a complete boolean algebra. We may come back to this point later on when we will need to

clarify it. The key observation to solve this issue being that M |= b =
∨

BA iff V |= b =
∨

BA for

all A ∈M ∩ P(B).

Theorem 6.1.27. V B is a boolean valued model for set theory.

Proof. We have to check that V B satisfies the four clauses of Definition 5.1.1, and the
two additional items of Definition 6.1.1, i.e. we have to show that, for all τ, σ, η ∈ V B:

1. Jτ = τK = 1.

2. Jτ = σK = Jσ = τK.

3. Jτ = σK ∧ Jσ = ηK ≤ Jτ = ηK.

4. Jτ = σK ∧ Jσ R ηK ≤ Jτ R ηK, where R ∈ {∈,⊆}.

5. Jτ = σK ∧ Jη R τK ≤ Jη R σK, where R ∈ {∈,⊆}.

6. Jτ ⊆ σK ∧ Jσ ⊆ τK = Jτ = σK.

7. Jτ ∈ σK ∧ Jσ ⊆ ηK ≤ Jτ ∈ ηK.

The proof of item 1 is by induction on rk(τ) and we do it rightaway. We have:

Jτ ⊆ τK =
∧

σ∈dom(τ)

(¬τ(σ) ∨ Jσ ∈ τK) =

∧
σ∈dom(τ)

(¬τ(σ) ∨ (
∨

u∈dom(τ)

Jσ = uK ∧ τ(u))) ≥
∧

σ∈dom(τ)

(¬τ(σ) ∨ (Jσ = σK ∧ τ(σ))).

But Jσ = σK = 1, because rk(σ) is below rk(τ) and we can apply the inductive
assumptions. Thus:∧

σ∈dom(τ)

(¬τ(σ) ∨ (Jσ = σK ∧ τ(σ))) =
∧

σ∈dom(τ)

(¬τ(σ) ∨ τ(σ)) = 1,

i.e. Jτ = τK = 1 as was to be shown.

Items 2 and 6 follow immediately from the definitions.
Next observe that if we can prove

Jτ ⊆ σK ∧ Jσ ⊆ ηK ≤ Jτ ⊆ ηK (6.2)

for all triples (τ, σ, η) we also get items 3, as well as 4, 5 for the case of R being ⊆,
since:

Jτ = σK ∧ Jσ ⊆ ηK ≤ Jτ ⊆ σK ∧ Jσ ⊆ ηK ≤ Jτ ⊆ ηK
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applying 6.2 to the triple (τ, σ, η) in the last inequality, which yields 4 for the case R
being ⊆. Similarly

Jτ = σK ∧ Jη ⊆ σK ≤ Jτ ⊆ σK ∧ Jη ⊆ σK ≤ Jη ⊆ τK ,

applying 6.2 to the triple (η, σ, τ) in the last inequality to infer 5 for the case R being
⊆. 3 follows from 6.2 by a similar argument, left to the reader.

Next if we can prove 7 for all triples (τ, σ, η), we get 5 for the case of R being ∈,
since

Jτ = σK ∧ Jη ∈ τK ≤ Jτ ⊆ σK ∧ Jη ∈ τK ≤ Jη ∈ σK

applying 7 to triple (η, τ, σ) in the last of the above inequalities.
Hence it suffices to prove 7, 6.2, 4 for the case of R being ∈, i.e. the following

three items:

(a) Jτ ∈ σK ∧ Jσ ⊆ ηK ≤ Jτ ∈ ηK

(b) Jτ = σK ∧ Jτ ∈ ηK ≤ Jσ ∈ ηK

(c) Jτ ⊆ σK ∧ Jσ ⊆ ηK ≤ Jτ ⊆ ηK

We will prove (a), (b), (c) by means of a nested induction on the triples
(rk(τ), rk(σ), rk(η)) ordered by the cube well-order4 on Ord3; we will do the in-
duction for (a), (b), (c) simultaneously; to prove each of these items for some triple
of B-names, we will assume that all three properties (a), (b), (c) hold for all triples
of B-names of lower rank in the cube ordering.

We will also use the following observation:
If (a), (b), (c) hold for all triples up to a given rank in the cube order, we get that

3, 4, 5, 6, 7 hold for all these triples.
This is the case since the arguments we gave above leading from any of (a),

(b), (c) to some of 3, 4, 5, 6, 7 can be repeated verbatim for the triples at hand
since no inductive assumption is needed to carry these arguments.

(a): Jτ ∈ σK ∧ Jσ ⊆ ηK is equal to∨
σ0∈dom(σ)

(Jτ = σ0K ∧ σ(σ0)) ∧
∧

σ1∈dom(σ)

(¬σ(σ1) ∨ Jσ1 ∈ ηK).

The latter is equal to∨
σ0∈dom(σ)

∧
σ1∈dom(σ)

[(Jτ = σ0K∧ σ(σ0)∧¬σ(σ1))∨ (Jτ = σ0K∧ σ(σ0)∧ Jσ1 ∈ ηK)].

Now σ(σ0) ∧ ¬σ(σ0)) = 0 for any σ0 ∈ dom(σ) and σ0, σ1 both range among
dom(σ). Hence for all σ0 ∈ dom(σ)∧

σ1∈dom(σ)

[(Jτ = σ0K ∧ σ(σ0) ∧ ¬σ(σ1)) ∨ (Jτ = σ0K ∧ σ(σ0) ∧ Jσ1 ∈ ηK)] ≤

≤ Jτ = σ0K ∧ σ(σ0) ∧ Jσ0 ∈ ηK ≤
≤ Jτ = σ0K ∧ Jσ0 ∈ ηK.

4The cube order <3 is given by (α, β, γ) <2 (η, δ, ν) iff max {α, β, γ} < max {η, δ, ν} or
max {α, β, γ} = max {η, δ, ν} and (α, β, γ) is lexicographically below (η, δ, ν).
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This gives that:

Jτ ∈ σK ∧ Jσ ⊆ ηK ≤

≤
∨

σ0∈dom(σ)

Jτ = σ0K ∧ Jσ0 ∈ ηK ≤

≤
∨

σ0∈dom(σ)

Jτ ∈ ηK =

=Jτ ∈ ηK.

For the last inequality we have used the inductive hypotesis (b) on the triple
(τ, σ0, η) which is below the triple (τ, σ, η) in the cube order on Ord3.

(b): Let t ∈ dom(η), we have:

Jσ = τK ∧ Jτ = tK ∧ η(t) ≤ Jσ = tK ∧ η(t)

applying the inductive assumption on item 3 to the triple (σ, τ, t) which is
below the triple (σ, τ, η) in the cube order. Thus:

Jτ = σK ∧ Jσ ∈ ηK =

=Jσ = τK ∧ Jσ ∈ ηK =

=Jσ = τK ∧ (
∨

t∈dom(η)

Jτ = tK ∧ η(t)) =

=
∨

t∈dom(η)

(Jσ = τK ∧ Jτ = tK ∧ η(t)) ≤

≤
∨

t∈dom(η)

(Jσ = tK ∧ η(t)) =

=Jσ ∈ ηK.

(c): Let t ∈ dom(τ). We can apply the inductive assumption (a) on the triple
(t, σ, η) which is below the triple (τ, σ, η) in the cube order on Ord3 to get

Jt ∈ σK ∧ Jσ ⊆ ηK ≤ Jt ∈ ηK.

This gives that

Jτ ⊆ ηK =
∧

t∈dom(τ)

τ(t)→ Jt ∈ ηK ≥
∧

t∈dom(τ)

τ(t)→ (Jt ∈ σK ∧ Jσ ⊆ ηK).

The latter is equal to

(
∧

t∈dom(τ)

τ(t)→ Jt ∈ σK) ∧ (
∧

t∈dom(τ)

τ(t)→ Jσ ⊆ ηK).

Now observe that

(
∧

t∈dom(τ)

τ(t)→ Jσ ⊆ ηK) = Jσ ⊆ ηK ∨ (
∧

t∈dom(τ)

¬τ(t)) ≥ Jσ ⊆ ηK,



6.1. BOOLEAN VALUED MODELS FOR SET THEORY 101

while ∧
t∈dom(τ)

τ(t)→ Jt ∈ σK = Jτ ⊆ σK.

We conclude that
Jτ ⊆ ηK ≥ Jτ ⊆ σK ∧ Jσ ⊆ ηK,

as was to be shown.

The proof is complete.

Remark 6.1.28. The above proof can be formalized in the following manner: letting G :
(V B)2 → B3 the class function defining the relations Jτ = σK = G0(τ, σ), Jτ ⊆ σK =
G1(τ, σ), Jτ = σK = G2(τ, σ), one shows by recursion on the appropriate (pair or
triple of) rank(s) that

1. G1(τ, τ) = G2(τ, τ) = 1B,

2. G2(τ, σ) = G2(σ, τ),

3. G1(τ, σ) ∧G1(σ, τ) = G2(σ, τ),

4. G2(τ, σ) ∧G2(σ, η) ≤ G2(η, τ),

5. G2(τ, σ) ∧Gj(σ, η) ≤ Gj(τ, η) for j = 0, 1,

6. G2(τ, σ) ∧Gj(τ, η) ≤ Gj(σ, η) for j = 0, 1,

7. G0(τ, σ) ∧G1(σ, η) ≤ G1(τ, η).

Once we have shown that in V the class V B with the classes G0, G1, G2 for
∈B,⊆B,=B satisfies the clauses for a boolean valued model given in Def. 5.1.1, we can
give an interpretation to all formulae of the first order language {∈,⊆,=} assigning
by recursion to each formula φ its boolean satisfaction class Gφ as follows:

Definition 6.1.29. For each formula φ(x0, . . . , xn) in the first order language
{∈,⊆,=}, we let

Gφ :(V B)n → B (τ0, . . . , τn) 7→ Jφ(τ0, . . . , τn)KB

be the class defined by the requirements:

Jψ(τ0, . . . τn)KB ∧B Jθ(τ0, . . . , τm)KB = Jψ(τ0, . . . τn) ∧ θ(τ0, . . . , τm)KB .

Jψ(τ0, . . . τn)KB ∨B Jθ(τ0, . . . , τm)KB = Jψ(τ0, . . . τn) ∨ θ(τ0, . . . , τm)KB .

¬B Jψ(τ0, . . . τn)KB = J¬ψ(τ0, . . . τn)KB .

J∃xjψ(τ0, . . . , τj−1, x, τj, . . . , τn)KB =
∨
σ∈V B

Jψ(τ0, . . . , τj−1, σ, τj, . . . , τn)KB
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Remark 6.1.30. More formally for each each formula φ(x0, . . . , xn) in the first order
language {∈,⊆,=}, we let:

φ ≡ x R y for R among ∈,⊆,=:

Gφ = {(τ0, τ1, b) : V |= Jτ0 R τ1KB = b} .

φ ≡ ψ(x0, . . . , xn) ∧ θ(x0, . . . , xm): We let l = max {m,n} and set

Gφ = {(τ0, . . . , τl, b) : V |= ∃c, d ∈ B (b = c ∧B d) ∧Gψ(τ0, . . . , τn, c) ∧Gθ(τ0, . . . , τm, d)} .

I.e.:

b = Jψ(τ0, . . . τn)KB ∧B Jθ(τ0, . . . , τm)KB .

φ ≡ ψ(x0, . . . , xn) ∨ θ(x0, . . . , xm): We let l = max {m,n} and set

Gφ = {(τ0, . . . , τl, b) : V |= ∃c, d ∈ B (b = c ∨B d) ∧Gψ(τ0, . . . , τn, c) ∧Gθ(τ0, . . . , τm, d)} .

I.e.:

b = Jψ(τ0, . . . τn)KB ∨B Jθ(τ0, . . . , τm)KB .

φ ≡ ¬ψ(x0, . . . , xn):

Gφ = {(τ0, . . . , τl, b) : V |= ∃c ∈ B (b = ¬c) ∧Gψ(τ0, . . . , τn, c)} .

I.e.:

b = ¬ Jψ(τ0, . . . τn)KB .

φ ≡ ∃xjψ(x0, . . . , xn): Letting

θ(x0, . . . , xj−1, xj+1, . . . , xn, z) ≡ ∀xj[∃y(Gψ(x0, . . . , xj−1, xj, xj+1, . . . , xn, y)]→ z ≥B y,

set Gφ to be the class of (τ0, . . . , τj−1, τj+1 . . . , τn, c) such that

V |= ∃σ Gψ(τ0, . . . , τj−1, σ, τj+1, . . . , τn, c)

∧θ(τ0, . . . τj−1, τj+1, . . . , τn, c).

I.e. (τ0, . . . , τj−1, τj+1 . . . , τn, c) ∈ Gφ iff

c =
∨
σ∈V B

Jψ(τ0, . . . τj−1, σ, τj+1, . . . , τn)KB

With these definitions we have that
〈
V B,∈B,⊆B,=B

〉
is a B-valued model. Note

also that each class Gφ is a definable class in V , but (it can be shown that) the
collection of classes {Gφ : φ a formula of L} cannot be represented as a definable
class in V . We now show that

〈
V B,∈B,⊆B,=B

〉
is full, which formally amounts to

show that
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For all formula φ ≡ ∃xjψ(x0, . . . , xn) and all (τ0, . . . , τj−1, τj+1, . . . τn, b) ∈
Gφ, there exists σ ∈ V B such that

(τ0, . . . , τj−1, σ, τj+1, . . . τn, b) ∈ Gψ,

and
b ≥ d

for all d such that for some τ ∈ V B

(τ0, . . . , τj−1, τ, τj+1, . . . τn, d) ∈ Gψ.

and informally to assert that∨
τ∈V B

Jψ(τ0, . . . , τj−1, τ, τj+1, . . . τn)K = Jψ(τ0, . . . , τj−1, σ, τj+1, . . . τn)K

for some σ ∈ V B.
Towards this aim, we need the following basic properties of boolean algebras:

Exercise 6.1.31. In a boolean algebra B, for any a, b, c ∈ B we have:

c ∧ a ≤ c ∧ b⇔ c ≤ a→ b.

Lemma 6.1.32 (Mixing Lemma). Let B be a boolean algebra. Let A be an antichain
of B and for any a ∈ A let τa be an element of V B. Then there exists some τ ∈ V B

such that a ≤ Jτ = τaK for all a ∈ A.

Proof. Let D =
⋃
a∈A dom(τa) and, for every t ∈ D, let

τ(t) =
∨
{a ∧ τa(t) : a ∈ A ∧ t ∈ dom(τa)}.

Since A is an antichain and by the definition of τ(t), we have that

a ∧ τ(t) = a ∧ τa(t)

for any a ∈ A and any t ∈ dom(τa). So, by exercise 6.1.31, for any a ∈ A,

For all t ∈ dom(τa) (a ≤ τa(t)↔ τ(t)). (6.3)

On the other hand

For all t ∈ D \ dom(τa) (a ∧ τ(t) = 0) (6.4)

holds since for such elements t

τ(t) =
∨
{τb(t) ∧ b : b 6= a, b ∈ A, t ∈ dom(τb)} ≤ (

∨
A) \ a.

Now we use 6.3 and 6.4 to obtain that:
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Claim 6.1.32.1.
a ≤ Jτa ⊆ τK

a ≤ Jτ ⊆ τaK.

Proof. We use equation 6.3 to infer that a ≤ Jτa ⊆ τK as follows: First of all

Jt ∈ τK ≥ τ(t)

for all t ∈ D = dom(τ), so we have:

a ≤ τa(t)→ τ(t) ≤ τa(t)→ Jt ∈ τK

for any a ∈ A and any t ∈ dom(τa) ⊆ D. So we have:

a ≤
∧

t∈dom(τa)

τa(t)→ τ(t) ≤
∧

t∈dom(τa)

τa(t)→ Jt ∈ τK = Jτa ⊆ τK.

This proves the first inequality of the claim.
To prove the second inequality of the claim it is enough to show that

a ≤ τ(t)→ Jt ∈ τaK

for all t ∈ D. We prove it using 6.4 as follows:

� If t ∈ D \ dom(τa), then 6.4 gives that

a ∧ τ(t) = 0.

If we combine it with exercise 6.1.31 we get that

a ≤ τ(t)→ b

for any b ∈ B and t ∈ D \ dom(τa). In particular

For all t ∈ D \ dom(τa) a ≤ τ(t)→ Jt ∈ τaK. (6.5)

� If t ∈ dom(τa) we can follow the pattern we have seen in the proof of the first
inequality to get using 6.3:

For all t ∈ dom(τa) (a ≤ τ(t)→ Jt ∈ τaK). (6.6)

Thus by 6.5,6.6 we get

a ≤
∧

t∈dom(τ)

τ(t)→ Jt ∈ τaK = Jτ ⊆ τaK.

The second inequality of the Claim is proved.

The proof of the Mixing lemma is completed.
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The following would be an instance of Proposition 5.3.12 if V B were a set. We
include a proof since V B is not a set.

Theorem 6.1.33 (Maximum Principle). For any boolean algebra B, V B is full, i.e.
for all formulae ϕ(x, ȳ) and τ̄ ∈ (V B)<ω

J∃xϕ(x, τ̄)K = Jϕ(σ, τ̄)K

for some σ ∈ V B.

Proof.
J∃xϕ(x, τ̄)K ≥ Jϕ(σ, τ̄)K

holds always. So we want to show that

Jϕ(σ, τ̄)K ≥ J∃xϕ(x, τ̄)K

for some σ ∈ V B. Let
u0 = J∃xϕ(x, τ̄)K > 0B.

Let
D = {u ∈ B+ : there is some σu ∈ V B such that u ≤ Jϕ(σu, τ̄)K}.

D is dense and open below u0 in B+. Let A be a maximal antichain of D (A exists
applying exercise 4.2.2 to the boolean algebra B � u0); clearly∨

{u : u ∈ A} = u0.

Now we can appeal to the Mixing lemma to find σ ∈ V B such that Jσ = σuK ≥ u for
any u ∈ A. Thus for each u ∈ A we have

u ≤ Jσ = σuK ∧ Jϕ(σu, τ̄)K ≤ Jϕ(σ, τ̄)K.

Therefore
J∃xϕ(x, τ̄)K = u0 =

∨
A ≤ Jϕ(σ, τ̄)K.

The proof is complete.

The remainder of this section is not of key importance for the development of our core results.

Fact 6.1.34. V B satisfies the Axiom of extensionality.

Proof. Let τ, σ ∈ V B. We want to prove that:

J∀u(u ∈ τ ↔ u ∈ σ)→ τ = σK = 1.

By lemma 5.1.7, it is enough to show that:

J∀u(u ∈ τ ↔ u ∈ σ)K ≤ Jτ = σK.

We observe that if a ≤ a′ then (a′ → b) ≤ (a→ b). Thus for any u ∈ dom(τ) we have

(Ju ∈ τK→ Ju ∈ σK) ≤ (τ(u)→ Ju ∈ σK),

and therefore
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∧
u∈V B

(Ju ∈ τK→ Ju ∈ σK) ≤
∧

u∈dom(τ)

(Ju ∈ τK→ Ju ∈ σK) ≤

≤
∧

u∈dom(τ)

(τ(u)→ Ju ∈ σK)

The left-hand side of the above equation is equal to J∀u(u ∈ τ → u ∈ σ)K, while the right-hand side
is the definition of Jτ ⊆ σK. Consequently:

J∀u(u ∈ τ ↔ u ∈ σ)K ≤ Jτ = σK.

The proof is completed.

Summing up, so far we have proved that V B is a full boolean valued model for set theory which
satisfies the Axiom of Extensionality. We will later see that it satisfies all the axioms of ZFC.

We now connect the B-names for elements of 2ω with the boolean valued model C(St(B), 2ω)
we examined in Section 5.4.3.

Definition 6.1.35. Assume
q
τ : λ̌→ 2̌

y
B

= 1B. We define fτ : St(B)→ 2λ as

fτ (G)(α) = i ⇐⇒
q
τ(α̌) = ǐ

y
∈ G.

Now assume f : St(B)→ 2λ is a continuous function, then we define

τf = {〈 ˇ(α, i), {G : f(G)(α) = i}〉 : α < λ, i < 2} ∈MB.

Note that we consider 2λ as a topological space with the product topology. Observe also that

{G : f(G)(α) = i} = f−1[Nα,i],

where Nα,i = {g ∈ 2λ : g(α) = i}. Since f is continuous then f−1[Nα,i] is clopen and so it is an
element of the Boolean algebra.

Proposition 6.1.36. Assume
q
τ : λ̌→ 2̌

y
B

= 1B and f : St(B)→ 2λ is continuous. Then

1. τf ∈ V B;

2. fτ : St(B)→ 2λ is continuous;

3. Jτfτ = τKB = 1B;

4. fτf = f .

Proof. 1. By definition.

2. We need just to check that the preimage of a basic open set is a basic open set. Fix α, i,

f−1τ [Nα,i] = {G :
q
τ(α̌) = ǐ

y
∈ G} ∈ Cl(()St(B)),

since by definition

Jτf (α) = iK ∈ G ⇐⇒ G ∈ {H : f(H)(α) = i} ⇐⇒ f(G)(α) = i.

3. By definition for any G

Jτfτ (α) = iK ∈ G ⇐⇒ fτ (G)(α) = i ⇐⇒ Jτ(α) = iK ∈ G.

Then for any α, i q
τfτ (α̌) = ǐ

y
=

q
τ(α̌) = ǐ

y
.

Therefore Jτfτ = τKB = 1B.

4. As in the proof of point 2 we can observe that

Jτf (α) = iK ∈ G ⇐⇒ G ∈ {H : f(H)(α) = i} ⇐⇒ f(G)(α) = i.

Moreover we have that

fτf (G)(α) = i ⇐⇒ Jτf (α) = iK ∈ G,

hence we are done.
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6.2 Cohen’s forcing theorem

The goal of this section is to give a positive answer to the questions of section 6.1.1
regarding the definability inside M of the forcing relation. We show that for a
countable transitive model M of ZFC and a B ∈M which is in M a cba, the forcing
relation defined externally in Section 6.1.1 is induced by the boolean valued semantic
defined internally on MB (by relativizing to M all the results of Section 6.1.2 for V B)
and allows to control the theory of the models M [G] we introduced in Section 6.1.1.
We will also give examples of how this identification can greatly simplify several
computations.

Lemma 6.2.1. Assume M ∈ V is a transitive set such that M � ZFC and B ∈M
is such that M models B is a complete boolean algebra. Then V models that〈

MB = (V B)M , (∈B)M , (=B)M , (⊆B)M
〉

is a full B-valued model.

Notice that this occurs regardless of the fact that B is a complete boolean algebra
in V , which is never the case if B is infinite and M is countable (see exercise 6.1.15).

Proof. Since M is a model of ZFC, Theorem 6.1.27 applied in M shows that M
models that ∈B,=B,⊆B are binary relations on the class MB satisfying the clauses
of 5.1.1. In particular V models that〈

MB, (∈B)M , (=B)M , (⊆B)M
〉

is a B-valued model. Moreover by the Mixing Lemma 6.1.32 and the Maximum
Principle 6.1.33 applied in M (which is a model of ZFC), we get that for all formula
φ(x0, . . . , xn) and all τ1, . . . , τn ∈M , there exists a τ0 ∈M such that

M |= Jφ(τ0, τ1, . . . , τn)KB =
∨

σ∈MB

Jφ(σ, τ1, . . . , τn)KB ,

i.e.
V |= Jφ(τ0, τ1, . . . , τn)KMB =

∨
σ∈MB

Jφ(σ, τ1, . . . , τn)KMB .

In particular V models that〈
MB, (∈B)M , (=B)M , (⊆B)M

〉
is a full B-valued model.

Notation 6.2.2. Let M � ZFC be transitive and B ∈M be such that M models B
is a complete boolean algebra. Let G ⊆ B be any ultrafilter in V . Denote by RG the
binary relation (RB)M/G on MB/G for R among =,∈,⊆.

AssumingM,B, G are as in the Notation above, since
〈
MB, (RB)M : R ∈ {=,⊆,∈}

〉
is a full B-valued model in V , and by  Loś Theorem 5.3.7, we get that (MB/G,∈G,⊆G)
is a Tarski model for the language L = {∈,⊆} such that

(MB/G,∈G,⊆G) |= φ

if and only if JφKMB ∈ G.
A pair of comments:
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- In the definition of MB/G, it is possible that G /∈ M . However, also in this
case the definition makes sense.

- There is no reason why the classes [x]G should be definable in M if G 6∈ M ,
thus MB/G in general is not a definable class in M . We shall see that this is
exactly what occurs if G is M -generic for an atomless boolean algebra.

- If G ∈ M , then the classes [x]G are definable in M and in M one can define
classes which define an isomorphic copy of the structure (MB/G,∈G,⊆G) as
the extension of a formula in the parameter B.

- We have a clear meaning of what is the boolean valued model〈
MB, (∈B)M , (=B)M , (⊆B)M

〉
in V , since all the relevant objects are now sets in V . On the other hand
inside M , we can speak of (i.e. formalize) the satisfaction predicate for each
single formula of the language (as a class definable in M), but we cannot speak
simultaneously inside M of the family of classes of M given by the satisfaction
predicates for formulae of the language.

- From now on for the sake of simplicity, we denote by JφK the boolean value
JφKMB as M ranges over countable transitive models of ZFC and B ∈M among
the (complete in M) boolean algebras of M .

We now start to plug in some of the material developed in Chapter 4. First of
all, by Lemma 4.2.9, if M is a countable transitive model of ZFC and B ∈ M is a
boolean algebra, there exists an ultrafilter G M -generic for B.

We want to study which is the relationship between M [G] and MB/G. These
observations were made in Section 6.1.1:

Assume M is a countable transitive model of ZFC and B ∈ M is an
atomless boolean algebra which M models to be complete. Then:

� The family of M -generic filters in St(B) forms a dense subset of
St(B), i.e. for any b ∈ B+, there exists an ultrafilter G M -generic,
with b ∈ G (i.e. G ∈ Nb), and each such G /∈M .

� For any G M -generic of B we can define in V by recursion on MB:

τG = {σG : τ(σ) ∈ G}.

for any given τ ∈MB.

We also define:
M [G] = {τG : τ ∈MB}.

M [G] is transitive, M ⊆M [G], G ∈M [G].

We will now proceed to identify the models (M [G],∈) and (MB/G,∈G) under
the assumption that G is M -generic for some complete boolean algebra B ∈M . This
is the content of Theorem 6.2.4 below. In case G ∈ St(B) is not M -generic, M [G] is
still a transitive set and (MB/G,∈G) is a well defined Tarski model, but it can be
shown that the two structures cannot be isomorphic.
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Lemma 6.2.3. Let M � ZFC, M ∈ V and transitive. Let B be a cba in M . Assume
G ∈ V is an M-generic filter for B. The following holds:

(a) Assume b ∈ G, X ∈M , and X ⊆ B is predense below b. Then G ∩X 6= ∅.

(b) Assume A ∈M and A ⊆ G. Then
∧
A ∈ G.

Proof. We proceed as follows:

(a): Let
E = {c ∈ B : M |= c ≤ ¬b ∨ (c ≤ b ∧ c ∈↓ X)}.

We leave to the reader to check that E ∈M , M models that E is dense and
that c ∈ G ∩ E if c ≤ b and c ∈↓ X.

(b) Suppose A ∈ M , A ⊆ G and M �
∧
A = c. Since M satisfies the Axiom of

choice, we can write A = {aξ : ξ < γ} ∈M for some γ ∈M . Let bξ =
∧
α<ξ aα.

The sequence 〈bξ : ξ ≤ γ〉 ∈ M is decreasing, and c = bγ. Let ξ ≤ γ be the
least ordinal such that bξ /∈ G. Then ¬bξ ∈ G. Set cα = ¬bξ ∧ bα. Then cα ∈ G
for all α < ξ, {cα : α < ξ} ∈ M and

∧
α<ξ cα = 0G. Thus

∨
α<ξ ¬cα = 1B and

{¬cα : α < ξ} ∈ M as well. Since G is M -generic, ¬cα ∈ G for some α < ξ.
Then cα ∧ ¬cα = 0B ∈ G a contradiction which proves the lemma.

Theorem 6.2.4. Let M be a transitive model of ZFC, B be a complete boolean algebra
in M , and G be an M-generic filter for B. Then

πMG :MB/G →M [G]

[τ ]G 7→ τG

defines an isomorphism between the structures (MB/G,∈G) and (M [G],∈). In par-
ticular πMG is the Mostowski collapse of the well-founded extensional relation ∈G on
MB/G.

Proof. It suffices to prove:

1. Jτ ∈ σK ∈ G⇔ τG ∈ σG.

2. Jτ = σK ∈ G⇔ τG = σG.

We prove both items by induction on (rkB(τ), rkB(σ)) with respect to the square
order on Ord2.

1. (⇒) Suppose Jτ ∈ σK ∈ G. By definition

Jτ ∈ σK =
∨

u∈dom(σ)

σ(u) ∧ Ju = τK.

Let bu = σ(u)∧ Jτ = uK. Notice that {bu : u ∈ dom(σ)} ∈M is pre-dense
under Jτ ∈ σK ∈ G. So5 we can appeal to (a) of lemma 6.2.3 to find

5Everywhere in this proof we appeal to Lemma 6.2.3, we are crucially using the assumption that
G is M -generic.
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u ∈ dom(σ) such that bu = Jτ = uK ∧ σ(u) ∈ G. Thus Jτ = uK ∈ G, so
we can apply the inductive assumption 2 on the pair (τ, u) which has
lower rank than (τ, σ) in the square order on Ord2. We conclude that
τG = uG. Now observe that uG ∈ σG = {vG : σ(v) ∈ G} since u ∈ dom(σ)
and σ(u) ∈ G.

(⇐) Suppose τG ∈ σG. Then there is u ∈ dom(σ) such that σ(u) ∈ G and
τG = uG. Therefore, applying again 2 on the pair (τ, u) which has lower
rank than the pair (τ, σ), we get that Jτ = uK ∈ G. So

Jτ = uK ∧ σ(u) ∈ G

as well. Now we can observe that

Jτ = uK ∧ σ(u) ≤
∨

v∈dom(σ)

Jτ = vK ∧ σ(v) = Jτ ∈ σK.

Therefore Jτ ∈ σK ∈ G.

2. (⇒) Suppose Jτ = σK ∈ G. Observe that Jτ ⊆ σK ∈ G gives that

¬τ(u) ∨ Ju ∈ σK ≥ Jτ ⊆ σK

is also in G for all u ∈ dom(τ). This gives that Ju ∈ σK ∈ G for all
u ∈ dom(τ) such that τ(u) ∈ G. Since the pairs (u, σ) are of lower rank
than the pair (τ, σ) for all such u we can apply the first item to these pairs
to get that uG ∈ σG for all u ∈ dom(τ) such that τ(u) ∈ G. This gives
that τG ⊆ σG. The other inclusion is proved in exactly the same manner.

(⇐) Suppose Jτ 6= σK ∈ G. W.l.o.g. we can suppose that Jτ 6⊆ σK ∈ G. But

Jτ 6⊆ σK =
∨

u∈dom(τ)

τ(u) ∧ ¬Ju ∈ σK.

Since G is M -generic we can appeal to (a) of lemma 6.2.3 to find u ∈
dom(τ) such that

τ(u) ∧ Ju /∈ σK ∈ G.

Applying the first item on the pair (u, σ) which has lower rank then (τ, σ)
we get that uG /∈ σG, while uG ∈ τG since τ(u) ∈ G. Hence τG 6⊆ σG,
which also gives that τG 6= σG.

The proof is complete.

Summing up, we can prove:

Theorem 6.2.5 (Cohen’s forcing theorem). Let M be a countable transitive
model of ZFC and B ∈M be a boolean algebra which M models to be complete. Then
for all formulae φ(x1, . . . , xn) in the free variables x1, . . . , xn and all τ1, . . . , τn ∈MB:
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1. Jϕ(τ1, . . . , τn)K ≥ b if and only if for all G M-generic filter for B with b ∈ G
we have

M [G] � ϕ((τ1)G, . . . , (τn)G).

2. M [G] � ϕ((τ1)G, . . . , (τn)G) for some G M-generic filter for B if and only if
Jϕ(τ1, . . . , τn)K ∈ G.

Proof. We sketch just some parts of the proof leaving the others as an instructive
exercise for the reader.

1. (⇒) Suppose b ≤ JφK. Let G be M -generic for B with b ∈ G. Then
Jφ(τ1, . . . , τn)K ∈ G as well, thus

MB/G |= φ([τ1]G, . . . , [τn]G)

by Theorem 5.3.7. Since the map [τ ]G 7→ τG is an isomorphism, we also
get that

M [G] |= φ((τ1)G, . . . , (τn)G).

(⇐) is left to the reader.

2. It is an immediate consequence of the isomorphism of the structures MB/G
and M [G] and of Theorem 5.3.7 applied in V to the full B-valued model MB.

The proof is complete.

Definition 6.2.6 (Cohen’s forcing relation). Let M be a countable transitive model
of ZFC and B ∈M be a complete boolean algebra. For each formula φ(x0, . . . , xn),
τ0, . . . , τn ∈MB and b ∈ B+ the forcing relation is defined in V by

b 
 φ(τ0, . . . , τn) (b forces φ(τ0, . . . , τn))

if and only if

M [K] |= φ((τ0)K , . . . , (τn)K) for all M -generic filters K for B such that b ∈ K.

Lemma 6.2.7. Let M be a countable transitive model of ZFC and B ∈ M be a
complete boolean algebra. For each formula φ(x0, . . . , xn), τ0, . . . , τn ∈ MB and
b ∈ B+ the following are equivalent:

1. b 
 φ(τ0, . . . , τn).

2. The set of K M-generic for B such that b ∈ K and

M [K] |= φ((τ0)K , . . . , (τn)K)

is dense in Nb.

3. M |= b ≤B Jφ(τ0, . . . , τn)K.

Proof. A useful exercise for the reader.

We are almost ready to prove that every axiom of ZFC is valid in MB and that
CH is independent from the ZFC-axioms (more precisely from the theory ZFC+there
exists a countable transitive model of ZFC. To do this we will often appeal to Cohen’s
forcing theorem. So let us explain how we are going to use it.
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6.2.1 How to use Cohen’s forcing theorem

Recurring examples of how we will use of the Cohen forcing theorem is the following:

Example 6.2.8. Consider a forcing statement of the following form:

r
ḟ : γ̌ → β̌ is a function

z
> 0B.

We define for each α < γ a set in M

Aα =
{
bη ∈ B : M |= bη =

r
ḟ : γ̌ → β̌ is a function

z
∧

r
ḟ(α̌) = η̌

z}
∈M.

We want to argue that M models that Aα is an antichain, proving the stronger
assertion stating that η 6= ν entails that bη ∧ bν = 0B.

Towards this aim we proceed as follows: we assume by contradiction that we can
find η 6= ν < β such that c = bη ∧ bν > 0B. We pick G M -generic with c ∈ G and we

get that
r
ḟ : γ̌ → β̌ is a function

z
,
r
ḟ(α̌) = η̌

z
,
r
ḟ(α̌) = ν̌

z
are all in G. Then by

the forcing theorem

M [G] |= ḟG : γ → β is a function,

M [G] |= ḟG(α) = η,

M [G] |= ḟG(α) = ν.

This gives that

M [G] |= ν = η,

and thus that ν = η, which contradicts our assumpion that ν 6= η. A direct argument
carried entirely in M (without ever appealing to the forcing theorem) yielding that
Aα is an antichain can also be found, but is much more convoluted.

Lemma 6.2.9. Assume M |= ZFC and is countable, and B ∈ M is a cba in M .
Then for all τ, σ ∈MB, there exists η : dom(σ)→ B in MB such that

Jτ ⊆ σK ≤ Jτ = ηK .

Proof. Given τ, σ ∈MB, set

η = {〈u, σ(u) ∧ Ju ∈ σ ↔ u ∈ τK〉 : u ∈ dom(σ)} ∈MB.

First of all we prove that

Jη ⊆ σK = 1B :

Fix G M -generic for B, pick a ∈ ηG, then a = uG for some u ∈ dom(η) = dom(σ)
with Ju ∈ σ ↔ u ∈ τK ∧ σ(u) ∈ G. Hence σ(u) ∈ G as well, giving that uG ∈ σG.
Since this holds for all a ∈ ηG, we conclude that M [G] |= ηG ⊆ σG for all GM -generic
for B. We conclude by the forcing theorem.

Now assume G is M -generic for B with Jτ ⊆ σK ∈ G. We show that ηG = τG. By
the forcing theorem this suffices to prove the Lemma.
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ηG ⊆ τG Assume a ∈ ηG. Then a = uG for some u ∈ dom(η) = dom(σ) and
η(u) = Ju ∈ σ ↔ u ∈ τK ∧ σ(u) ∈ G. Since σ(u) ∈ G and

Ju ∈ σK =
∨
{v ∈ dom(σ) : Ju = vK ∧ σ(v)} ≥ Ju = uK ∧ σ(u) = σ(u) ∈ G,

we get that Ju ∈ σK ∈ G. Since Ju ∈ σ ↔ u ∈ τK ∈ G as well, we conclude that
Ju ∈ τK ∈ G as well, giving that uG ∈ τG by the forcing theorem.

ηG ⊇ τG assume a ∈ τG. Then a = vG for some v ∈ dom(τ) with τ(v) ∈ G. Since
Jτ ⊆ σK ∈ G, we get that M [G] |= τG ⊆ σG, hence we also get that a = uG for
some u ∈ dom(σ) with σ(u) ∈ G. We get that σ(u)∧τ(v)∧Ju = vK∧Jτ ⊆ σK ∈
G. Now:

� τ(v) ≤
∨
t∈dom(τ) Jv = tK ∧ τ(t) = Jv ∈ τK. Hence Jv ∈ τK ∈ G.

� Ju = vK ∈ G. Therefore Ju = vK ∧ Jv ∈ τK ∈ G as well, and

Ju ∈ τK ≥ Ju = vK ∧ Jv ∈ τK ∈ G.

Hence Ju ∈ τK ∈ G.

� σ(u) ≤
∨
t∈dom(σ) Ju = tK ∧ σ(t) = Ju ∈ σK. Hence Ju ∈ σK ∈ G.

We conclude that
Ju ∈ τK ∧ Ju ∈ σK ∈ G.

But
Ju ∈ τK ∧ Ju ∈ σK ≤ Ju ∈ τ ↔ u ∈ σK .

Hence
Ju ∈ τ ↔ u ∈ σK ∈ G

as well. Then σ(u) ∧ Ju ∈ τ ↔ u ∈ σK ∈ G, yielding that

a = uG ∈ ηG = {tG : t ∈ dom(σ) and σ(t) ∧ Jt ∈ τ ↔ t ∈ σK ∈ G} ,

as was to be shown.

6.3 Independence of CH

In this section we prove the independence of the Continuum Hypothesis from the
axioms of ZFC using the forcing method over a countable tansitive model M of ZFC.
We assume throughout this section that M [G] models ZFC whenever G is M -generic
for some B ∈ M which M models to be a complete boolean algebra. This will be
proved in full details in the next section (cfr.: 6.4). In order to appreciate the full
power of the forcing theorem, we believe it is more instructive to understand how
this theorem allows us to compute the truth value of specific statements in forcing
extensions of M (i.e. models of the form M [G] with G M -generic for a cba B ∈M).
This is what we do in this section using the forcing theorem to compute the truth
values of CH in two distinct forcing extensions of M .
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We first show that if G is M -generic for RO(2ω2×ω)M then CH fails in M [G]. Next
we show that there is B ∈M such that MB models CH. Combined with the results
of Section 6.4, these two proofs will give the indipendence of CH with respect to
the theory ZFC over the theory ZFC+there is a countable transitive model of ZFC.
It is possible to convert these proofs in a proof of the independence of CH from
ZFC rightaway from ZFC using arguments rooted in the reflection properties of V
(see [6, Sections IV.7, VII.1]).

6.3.1 A model of ¬CH
Lemma 6.3.1. Assume M is a countable transitive model of ZFC and M models
that B is a CCC complete boolean algebra. Then

M [G] |= cf(κ) = α⇔M |= cf(κ) = α

for all M generic filters G for B and α ≤ κ ∈ OrdM .

We limit ourselves to prove the following weak form of the Lemma which is
sufficient for our aims:

Lemma 6.3.2. Assume M is a countable transitive model of ZFC and M models
that B is a CCC complete boolean algebra. Then for all M generic filters G for B
and i = 0, 1, 2,

M [G] |= (ωi)
M is the i-th infinite regular cardinal,

where (ωi)
M is in M the (countable in V ) ordinal which M models to be the i-th

infinite cardinal.

Proof. The case i = 0 follows from the absoluteness of the statement ω is the least
infinite ordinal for transitive models of ZFC.

For the cases i = 1, 2 is enough to show the following:

Fact 6.3.3. Assume G is M-generic for B. Then M [G] models that every function
σG ∈M [G] from λ = (ωj)

M to κ = (ωj+1)M is bounded (i.e has range contained in
some β < (ωj+1)M) for each j = 0, 1.

For if this fact holds (ω1)M is the first uncountable ordinal of M [G] and (ω2)M is
the first cardinal larger than (ω1)M of M [G], whenever G is M -generic for B.

Proof. We prove in detail the case j = 0 and leave to the reader to prove the case
j = 1 or more generally the strong version of the Lemma.

Let σ ∈MB, and b ∈ G be such that M models

Jσ is a function from ω̌ to κ̌KB = b.

For every n < ω consider the set:

An = {β < κ : M |=
q
σ(ň) = β̌

y
> 0B}.
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Notice that the sequence {An : n < ω} ∈ M , since it is the extension in M of a
formula with parameters in M : Let

X =
{
〈n, β, c〉 : M |=

q
σ(ň) = β̌

y
= c > 0B

}
.

Then X ∈ M , since it is a subset of ω × κ × B defined by an application of the
comprehension axiom in M . Therefore for each n < ω, An ∈M as well, since

An = {β : ∃c 〈n, β, c〉 ∈ X} ,

and (An : n < ω) ∈M since

(An : n < ω) = {〈n, u〉 : M |= β ∈ u↔ ∃b 〈n, β, b〉 ∈ X} .

Thus {An : n < ω} = ran(〈An : n < ω〉) ∈M as well.

Claim 6.3.3.1. M models that every An is at most countable.
Moreover σH(n) ∈ An for all n < ω, and any H M-generic for B with

b = Jσ : ω̌ → κ̌ is a functionK ∈ H.

Proof. Let
Wn = {bnβ =

q
σ(ň) = β̌

y
∧ b : β ∈ An}.

Then:

Subclaim 6.3.3.1. The sequence {Wn : n < ω} ∈M , and M models that each Wn

is a countable antichain in M .

Proof. The first part of the subclaim is a useful exercise for the reader. For the
second part it is enough to show that M models that each Wn is an antichain. Since
M models B is CCC, we conclude that M models that each Wn is a countable
antichain.

Assume Wn is not an antichain and find γ 6= β ∈ An with c = bnγ ∧ bnβ > 0B. Let
H be M generic for B with c ∈ H. Since

c ≤ b = Jσ : ω̌ → κ̌ is a functionK ,

M [H] models that σH : ω → κ is a function by the forcing theorem. On the other
hand since

c ≤ bnβ ≤
q
σ(ň) = β̌

y
, bnγ ≤ Jσ(ň) = γ̌K

again by the forcing theorem, we get that σH(n) = β and σH(n) = γ. Since M [H]
models that σH is a function we get that β = γ, a contradiction.

To complete the proof of the Claim observe the following:

� For each n < ω the map φn : An → Wn given by β 7→ bnβ is in M , since

φn = {〈β, b〉 : 〈n, β, b〉 ∈ X} ,

and is injective: assume c = bnγ = bnβ, then pick H M -generic for B with c ∈M
to get that in M [H], σH : ω → κ is a function and γ = σH(n) = β. In
particular M |= γ = β as well.

Hence M models that An is countable, since it is mapped injectively in a
countable set by a map in M .
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� For each n < ω and H M -generic for B with

b = Jσ : ω̌ → κ̌ is a functionK ∈ H

we have that σH(n) ∈ An, since σH(n) = η iff Jσ(ň) = η̌K∧ b ∈ H ∩Wn, giving
that η ∈ An.

The proof of the Claim is completed.

To conclude the proof of the Fact, observe that M models that {An : n < ω} ∈
M is for M a countable family of countable subsets of (ω1)

M which is the least
uncountable ordinal for M . Hence M models that the union of the An is a countable
subset of (ω1)M .

We conclude that for some β < (ω1)M ,

M |=
⋃
{An : n < ω} ⊆ β < (ω1)M .

The Fact for the case j = 0 is proved since we get that in M [G]

σG[ω] ⊆ A ⊆ β < (ω1)M .

The proof of the Fact for the case j = 1 is obtained repeating verbatim the proof
of the Fact for j = 0, setting κ = (ω2)

M , and replacing all over ω with λ = (ω1)
M ,

(An : n < ω) with (Aα : α < λ) and (Wn : n < ω) with (Wα : α < λ), to argue
that each Wα is a countable antichain for M , and hence also that each Aα ∈ M
is a countable subset of κ for M . We can therefore conclude that M models that
A =

⋃
{Aα : α < λ} is a subset of (ω2)M of size at most (ω1)M , since it is the union

indexed by (ω1)M of sets which are countable for M . This gives that M models that
A ⊆ β for some β < (ω2)M and that M [H] models that σH(λ) ⊆ β < κ cannot be a
bijection of (ω1)M onto (ω2)M , concluding the proof of the Fact for j = 1 as well.

The proof of the Lemma is completed.

For the sake of completeness we add a proof of Lemma 6.3.1.

Proof. The statement cf(κ) ≤ α is a Σ1-property in the parameters α ≤ κ:

∃f (f ⊆ α× κ is a function ) ∧ (sup(f [α]) = κ).

If M models cf(κ) ≤ α, then M [G] models that cf(κ) ≤ α, since the witness in M of this property
is in M [G] as well. So it is enough to show that if M [G] models that cf(κ) ≤ α, then also M models
cf(κ) ≤ α. If this is the case we can easily conclude that

cf(κ)M = min{α : M |= cf(κ) ≤ α} = min{α : M [G] |= cf(κ) ≤ α} = cf(κ)M [G].

Towards a contradiction assume that κ is the least such that cf(κ)M 6= cf(κ)M [G].
First of all we claim that M models that cf(κ) is an uncountable regular cardinal. Else if M

models that cf(κ) = ω, we get that M [G] models that cf(κ)M [G] ≤ ω. But ω is the least possible
value for the cofinality of a limit ordinal, hence

M [G] |= cf(κ)M [G] = ω

as well, contradicting our assumption that κ is the least on which cf(κ)M 6= cf(κ)M [G].
Now in M [G] there is λ < cf(κ)M = η and σG : λ → κ with σ ∈ MB such that σG[λ] is

unbounded in κ.
It is enough to show the following:
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Fact 6.3.4. M [G] models that every function σG ∈M [G] from some λ < cf(κ)M into κ is bounded
(i.e has range contained in some β < κ).

Proof. Let σ ∈MB, and b ∈ G be such that M models

q
σ is a function from λ̌ to κ̌

y
B

= b.

For every α < λ consider the set:

Aα = {β < κ : M |=
q
σ(α̌) = β̌

y
> 0B}.

As in the proof of Lemma 6.3.2 we can argue that the following holds:

� {Aα : α < λ} ∈M .

� M models that every Aα is an at most countable subset of κ.

� For any H M -generic for B, and α < λ, σH(α) ∈ Aα.

Since λ < cf(κ)M and cf(κ)M is a regular uncountable cardinal in M we get that

M |= |
⋃
{Aα : α < λ} | < cf(κ)M

In particular (since M is a model of ZFC and all relevant objects are in M) we can carry the
following reasoning inside M : a subset A of κ of size smaller than the cofinality of κ cannot be
unbounded in κ, else a bijection of A with its size gives that cf(κ)M ≤ |A| < cf(κ)M a contradiction.

We conclude that for some β < κ,

M |=
⋃
{Aα : α < κ} ⊆ β < κ.

We get that in M [G]
σG[λ] ⊆ A ⊆ β < κ.

The Fact is proved.

The proof of the Lemma is completed.

Now let us choose in M the poset RO(2ω2×ω)M (which M models to be CCC by
Proposition 4.4.8 applied in M). We can use the facts proved so far to check the
following:

Theorem 6.3.5. Assume M is a countable transitive model of ZFC and let

B = RO(2ω2×ω)M .

Then M [G] |= ¬CH for all M generic filters G for B.

Proof. Set:

τ = {〈op(op(α̌, ň), ǐ), N〈α,n,i〉〉 : α < ωM2 , n ∈ ω, i < 2} ∈MB,

where
N〈α,n,i〉 =

{
f ∈ 2ω2×ω ∩M : f(α, n) = i

}
.

Let G be M -generic for B. Then

g = τG = {〈〈α, n〉 , i〉 : N〈α,n,i〉 ∈ G}.

For all α < ωM2 and n < ω, define gα(n) = g(α, n).
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Claim 6.3.5.1. M [G] models that g : ωM2 × ω → 2 is a total function. Moreover
gα 6= gβ are distinct element of 2ω ∩M [G] for all α < β < ωM2 .

Assume the Claim is proved. Since M models that RO(2ω2×ω)M has the CCC
(applying Corollary 4.4.10 inside M), by Lemma 6.3.2 we get that M [G] models that
ωM2 is the second uncountable cardinal. By the Claim

M [G] |= |2ω| ≥ ωM2 ,

thus CH fails in M [G].
We are left with proof of the Claim.

Proof. Let for any s ∈ Fn(ω2 × ω, 2)M

Ns =
{
f ∈ 2ω2×ω ∩M : s ⊆ f

}
.

We can apply exercise 4.3.7 in M to get that the sets

� Dn,α = {Ns : s ∈ Fn(ω2 × ω, 2)M , (α, n) ∈ dom(s)}

� Eα,β = {Ns : s ∈ Fn(ω2 × ω, 2), ∃n s(α, n) 6= s(β, n)}

are dense in RO(2ω2×ω)M for all α 6= β < ωM2 and n < ω.
Our definitions now give that:

� M [G] |= (α, n) ∈ dom(g) for all α < ωM2 and n < ω since Dn,α ∩G 6= ∅ for all
such n, α.

� M [G] |= (α, n, i), (α, n, j) ∈ g iff i = j: on the one hand (α, n, i) ∈ g iff
N〈α,n,i〉 ∈ G, on the other hand N〈α,n,i〉 and N〈α,n,j〉 are compatible conditions
in RO(2ω2×ω)M iff i = j for all α < ωM2 , n < ω.

� M [G] |= g(α, n) 6= g(β, n) for some n, since Eα,β ∩G 6= ∅ for all α < β < ωM2 .

The Claim follows immediately from the above observations.

The Theorem is proved.

6.3.2 A model of CH

In this section we prove that CH + ZFC is coherent relative to the theory ZFC+there
is a countable transitive model of ZFC.

Definition 6.3.6. A boolean algebra B is < λ distributive if for all collections
{Dα : α < γ} of γ-many dense open sets in B+ with γ < λ, we have that

D =
⋂
α<γ

Dα is an open dense subset of B+.

Definition 6.3.7. Let λ be an infinite cardinal. A pre-order (P,<) is < λ-closed
if for every γ < λ, every decreasing sequence (pα)α<γ contained in P has a lower
bound in P .
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< ω1-closed posets are said to be countably closed and < ω1-distributive boolean
algebra are said to be countably distributive.

Lemma 6.3.8. Assume (P,≤P ) is a separative < λ-closed poset. Then RO(P ) is
< λ-distributive.

The assumption that P is separative is redundant, but the proof without this
assumption is slightly more intricate, and we wiil use the Lemma just for separative
posets P , thus we prove the lemma using this assumption.

Proof. Let i : P → RO(P ) = B be the dense embedding of P into its boolean
completion provided by Theorem 3.3.5. Since P is separative, i is injective and
i(p) ≤B i(q) if and only if p ≤P q, by Corollary 3.3.8.

Assume
{Dα : α < γ}

is a family of dense open subsets of RO(P ) for some γ < λ. It is immediate to check
that

D =
⋂
{Dα : α < γ}

is open. We need to show that D is dense i.e. given b ∈ B+, we need to find q ≤B b
in D.

Build {pα : α ≤ γ} ⊆ P by recursion as follows:

� Choose p0 such that i(p0) ≤ b and p0 ∈ D0 (which is possible since i[P ] is a
dense subset of B+),

� Given pα ∈ P , let s ∈ Dα+1 be such that s ≤B i(pα) and find pα+1 ∈ P such
that i(pα+1) ≤B s (which is possible since i[P ] is a dense subset of B+). Then
pα+1 ≤P pα (since i(pα+1) ≤B i(pα), and P is separative), and i(pα+1) ∈ Dα+1.

� Given 〈pβ : β < α〉 ⊆ P with β < γ limit, first of all we notice that, by our
construction, 〈pβ : β < α〉 is a descending sequence in P . Since P is < λ-closed,
we have that 〈pβ : β < α〉 has a lower bound r ∈ P refining each pβ. Now refine
i(r) to some s ∈ Dα and find pα ∈ P such that i(pα) ≤B s (which is possible
since i[P ] is a dense subset of B+). Then i(pα) ∈ Dα and pα is a lower bound
for the chain {pξ : ξ < α}, since i(pα) ≤P s ≤P i(pβ) for all β < α, and P is
separative.

� Let u be a lower bound for the descending sequence 〈pβ : β < γ〉 ⊆ P .

Then
q = i(u) ∈ D =

⋂
{Dα : α < γ}

since 0B < i(u) ≤ i(pα) ∈ Dα for all α < γ.
Since b ≥B u is arbitrary, the proof is completed.

Definition 6.3.9. Given an uncountable cardinal κ, let

Pκ = {f : α→ κ : f is an injection and α < ω1}

ordered by f ≤Pκ g iff f ⊇ g.
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Fact 6.3.10. (Pκ,≤Pκ) is < ω1-closed and separative.

Proof. First of all notice that f, g are incompatible in Pκ if and only if they disagree
on some j in dom(g) ∩ dom(f), else their union is a common refinement.

We prove both properties of P as follows:

Pκ is separative: Assume f 6≤ g, then g 6⊆ f . In particular, either dom(g) ⊆
dom(f), in which case f and g are already incompatible, or there is i ∈
dom(g) \ dom(f). In this case we let h : i + 1 → κ be defined by the
requirements:

� h ⊇ f ,

� h � (i+ 1 \ dom(f))→ (κ \ (ran(f) ∪ ran(g))) is injective.

Since κ is an uncountable cardinal and ran(f)∪ ran(g) is a countable subset of
κ, κ\ (ran(f)∪ ran(g)) has size κ, thus the at most countable set i+ 1\dom(f)
can be injected inside it.

We conclude that h ⊇ f , and h ∈ Pκ since it is an injective function with domain
a countable ordinal, moreover h is incompatible with g, since h(i) 6∈ ran(g),
thus h(i) 6= g(i).

Pκ is countably closed: Assume we have a decreasing sequence

{fα : α < γ}

of elements of Pκ indexed by some countable ordinal γ. Let f =
⋃
α<γ fα, we

show that f ∈ P is a lower bound for all the fα: It is enough to show that f
is also an element of Pκ and this is the case since its domain is a countable
ordinal (a countable union of countable ordinals is a countable ordinal), and f
is injective, since it is the coherent union of injective functions.

Let M be a countable transitive model of ZFC such that M |= 2ℵ0 = κ and
consider the partial order P = (Pκ)

M in M . Then M models that P is countably
closed and separative.

Let B = RO(P )M and i : P → B in M be a canonical injection of P in its boolean
completion. Then M models that B is countably distributive, applying Lemma 6.3.8
inside M to P and B. We will show the following:

Theorem 6.3.11. M models that JCHK = 1B.

The theorem will be an immediate consequence of the following proposition:

Proposition 6.3.12. Assume G is M-generic for P . Then:

1. (ω1)M = (ω1)M [G].

2. M [G] ∩ 2ω = M ∩ 2ω.

3. M [G] models that there is a bijection of (ω1)M with κ.
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Assume the proposition has been proved. Let h : 2ω ∩M → κ in M be a bijection
of (2ω)M = 2ω ∩M = (2ω)M [G] with κ, then g ◦ h : (2ω)M [G] → (ω1)

M is a bijection
and (ω1)

M = (ω1)
M [G], i.e. M [G] models h is a bijection of the powerset of ω with

the first uncountable cardinal, as was to be shown.
We first prove item 2 of the above proposition:

Proof. Let ṙ ∈MB be a B-name such that
q
ṙ : ω̌ → 2̌

y
= b > 0B. Define:

Dn = {f ∈ B : M |= ∃i < 2 f ≤
q
ṙ(ň) = ǐ

y
}.

By an application of the forcing theorem, we can prove that each Dn ∈M is an open
dense subset of B+ below b as follows: for each q ∈ B+ refining b, pick G ∈M such
that q ∈ G. Then b ∈ G gives that

M [G] |= ṙG : ω → 2,

thus for some i < 2
M [G] |= ṙG(n) = i,

yielding that
s =

q
ṙ(ň) = ǐ

y
∧ q ∈ G

and thus 0B < s ∈ Dn refines q.
This gives that M models that for all q ≤ b there exists 0B < s ≤B q in Dn. Thus

M models that each Dn is dense. Notice also that the sequence

{Dn : n ∈ ω} ∈M.

Towards this aim observe that

X =
{
〈n, q, i〉 ∈ ω × B× 2 : 0B < q ≤B b ∧

r
ḟ(ň) = ǐ

z}
∈M,

since it is obtained applying comprehension in M to define a subset of ω × B× 2.
Now

〈Dn : n ∈ ω〉 = (〈n, c〉 : n ∈ ω, ∀x(x ∈ c↔ ∃i < 2 〈n, x, i〉 ∈ X) ∈M

is obtained as a subset of (ω × P(B))M , applying comprehension in M once again.
Since M models that B is countably distributive, we get that

Dṙ =
⋂
{Dn : n ∈ ω}

is also in M , and is open dense below b. We claim the following:

Dṙ = {q ≤B b : ∃s ∈ 2ω ∩M such that g 
 ṙ = š}. (6.7)

To this aim choose r ≤B b arbitrarily. Find q ≤B r in Dṙ, which is possible since
Dṙ is open dense. Then q ∈ Dn for all n ∈ ω. In M , we can let for each q ∈ Dṙ

fq =
{
〈n, i〉 ∈ ω × 2 : M |=

q
ṙ(ň) = ǐ

y
≥ q
}
.
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Then fq ∈M applying the comprehension axiom in M to isolate fq as a subset of
ω × 2, defined by a property in the parameters B, ṙ, q.

We claim that q ≤B

q
ṙ = f̌q

y
. To this aim let G be M -generic with q ∈ G. Then

b ∈ G yields that
M [G] |= ṙG : ω → 2.

Let in = ṙG(n) for each n ∈ ω. Then
q
ṙ(ň) = ǐn

y
∈ G for all n ∈ ω. Now q ∈ Dn∩G

for all n, and for each n, q ∈ Dn entails that q ≤B

q
ṙ(ň) = ǐ

y
if and only if fq(n) = i,

by definition of fq. We get that

M [G] |= ṙG = fq.

Since this occurs for all M -generic filters G for B to which q belongs, we get that
q ≤B

q
ṙ = f̌q

y
. This concludes the proof that equation 6.7 holds.

In particular we get that:

� Dṙ is open dense below b for all ṙ ∈MB such that Jṙ : ω → 2K = b,

� for any condition q in Dṙ q ≤B

q
ṙ = f̌q

y
.

This gives that for any r = ṙG ∈ 2ω ∩M [G], we have that
q
ṙ : ω̌ → 2̌

y
= b ∈ G, thus

G∩Dṙ is non-empty, giving that r = ṙG = fq ∈ 2ω ∩M for some q ∈ G∩Dṙ. Item 2
of the proposition is proved.

Exercise 6.3.13. Prove item 1 of the proposition. (HINT: follow the pattern of the
proof of item 2 of the proposition. Now start from ṙ a B-name for a function from ω
into ω1, and argue once again that ṙG ∈M whenever G is M -generic for P ).

We now prove item 3 of the proposition:

Proof. Let ġ ∈MB be such that

ġ = {
〈

op(ǰ, ˇf(j)), i(f)
〉

: f ∈ P, j ∈ dom(f)}.

We claim that g = ġG is a bijection of (ω1)M into κ. To this aim observe that

f ⊆ g ↔ i(f) ∈ G

for all f ∈ P , since
〈j, α〉 ∈ g

if and only if there is some i(f) ∈ G such that〈
op(ǰ, α̌), i(f)

〉
∈ ġ

if and only if

f(j) = α for some (any) i(f) ∈ G with j ∈ dom(f).

This gives immediately that g is an injective function since it is the coherent
union of injective functions. Moreover for all α < κ and all ξ < (ω1)M the following
sets are easily seen to be dense and in M :

Dα = {i(f) : f ∈ P, α ∈ ran(f)},
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Eξ = {i(f) : f ∈ P, ξ ∈ dom(f)}.

Observe that whenever G is an M -generic filter for P , G ∩Dα 6= ∅ iff α ∈ ran(ġG)
and G ∩ Eξ 6= ∅ iff ξ ∈ dom(ġG).

This gives that M [G] models that ġG is a bijection of (ω1)M with κ. The proof
of item 3 of the proposition is completed.

The relative coherence of CH with respect to T is established.

6.4 MB models ZFC

In this section we prove that the axioms of ZFC are valid in any model MB, whenever
M is a countable transitive model of ZFC and B is a boolean algebra that belongs to
M and which M models to be complete.

Theorem 6.4.1. Assume M is a transitive countable model of ZFC in V and B ∈M
is such that M models B is a complete boolean algebra. Then

M |= JφKB = 1B

for every axiom φ of ZFC.

Remark 6.4.2. We can actually prove a stronger result stating that whenever M is
any model of ZFC and B ∈M is a boolean algebra which M models to be complete,
then

M |= JφKB = 1B

for every axiom φ of ZFC. I.e. we can remove the assuption that M is countable and
transitive in the above theorem. However the proof of this latter result is slightly
more involved since we cannot appeal to the forcing theorem to obtain it. As we will
see below the forcing theorem plays a crucial role in most of the arguments to follow.

Proof. We show that M [G] satisfies all ZFC-axioms whenever G is M -generic for B.
The proof can be completed appealing to Theorem 6.2.5. From now on we assume
that G is an M -generic filter for B.

Extensionality. M [G] is transitive, hence it models the Extensionality Axiom
by [6, Lemma IV.2.4].

Foundation. M [G] is a transitive set contained in V , so M [G] models the Axiom
of Foundation, by [6, Theorems III.3.6, III.4.1].

Infinity. ω = ω̌G ∈M [G].

Pairing. Let σG, τG ∈M [G]. Given σ, τ ∈MB, let

up(σ, τ) = {〈σ, 1〉, 〈τ, 1〉}.

Then up(σ, τ) = {σG, τG} (since ρ(σ) = ρ(τ) = 1B ∈ G) is a witness for the
pairing axiom (see also exercise 6.1.21).
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Union. Given σG ∈M [G], we let

τ = {〈ρ, 1B〉 : ∃u ∈ dom(σ)(ρ ∈ dom(u))}.

Then τG is a witness for the union axiom for σG, since:⋃
σG = {a : ∃uG ∈ σG(a ∈ uG)} =

= {a : ∃u ∈ dom(σ)(σ(u) ∈ G ∧ a ∈ uG)} ⊆
⊆ {a : ∃u ∈ dom(σ)(a ∈ uG)} =

= {ρG : ∃u ∈ dom(σ)(ρ ∈ dom(u) ∧ u(ρ) ∈ G)} ⊆
⊆ {ρG : ∃u ∈ dom(σ)(ρ ∈ dom(u))} = τG.

Power set. Let σG ∈M [G]. Set

PB(σ) = {〈τ, Jτ ⊆ σK〉 : dom(τ) = dom(σ)} ∈M,

applying the Comprehension axiom in M to the set{
〈τ, b〉 ∈ P(dom(σ)× B)M × B

}
∈M

and the formula φ(z, σ,B) stating that “z = 〈x, y〉 with x : dom(σ) → B a
B-name and y = Jx ⊆ σKB”.

We claim that

M [G] |= (PB(σ))G = {a ∈M [G] : a ⊆ σG}

for all G M -generic for B. Both inclusions follow by Lemma 6.2.9:

⊆: ηG ∈ (PB(σ))G for some η ∈ dom(PB(σ)) iff Jη ⊆ σK = PB(σ)(η) ∈ G,
giving that ηG ⊆ σG by the forcing theorem.

⊇: Assume a ⊆ σG for some a ∈ M [G]. Then a = τG with Jτ ⊆ σK ∈ G, by
the forcing theorem. By Lemma 6.2.9 we get that there is η ∈MB with
dom(η) = dom(σ) such that Jτ = ηK ≥ Jτ ⊆ σK. Since Jτ ⊆ σK ∈ G we
get that Jτ = ηK ∈ G as well, hence τG = ηG. However ηG ∈ (PB(σ))G,
since dom(η) = dom(σ) and

Jη ⊆ σK ≥ Jτ ⊆ σK ∧ Jτ = ηK ∈ G.

Comprehension. Let ϕ(x, z) be a formula, a ∈M [G], σG = a and τ̄G = d̄, where
τ̄ = (τ1, . . . , τn) and τ̄G = ((τ1)G, . . . , (τn)G). Let

b = {c ∈ a : M [G] � ϕ(c, d̄)}.

We must show that the definable class b of M [G] is an element of M [G].

Let
η = {〈τ, Jϕ(τ, τ̄)K ∧ Jτ ∈ σK)〉 : τ ∈ dom(σ)} ∈MB.

We claim that ηG = b.
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ηG ⊆ b: We have that

ηG = {τG : τ ∈ dom(σ) and Jϕ(τ, τ̄)K ∧ Jτ ∈ σK ∈ G}

Hence τG ∈ b for all τG ∈ ηG, since

M [G] |= ϕ(τG, τ̄G) ∧ τG ∈ σG
by the forcing theorem.

ηG ⊇ b: τG ∈ b iff τG ∈ σG and

M [G] |= φ(τG, τ̄G).

First observe that τG ∈ σG iff τG = νG for some ν ∈ dom(σ) with σ(ν) ∈ G.
This gives that Jτ = νK , σ(ν) ∈ G by the forcing theorem.

Moreover
σ(ν) ≤

∨
u∈dom(σ)

Ju = νK ∧ σ(u) = Jν ∈ σK ,

hence Jν ∈ σK ∧ Jτ = νK ∈ G.

The forcing theorem also gives that Jφ(τ, τ̄)K ∈ G. Hence

Jφ(ν, τ̄)K ≥ Jφ(τ, τ̄)K ∧ Jτ = νK ∈ G.

We conclude that

η(ν) = Jφ(ν, τ̄)K ∧ Jν ∈ σK ∈ G.

Hence τG = νG ∈ ηG, concluding the proof.

Replacement. Let F : M [G] → M [G] be a functional class in M [G] and let
ψ(x, y, τ̄G) be the formula such that F (u) = v iff M [G] � ψ(u, v, τ̄G) and

M [G] |= ∀x∃!yφ(x, y, τ̄G),

where τ̄G = ((τ1)G, . . . , (τn)G). By the forcing theorem we have that

J∀x∃!yφ(x, y, τ̄)K ∈ G.

Fix σG ∈M [G] and in M consider the function

F ∗ :MB →MB × B η 7→ (νη, bη),

where
bη = J∃yφ(η, y)K

and νη is provided by the Fullness Lemma applied in M to MB, to find a
ν ∈MB such that

bη = J∃yφ(η, y, τ̄)K = Jφ(η, ν, τ̄)K .

Then F ∗ is a definable class in M (useful exercise for the reader). Hence we
can apply replacement in M to find τ ⊆MB × B with τ ∈M such that

τ = {〈νη, bη〉 : η ∈ dom(σ)} .

Since τ ∈M and (it can be checked that) τ is a function, we get that τ ∈MB.
We claim that τG = F [σG].
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τG ⊇ F [σG]: Assume a = νG ∈ F [σG]. Then for some η ∈ dom(σ) with
σ(η) ∈ G we have that F (ηG) = νG holds in M [G].

By the forcing theorem we get that Jφ(η, ν, τ̄)K ∈ G. This gives that

bη = Jφ(η, νη, τ̄)K = J∃yφ(η, y, τ̄)K ≥ Jφ(η, ν, τ̄)K ∈ G

as well. Hence
M [G] |= φ(ηG, (νη)G, τ̄G),

i.e. F (ηG) = (νη)G. This gives that (νη)G = a = νG. We conclude that
F (ηG) = (νη)G ∈ τG since νη ∈ dom(τ) and τ(νη) = bη ∈ G.

τG ⊆ F [σG]: Assume νη ∈ dom(τ) and bη ∈ G. Then

bη = J∃yφ(η, y, τ̄)K = Jφ(η, νη, τ̄)K .

Since J∀x∃!yφ(x, y, τ̄)K ∈ G as well, we get that

M [G] |= ∃!yφ(ηG, y, τ̄G)

and
M [G] |= φ(ηG, (νη)G, τ̄G).

Hence F (ηG) = (νη)G. Since this holds for all ηG ∈ σG we conclude that
τG ⊆ F [σG].

Choice. We prove that M [G] satisfies that every set can be well-ordered. More
precisely, we show that ∀X ∈ M [G], there exists an injection f : X → Ord
belonging to M [G].

Let τG = X ∈ M [G]. Since M � ZFC, there exists f ∈ M such that M � f :
τ → β is a bijection. Recall the operation op defined in exercise 6.1.21 which
gives a canonical B-name for an ordered pair. Let

τ ∗ = {〈op(σ, α̌), 1B〉 : σ ∈ dom(τ), f(σ) = α} ∈MB.

Then:

τ ∗G = {op(σ, α̌)G : σ ∈ dom(τ), f(σ) = α} =

= {(σG, f(σ)) : σ ∈ dom(τ)} = R.

Notice that
R ⊆ {σG : σ ∈ dom(τ)} × β

may not be a functional relation (there could be distinct σ, σ′ ∈ dom(τ) such
that σG = σ′G, with f(σ) 6= f(σ′)). Notice also that τG ⊆ dom(R): indeed

τG = {σG : τ(σ) ∈ G} ⊆ {σG : 〈σG, f(σ)〉 ∈ R : σ ∈ dom(τ)} = dom(R).

By what we have shown so far M [G] |= ZF. In particular we can use the
comprehension axiom in M [G] to refine R to a functional relation g with the
same domain letting:

g = {(σG, ξ) ∈ R : ∀γ ∈ β(σG, γ) ∈ R⇒ ξ ≤ γ}.

Clearly R ∈M [G] implies that g ∈M [G] by Comprehension applied in M [G].
We leave to the reader to check that g : dom(R)→ Ord is an injective function.
Hence, g witnesses that X = τG can be well ordered in M [G].
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The proof that all axioms of ZFC hold in M [G] is complete.

Corollary 6.4.3. Assume M is a transitive countable model of ZFC and G is M-
generic for a B ∈M which M models to be a complete boolean algebra. Then M [G]
is the smallest transitive model N of ZFC with N ⊇ M and G ∈ N . Moreover
M [G] ∩Ord = M ∩Ord

Proof. G = ĠG ∈ M [G], where Ġ ∈ MB is the B-name
{〈
b̌, b
〉

: b ∈ B+
}

, and
M ⊆M [G] since ǎG = a for all a ∈M . In particular M [G] ⊆M for all M transitive
model of ZFC containing M and with G ∈M . Since M [G] |= ZFC and is transitive
we are done.

For the second part of the Corollary (i.e. the assertion that M [G]∩Ord = M∩Ord,
we proceed as follows: since M [G] |= ZFC, we get that

Ord ∩M [G] =
{

rk(τG) : τ ∈MB
}
.

An easy induction show that rk(τG) ≤ rk(τ) for all τ ∈ M [G], moreover rk(α̌G) =
rk(α) = α for all limit α ∈M ∩Ord. We get that

M ∩Ord = {α̌G : α ∈M ∩Ord} ⊆ Ord ∩M [G] =
{

rk(τG) : τ ∈MB
}
⊆M ∩Ord.
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Chapter 7

Appendix A: Absoluteness

This appendix is meant as an integration to [6, Chapters III, IV, V] for the parts of
this book which we cover in this course. [6, Chapters III, IV] is our basic reference
and the results in this appendix provides some more details on what is shown there.

Section 7.1 is an integration to [6, IV.1,IV.2,IV.3,IV.5 ]. Section 7.2 provide a
different approach to the results of [6, IV.8,IV.9,IV.10,V.1] and covers the fragmnt
of these results which we need to provide a solid metamathematical foundation for
our treatment of forcing in chapter 6.

7.1 Absoluteness

Definition 7.1.1.

� R ⊆ V n is a definable class if there exists a formula φR(x1, . . . , xn, y1, . . . , ymR)
and bR1 , . . . , b

R
mR
∈ V (with the number mR of parameters depending on R)

such that

R =
{

(a1, . . . , an) : (V,∈,=) |= φR(a1, . . . , an, b
R
1 , . . . , b

R
mR

)
}
.

� R ⊆ A2 for some A ⊆ V is set-like if for all a ∈ A

predR(a) = {b ∈ A : R(a, b)} ∈ V.

� R ⊆ A2 for some A ⊆ V is well-founded if for all Z ⊆ A non-empty, there
exists b ∈ Z such that predR(b) ∩ Z is empty.

� Given some M ⊆ N ⊆ V , a definable R ⊆ V n is absolute between M and N
iff bR1 , . . . , b

R
mR
∈M and for all a1, . . . , an ∈M

(N,∈,=) |= φR(a1, . . . , an, b
R
1 , . . . , b

R
mR

)

if and only if

(M,∈,=) |= φR(a1, . . . , an, b
R
1 , . . . , b

R
mR

).

� Given some M ⊆ N ⊆ V , a definable G : V n → V is absolute for M,N if the
graph of G is absolute for M and N and both M and N models the formula

∀x1 . . . ∀xn∃!yφG(x1, . . . , xn, y, a
G
1 , . . . , a

G
mG

).

129
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� A relation R is absolute for M if it is absolute for M and V . Similarly we
define the notion of a class function G being absolute for M .

� Given a definable class M ⊆ V and a formula φ(x1, . . . , xm), φM (x1, . . . , xm) is
the formula obtained from φ(x1, . . . , xm) replacing all its universal quantifiers
∀x by the block of symbols ∀xφM (x, bM1 , . . . , b

M
mM

)→ and all its existential quan-
tifiers ∃x by the block of symbols ∃xφM (x, bM1 , . . . , b

M
mM

)∧. I.e. φM (x1, . . . , xm)
is the formula obtained restricting all its quantifers to range over elements of
M .

� Given a definable relation R ⊆ V n and some M ⊆ V with bR1 , . . . , b
R
mR
∈M ,

RM = {(a1, . . . , an) ∈M : (M,∈,=) |= φR(a1, . . . , an, b
R
1 , . . . , b

R
mR

)} =

= {(a1, . . . , an) ∈M : (V,∈,=) |= φMR (a1, . . . , an, b
R
1 , . . . , b

R
mR

)}.

Fact 7.1.2. Assume R ⊆ An, M,A ⊆ V are all definable classes, with A and R
defined by formulae with parameters in M and M transitive.

Then:

� RM = R ∩Mn if and only if R is absolute for M .

� If R ⊆ A2 and b ∈ A,

predR(b) = {a ∈ V : V |= φA(a, bA1 , . . . , b
A
mA

) ∧ φR(a, b, bR1 , . . . , b
R
mR

)}

is a definable class in the parameters bA1 , . . . , b
A
mA
, b, bR1 , . . . , b

R
mR

.

� R ⊆ A2 is well-founded if and only if

V |= ∀z(∃xφA(x, bA1 , . . . , b
A
mA

) ∧ x ∈ z)→
→ [∃xφA(x, bA1 , . . . , b

A
mA

) ∧ x ∈ z ∧ ∀y(φR(y, x, bR1 , . . . , b
R
mR

)→ y 6∈ z)].

� R ⊆ A2 is set-like if and only if

V |= ∀x[φA(x, bA1 , . . . , b
A
mA

)→ ∃y∀z[z ∈ y ↔ (φA(z, bA1 , . . . , b
A
mA

)∧φR(z, x, bR1 , . . . , b
R
mR

))]].

� If R ⊆ A2 is set-like, predR : A→ V is a definable class given by

predR = {(a, b) : V |= ∀z[z ∈ b↔ (φA(z, bA1 , . . . , b
A
mA

) ∧ φR(z, a, bR1 , . . . , b
R
mR

))]

Proof. Left to the reader.

Lemma 7.1.3. Assume Gi : V ni → V for i = 1, . . . ,m and R ⊆ V m are absolute be-
tween transitive sets or classes M ⊆ N . Then so is R(G1(x1, . . . , xn1), . . . , G1(x1, . . . , xnm)).

Proof. [6, IV.3.10].
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Definition 7.1.4. We enrich the first order syntax with bounded quantifiers ∀x ∈ y,
∃x ∈ y with the provision that

∃x ∈ y φ(x, y, x1, . . . , xn) ≡ ∃xφ(x, y, x1, . . . , xn) ∧ x ∈ y

and
∀x ∈ y φ(x, y, x1, . . . , xn) ≡ ∀x (x ∈ y → φ(x, y, x1, . . . , xn)).

φ(x1, . . . , xn) is a ∆0-formula in this expanded language if all the quantifiers in φ
are bounded.

Lemma 7.1.5. Assume R ⊆ V n is defined by means of a ∆0-formula
(i.e. φR(x1, . . . , xn, a

R
1 , . . . , a

R
mR

) is a ∆0-formula). Then R is absolute between
transitive models M ⊆ N of ZF− power-set axiom.

The same holds for any G : V n → V such that φG(x1, . . . , xn, y, a
R
1 , . . . , a

G
mG

) is
a ∆0-formula and M,N both model that

∀x1 . . . ∀xn∃!yφG(x1, . . . , xn, y, a
G
1 , . . . , a

G
mG

).

Proof. [6, IV.3.6].

Lemma 7.1.6. Assume M ⊆ N and φ(y, x1, . . . , xn, a1, . . . , ak), ψ(y, x1, . . . , xn, a1, . . . , ak)
define properties which are absolute for M,N . Assume moreover M,N are both mod-
els of some theory T and that T proves

∀z1 . . . ∀zk∀x1 . . . ∀xn[∀yφ(y, x1, . . . , xn, z1, . . . , zk)↔ ∃yψ(y, x1, . . . , xn, z1, . . . , zk)].

Then

R = {(b1, . . . , bn) : (V,∈,=) |= ∀yφ(y, b1, . . . , bn, a1, . . . , ak)} =

= {(b1, . . . , bn) : (V,∈,=) |= ∃yψ(y, b1, . . . , bn, a1, . . . , ak)}

is absolute for M,N .

Proof. Assume RM(b1, . . . , bn). Then for some b ∈M

(M,∈,=) |= ψ(b, b1, . . . , bn, a1, . . . , ak)

But ψ(b, b1, . . . , bn, a1, . . . , ak) is absolute between M,N , yielding that

(N,∈,=) |= ∃xψ(x, b1, . . . , bn, a1, . . . , ak)

as witnessed by b ∈M . Thus we get that RN(b1, . . . , bn) holds.
Conversely assume RN(b1, . . . , bn). Then for all b ∈ N

(N,∈,=) |= φ(b, b1, . . . , bn, a1, . . . , ak)

But φ(b, b1, . . . , bn, a1, . . . , ak) is absolute between M,N for all b ∈M , yielding that

(M,∈,=) |= φ(b, b1, . . . , bn, a1, . . . , ak)

for all b ∈M . Thus we get that

(M,∈,=) |= ∀yφ(y, b1, . . . , bn, a1, . . . , ak)

and also that RM(b1, . . . , bn) holds.
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Definition 7.1.7. A relation R ⊆ V n is ∆1 over a theory T in the language of set
theory if for every transitive model M of T we have that for ∆0-formulae φ, ψ and
b1, . . . , bm ∈M

RM = {(a1, . . . , an) ∈Mn : (M,∈,=) |= ∃xφ(x, a1, . . . , an, b1, . . . , bm)} =

= {(a1, . . . , an) ∈Mn : (M,∈,=) |= ∀xψ(x, a1, . . . , an, b1, . . . , bm)} .

The following is an immediate corollary of Lemmas 7.1.5, 7.1.6:

Lemma 7.1.8. Assume R is ∆1 over a theory T extending ZF−Power-set axiom.
Then R is absolute for M,N if both are transitive models of T .

Lemma 7.1.9. Assume M is transitive and is a model of ZF− Power-Set Axiom.
Assume A ⊆ V and R ⊆ A2 are definable classes defined by parameters in M .
Assume M models that RM is set-like and well founded. Then M models that there
is a unique definable class function

rkMR :A→ Ord

a 7→ rkMR (a) = sup{rkMR (b) + 1 : b ∈ predR(a)}

Proof. Let φrkR(z, bA1 , . . . , b
A
mA
, bR1 , . . . , b

R
mR

) be the following formula:

(z is a function ) ∧ (ran(z) is an ordinal ) ∧ (dom(z) ⊆ A)∧
∧∀t ∈ dom(z)(predR(t) ⊆ dom(z))∧

∧∀t ∈ dom(z)(z(t) =
⋃
{z(u) ∪ {u} : u ∈ predR(t)})

We leave to the reader to check that the above expression can be meant as a short-
hand for a formula in the parameters bA1 , . . . , b

A
mA
, bR1 , . . . , b

R
mR

which are needed
to define the class-function predR, the formula (dom(z) ⊆ A), and the formula
(predR(t) ⊆ dom(z)). Now we can use the transfinite recursion theorem on the
well-founded relation RM inside M , to check that

rkMR = {(a, b) ∈M2 : (M,∈,=) |= ∃z [〈a, b〉 ∈ z ∧ φrkR(z, bA1 , . . . , b
A
mA
, bR1 , . . . , b

R
mR

)]} =

= {(a, b) ∈M2 : (M,∈,=) |= ∀zφrkR(z, bA1 , . . . , b
A
mA
, bR1 , . . . , b

R
mR

) ∧ a ∈ dom(z)→ z(a) = b}.

Lemma 7.1.10. Assume A ⊆ V and R ⊆ A2 are definable classes and are absolute
between M and V . Assume R is set-like and such that predR is absolute between M
and V . Assume further that M is transitive and is a model of ZF− power-set axiom.

Then R∩M2 = RM is well-founded in V if and only if RM is well-founded in M .

Proof. Assume RM = R ∩ M2 is well-founded in V . Pick a non-empty Z ∈ M
such that M |= Z ⊆ AM . Since Z ∈ M and M is transitive, we have that
Z ⊆ M and since A is absolute for M , we have that AM = A ∩M . In particular
V |= ∅ 6= Z ⊆ AM = A ∩M . Since RM is well-founded in V , Z has an RM -minimal
element a in V . Since Z ⊆ M , a ∈ M and since RM = R ∩M2, we have that M
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models that a is RM -minimal for Z. Since this holds for all Z ∈ M , we conclude
that M models that RM is well-founded.

Conversely assume that RM = R ∩M2 is well-founded in M . Towards a con-
tradiction assume R ∩M2 is not well-founded in V . Then there exists a sequence
(an : n ∈ ω) ∈ V such that aj ∈M and R(aj+1, aj) holds in V for all j ∈ ω.

NowM |= RM is well-founded andM is a transitive model of ZF−power-set axiom.
Thus in M we can define rkMR : AM → OrdM such that

rkMR (a) = sup{rkMR (b) + 1 : b ∈ predMR (a)}.

Observe that R(a, b) entails that rkMR (a) ∈ rkMR (b). Since aj ∈ M for all j ∈ ω, we
get that for all j ∈ ω

M |= rkMR (aj) > rkMR (aj+1).

But rkMR (aj) is an ordinal of M and thus really an ordinal in V , since M is transitive.
This gives that (αj = rkMR (aj) : j < ω) ∈ V is a strictly decreasing sequence in
OrdM = Ord ∩M , which contradicts the validity of the Foundation axiom in V .

One can check that many notions which are defined using transifinite recursion over
well-founded relation are absolute between transitive models of ZF−power-set axiom.

Lemma 7.1.11. Assume A ⊆ V and R ⊆ A2 are definable classes and are absolute
between M and V . Assume R is set-like and such that predR is absolute between M
and V . Assume further that M is transitive and is a model of ZF− power-set axiom.

Assume R is well-founded in V and F : A× V → V is a definable class-function
which is absolute for M .

Then G : A→ V given by G(a) = F (a,G � predR(a)) is absolute between M and
V .

Proof. Assume for some a ∈ M ∩ A = AM we have that GM(a) 6= G(a). Let a be
R-minimal in V in the non-empty sub-class of AM = A ∩M definable in V as:

{a ∈M ∩ A : (V,∈,=) |= ∃y∃z(y 6= z) ∧ φG(a, y, aG1 , . . . , a
G
mG

)∧
∧ φM(z, aM1 , . . . , a

M
mM

) ∧ φMG (a, z, aG1 , . . . , a
G
mG

)}.

Then G(a) = F (G � a) = F (GM � a) = FM(GM � a) = GM(a), a contradiction.

Examples on how to employ the above Lemma are given by the following:

Lemma 7.1.12. Let trcl : V → V be the class function mapping a set a to its
transitive closure trcl(a), i.e. the intersection of all transitive sets b ⊇ a. Then trcl
is absolute for any M which is a transitive model of ZF− power-set axiom.

Proof. It can be checked that trcl(a) =
⋃
{
⋃n(x) : n ∈ ω} where

⋃0(x) = x and⋃n+1(x) =
⋃

(
⋃n(x)). We show that this definition of trcl can be given by applying

the transfinite recursion theorem on the well founded order (ω,∈). Such an order
relation is well-founded and absolute for transitive models of ZF− power-set axiom.
To define trcl(a) consider the function F (x, y, z) defined as follows:{
F (x, y, z) =

⋃
y(x− 1, z) if ∅ 6= x ∈ ω and y is a function and dom(y) = x× {z},

F (x, y, z) = z otherwise.
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We leave to the reader to check that F (x, y, z) = w can be defined by means of a
∆0-formula.

Now apply the transfinite recursion theorem in M and in V to (ω,∈), to get that
G(n, a) = F (n,G � n × {a} , a) is absolute between M and V and G(n, a) =

⋃n a.
Finally apply replacement in M and in V to get that trcl(a) =

⋃
G[ω × {a}]. Check

that the formula φ(z, y, w, t) stating that

φ(z, y, w, t) ≡(t = ω) ∧ (w is a function) ∧ (dom(w) = t× {z})∧
∧(y =

⋃
ran(w)) ∧ (∀n ∈ t(w(n, z) = F (n,w � n× {z} , z))

is expressible by a ∆0-formula and that trcl(a) = b if and only if

V |= ∀w∀y φ(a, y, w, ω)→ y = b

if and only if
V |= ∃wφ(a, b, w, ω).

Moreover this checking amounts to give a proof in ZF − power-set axiom of the
formula:

∀t∀u∀z(z = ω)→ [(∀w∀yφ(t, y, w, z)→ y = u)↔ ∃wφ(t, u, w, z)].

In particular ∃wφ(t, u, w, ω) ≡ ∀w∀yφ(t, y, w, ω)→ y = u is a provably ∆1-property
in models of ZF− power-set axiom. Thus

∃wφ(t, u, w, ω) ≡ ∀w∀yφ(t, y, w, ω)→ y = u

defines a property which is absolute for transitive models of ZF− power-set axiom
by Lemma 7.1.8.

We now give a second example in which the recursion is done on a more complex
relation which one can prove that it is well-founded in M , and then argue that it
remains well-founded in V using Lemma 7.1.10.

Lemma 7.1.13. Let M be a transitive model of ZF− Power-set axiom and R ∈M
be a well founded relation in M on some set A ∈M . Then R is well-founded in V
and the Mostowski collapsing map πR : A → V given by πR(a) = πR[predR(a)] is
absolute between M and V .

Proof. Since R is a set, RM = R is set-like and such that the class-function predR =
predMR ∈M is absolute between M and V . Since M models that R is well-founded,
V models that RM is well-founded by Lemma 7.1.10. Now πR is defined by induction
on R = RM using the class function F : A× V → V defined by (a, g) 7→ g[predR(a)],
since

πR(a) = πR[predR(a)] = F (a, πR).

It can be checked by means of the standard methods that F (a, g) = c is definable
by a formula φF (x, y, z) which is absolute for M . By Lemma 7.1.11, we get that
πR = πMR .

Lemma 7.1.14. Let rk : V → Ord be the class function mapping a set a to its rank.
Then rk is absolute for any M which is a transitive model of ZF− Power-set axiom.

Proof. Left to the reader (hint: use the definition rk(a) = sup{rk(b)+1 : b ∈ a}).
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7.2 Syntax and semantics inside V

We can code the syntax and the semantics of any first order language inside V in
an absolute manner. We limit ourselves to describe how to code the syntax and the
semantics of the language for ZFC with two binary relation predicates for = and ∈.

7.2.1 Syntax

� The set of natural numbers ω stands for the set of free variables {xn : n ∈ ω}
of the language.

� 〈i, j, 0〉 with i, j ∈ ω stands for the formula xi ∈ xj.

� 〈i, j, 1〉 with i, j ∈ ω stands for the formula xi = xj.

� Given formulae φ, ψ:

– 〈φ, ψ, 0〉 stands for the formula φ ∨ ψ.

– 〈φ, ψ, 1〉 stands for the formula φ ∧ ψ.

– 〈φ, ψ, 2〉 stands for the formula ¬φ.

– 〈φ, ψ, 2n+ 3〉 stands for the formula ∃xnφ.

– 〈φ, ψ, 2n+ 4〉 stands for the formula ∀xnφ.

Formally we define the set Form ⊆ Vω by recursion on ω, letting F : V 2×ω → V
be defined by F (x, y, w) = 〈x, y, w〉. Now we can let

AtForm = {〈i, j, k〉 : i ∈ ω ∧ j ∈ ω ∧ k ∈ 2}

represent in V the set of atomic formulae and

Form =
⋂
{Z ⊆ Vω : AtForm ⊆ Z ∧ ∀x ∈ Z ∀y ∈ Z ∀w ∈ ω F (z, y, w) ∈ Z}

represent in V the set of formulae.
Clearly AtForm is absolute for transitive models of ZF−{Power-set axioms} and

by the same methods by which one can prove that ω is absolute for transitive models
of ZF− {Power-set axioms}, one can also prove that Form is absolute for transitive
models of ZF− {Power-set axioms}.

Moreover the functions:

� Subform : Form→ [Form]<ω recognizing which are the proper subformulae of
a formula,

� Freevar : Form→ [ω]<ω recognizing which are the free variables of a formula

can also be shown to be absolute for transitive models of ZF− {Power-set axioms}.
We leave the details to the reader.
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7.2.2 Semantics

As of now we have just defined certain subsets of Vω which are absolute for transitive
models of ZF−{Power-set axioms} . In order to show that they can really represent
the concept of formula as the extension of a set in V , we need to define a semantics
inside V which given a Tarski structure (M,∈,=) ∈ V shows that our definition in
the meta-language of (M,∈,=) |= φ(a1, . . . , an) given according to Tarski truth rules
can be described as a definable property in V of the triple (M,φ, 〈a1, . . . , an〉) where
φ is the triple 〈z, y, j〉 in Form which codes the formula φ as an element of Form.

Definition 7.2.1. The satisfaction predicate

Sat : V × Form× V <ω → 3

(where 0 stands for false, 1 for true, 2 for meaningless) is defined by the following
rules:

Sat(Z, φ,~a) = 2 if Freevar(φ) 6⊆ dom(~a)

(i.e. ~a does not give an assignment to some of the free variables of φ),

or if ~a = 〈a1, . . . , an〉 6∈ Z<ω, otherwise:

Sat(Z, xi ∈ xj, 〈a1, . . . , an〉) = 1 if ai ∈ aj and 0 otherwise ,

Sat(Z, xi = xj, 〈a1, . . . , an〉) = 1 if ai = aj and 0 otherwise ,

Sat(Z, ψ ∧ φ, 〈a1, . . . , an〉) = Sat(Z, ψ, 〈a1, . . . , an〉) · Sat(Z, φ, 〈a1, . . . , an〉),
Sat(Z, ψ ∨ φ, 〈a1, . . . , an〉) = max{Sat(Z, ψ, 〈a1, . . . , an〉), Sat(Z, φ, 〈a1, . . . , an〉)},
Sat(Z,¬ψ, 〈a1, . . . , an〉) = 1− Sat(Z, ψ, 〈a1, . . . , an〉),

Sat(Z, ∃xijψ(xi1 , . . . , xik), 〈a1, . . . , an〉) =

= sup{Sat(Z, ψ(xi1 , . . . , xik), 〈a1, . . . aij−1
, a, aij+1

, . . . , an〉) : a ∈ Z},

Sat(Z, ∀xijψ(xi1 , . . . , xik), 〈a1, . . . , an〉) =

= inf{Sat(Z, ψ(xi1 , . . . , xik), 〈a1, . . . aij−1
, a, aij+1

, . . . , an〉) : a ∈ Z},

Lemma 7.2.2. Sat : V 3 → 2 is a definable class-function which is absolute for
transitive models M of ZF− power-set axiom with Z ∈M .

Proof. We leave to the reader to check this property of Sat by means of the methods
developed in the first section of this chapter.

Moreover:

Lemma 7.2.3. For any formula φ(x1, . . . , xn) and any Z ∈ V and (a1, . . . , an) ∈ Z<ω

(Z,∈,=) |= φ(a1, . . . , an)

if and only if
(V,∈,=) |= Sat(Z, φ, (a1, . . . , an))
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Proof. The proof is a straightforward induction on the complexity of φ and is left to
the reader.

Lemma 7.2.4 (Downward Lowenheim-Skolem Theorem). Assume X ⊆ Z are sets
in V . Then there is a set W ∈ V with X ⊆ W ⊆ Z, such that |W | = |X|+ ℵ0 and

V |= ∀~a ∈ W<ω ∀φ ∈ Form [Sat(Z, φ,~a) = Sat(W,φ,~a)]

Proof. Since V is a model of ZFC we can run inside V the proof of the Downward
Lowenheim-Skolem Theorem where we replace the notion of formula by elements of
Form and the notion of Tarski truth is interpreted by means of the class function
Sat.

7.3 Getting countable transitive models of ZFC
and Levy absoluteness

7.3.1 Getting countable transitive models of ZFC

We use the previous results to argue the following:

Lemma 7.3.1. Assume there is a strongly inaccessible cardinal κ ∈ V . Then there
is a countable transitive M ∈ V which is a model of ZFC.

Proof. By [6, Theorem IV.6.6], Vκ |= ZFC. Apply the previous Lemma to X = ∅ to
get some countable W such that

V |= ∀~a ∈ W<ω ∀φ ∈ Form [Sat(Vκ, φ,~a) = Sat(W,φ,~a)].

Then ∈ ∩W 2 is extensional and well founded since (W,∈,=) models the axiom of
extensionality, being a model of ZFC.

This gives that the Mostowski collapsing map πW : W → V of the well-founded
relation ∈ ∩W 2 on W 2 is an isomorphism with its image M = πW [W ] and that
M ∈ V is transitive and countable, being the image of the set W ∈ V . Since πW ∈ V
we get that

V |= πW : W →M is an isomorphism of (W,∈,=) with (M,∈,=).

This gives that for all φ ∈ Form and 〈a1, . . . , an〉 ∈ W<ω

V |= Sat(W,φ, 〈a1, . . . , an〉) = Sat(M,φ, 〈πW (a1), . . . , πW (an)〉).

But this gives that (M,∈,=) is a model of ZFC since for all axioms φ of ZFC

(V,∈,=) |= Sat(M,φ, ∅)

and by Lemma 7.2.3 this occurs only if

(M,∈,=) |= φ.

Da rivedere – M
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7.3.2 Levy absoluteness

– M
We introduce the basic signatures and fragments of set theory we will always

include in any signature of interest to us.

Notation 7.3.2. We let ∈∆0 be ∈D for D ⊆ Form∈ × 2 extending the set ∆0 × {0}
with the pairs (φ, 1) as φ ranges over the following ∆0-formulae:

� The ∆0-formulae φω(x), φ∅(x) defining ∅ and ω in any model of ZF−, where
the latter includes all axioms of ZF with the exception of power-set axiom (also
we denote by ω and ∅ the constants fφ∅ , fφω).

� The ∆0-formulae φi(~x, y) as Gi ranges over the Goedel operations G1, . . . , G10

as defined in [?, Def. 13.6] and φi(~x, y) is the ∆0-formula defining the graph of
Gi in any ∈-model of 1 ZF−.

We let T∆0 be given by the axioms:

∀~x (R∀z∈yφ(y, z, ~x)↔ ∀z(z ∈ y → Rφ(y, z, ~x)), (7.1)

∀~x [Rφ∧ψ(~x)↔ (Rφ(~x) ∧Rψ(~x))], (7.2)

∀~x [R¬φ(~x)↔ ¬Rφ(~x)] (7.3)

∀x (x 6∈ ∅) (7.4)

ω is a non-empty ordinal all whose elements are successor ordinals or ∅. (7.5)

∀~x∃!y (y = Gi(~x)) (7.6)

∀~x∀y [y = Gi(~x)↔ Rφi(~x, y)] (7.7)

for the Goedel operations G1, . . . , G10.

We axiomatize suitable fragments of the ∈-theory ZFC + T∆0 as follows:

� Z−∆0
stands for the ∈∆0-theory given by:

(a) the Extensionality Axiom

∀x, y, z [(z ∈ x↔ z ∈ y)→ x = y] ,

(b) the Foundation Axiom

∀x [x = ∅ ∨ ∃y ∈ x ∀z ∈ x (z 6∈ y)] ,

(c) T∆0 .

� Z∆0 enriches Z−∆0
adding the power-set axiom

∀x∃y [∀z (z ⊆ x↔ z ∈ y] .

1In models of ZF− the Goedel operations G1, . . . , G10 as listed and defined in [?, Def. 13.6] and
their compositions have as graph the extension of a ∆0-formula (by [?, Lemma 13.7]).
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� ZC−∆0
enriches Z−∆0

adding the axiom of choice AC

∀x∃f [(f is a bijection) ∧ dom(f) = x ∧ (ran(f) is an ordinal)] .

� ZF−∆0
enriches Z−∆0

adding the replacement axiom for all ∈∆0-formulae.

� ZFC−∆0
, ZF∆0 , ZFC∆0 are defined as expected.

Remark 7.3.3. We took the pain of giving an explicit axiomatization of Z−∆0
using

Extensionality, Foundation, and axioms 7.1,. . . ,7.7 because this axiomatizion is given
by Π2-sentences of ∈∆0 , hence it is preserved by Σ1-substructures. Note that AC
is a Π2-axiom of ∈∆0 while the power-set axiom and the replacement schema for a
quantifier free ∈∆0-formula are both Π3.

A simple inductive argument shows that ZF− + T∈,D (where D is the subset of
Form∈ × 2 used in Not. 7.3.2 to define ∈∆0) is logically equivalent to ZF− enriched
with axioms 7.1,. . . ,7.7 (with ∅ taking the place of c∈ and ω being the constant of
∈∆0 associated to the ∆0-formula defining it). We skip the details.

We now introduce the terminology to handle set theory formalized in signatures
richer than ∈∆0 .

Notation 7.3.4. Let τ ⊇∈∆0 . For a τ -formula φ(~x, ~y, ~z):

� The Replacement Axiom for φ (Rep(φ)) states:

∀~z∀X [(∀x ∈ X∃!y φ(x, y, ~z))→ ∃F (F is a function ∧ dom(F ) = X ∧ ∀x ∈ X φ(x, F (x), ~z))] ;

Repτ holds if Rep(φ) holds for all τ -formulae φ.

� ZF−τ is Z−∆0
+ Repτ .

� Accordingly we define ZFCτ , ZFC
−
τ , ZFτ , ZFCτ ,. . .

� We write ZFC∆0 rather than ZFCτ when τ =∈∆0 , etc.

� If A ⊆ Form∈ × 2 is such that ∈∆0⊆∈A, we write ZFC−A rather than ZFC− +
T∈,A,. . .

Clearly (the suitable fragment of) ZFC + T∈,A is logically equivalent to (the
suitable fragment of) ZFCA.

We state and prove the Lemma under the assumption that the model of ZFC we
work in is transitive; but this assumption is unnecessary. Here and in other places of
this paper we just need that the models in question satisfy ZFC− or slightly more.

Lemma 7.3.5. Let (V,∈∆0) be a model of ZFC∆0 and λ > κ be infinite cardinals for
V with λ regular. Assume φ1(~x1), . . . , φk(~xk), ψ1(~x1, y), . . . , ψn(~xn, y) are ∈-formulae
which are in ∆1(ZFC−) and

ZFC− |= ∀~x∃!y ψi(~xi, y)
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for i = 1, . . . , n. Then the structure

(Hλ,∈Hλ∆0
, RHλ

φj
: j = 1, . . . , k, fHλφl

: l = 1, . . . , n, A : A ⊆ pow(κ)k, k ∈ N)

is Σ1-elementary in

(V,∈V∆0
, RV

φj
: j = 1, . . . , k, fVψl : l = 1, . . . , n, A : A ⊆ pow(κ)k, k ∈ N),

where Rφj and fψl are interpreted by means of axioms Ax0
φj

and Ax1
ψl

for j = 1, . . . , k,
l = 1, . . . , n in both structures.

Its proof is a variant of the classical result of Levy (which is the above theorem
stated just for the signature ∈∆0); it is a slight expansion of [?, Lemma 5.3]; we
include it here since it is not literally the same:

Proof. Let τ be the signature ∈∆0 ∪
{
Rφj : j = 1, . . . , k

}
∪ {fψl : l = 1, . . . , n},

φ(~x, y) be a quantifier free formula for the signature under consideration where
only predicates A1, . . . , Ak appears2, and ~a ∈ Hλ be such that

(V, τV , A1, . . . , Ak) |= ∃yφ(~a, y).

Let α > κ be large enough so that for some b ∈ Vα

(V, τV , A1, . . . , Ak) |= φ(~a, b).

Then
(Vα, τ

Vα , A1, . . . , Ak) |= φ(~a, b)

(since (Vα, τ
Vα , A1, . . . , Ak) v (V, τV , A1, . . . , Ak) by Fact ??). By the downward

Lowenheim-Skolem theorem, we can find X ⊆ Vα which is the domain of a τ ∪
{A1, . . . , Ak}-elementary substructure of

(Vα, τ
Vα , A1, . . . , Ak)

such that X is a set of size κ containing κ and such that A1, . . . , Ak, κ, b,~a ∈ X.
Since |X| = κ ⊆ X, a standard argument shows that Hλ ∩ X is a transitive set,
and that κ+ is the least ordinal in X which is not contained in X. Let M be the
transitive collapse of X via the Mostowski collapsing map πX .

We have that the first ordinal moved by πX is κ+ and πX is the identity on
Hκ+ ∩X. Therefore πX(a) = a for all a ∈ Hκ+ ∩X. Moreover for A ⊆ pow(κ)n in X

πX(A) = A ∩M. (7.8)

We prove equation (7.8):

Proof. Since X∩Vκ+1 ⊆ X∩Hκ+ , πX is the identity on X∩Hκ+ , and A ⊆ pow(κ) ⊆
Vκ+1, we get that

πX(A) = πX [A ∩X] = πX [A ∩X ∩ Vκ+1] = A ∩M ∩ Vκ+1 = A ∩M.

2Note that ∃x ∈ yA(y) is not a quantifier free formula, and is actually equivalent to the
Σ1-formula ∃x(x ∈ y) ∧A(y).
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It suffices now to show that

(M, τM , πX(A1), . . . , πX(Ak)) v (Hλ, τ
Hλ , A1, . . . , Ak). (7.9)

Assume 7.9 holds; since πX is an isomorphism and πX(Aj) = πX [Aj ∩ X], we get
that

(M, τM , πX(A1), . . . , πX(Ak)) |= φ(πX(b),~a)

since
(X, τV , A1 ∩X, . . . , Ak ∩X) |= φ(b,~a).

By (7.9) we get that

(Hλ, τ
Hλ , A1, . . . , Ak) |= φ(πX(b),~a)

and we are done.
We prove (7.9):

Proof. since (M,∈) is a transitive model of ZFC− with M ⊆ Hλ, any atomic τ -
formula holds true in (M, τM ) if and only if it holds in (Hλ, τ

Hλ) (again by Fact ??).
It remains to argue that the same occurs for the formulae of type Aj(x), i.e. that
Aj ∩M = πX(Aj) for all j = 1, . . . , n; which is the case by (7.8).
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Chapter 8

Appendix B: Orders and topology

8.0.1 Topological spaces

A topology on a given set X is a family τ ⊆ P(X) with ∅, X ∈ τ which is closed
under arbitrary unions and finite intersections. We call the pair (X, τ) a topological
space.

The elements of τ are the open sets for the topology τ . Complements of open
sets are called closed sets, we denote by τ c the family of closed sets (the family of
closed sets of a topological space is closed under arbitrary intersections and finite
unions). When a set A is both open and closed, we call it a clopen set of τ and we
denote this family by CLOP(X, τ) (or just CLOP(X) if τ is clear from the context).

A basis σ for a topological space (X, τ) is a subfamily of τ with the property
that every open set in τ can be written as an union of elements of σ. We say that τ
is generated by σ. Notice that if σ is a basis for τ any intersection of finitely many
elements of σ contains an element of σ (i.e. σ \ {∅} is a prefilter on P(X)).

A semibasis σ for a topological space (X, τ) is a subfamily of τ with the property
that the set of finite intersections of elements of σ is a basis. σ is a semibasis for
(X, τ) if and only if τ is the weakest (i.e. smallest) topology on X containing σ. If σ
is a semibasis for τ , we say that τ is generated by σ.

We say that U ⊂ X is a neighborhood of some x ∈ X if x ∈ U .

A Hausdorff space (X, τ) is a topological space (X, τ) in which any two distinct
points x and y can be separated by two open sets U and V in τ , that is x is in U ,
y is in V and U and V are disjoint. Recall that in a Hausdorff space X points are
closed (i.e. {x} is closed for all x ∈ X).

We say that (X, τ) is 0-dimensional if τ admits a basis of clopen sets.

x ∈ X is an isolated point if {x} is open and closed.

Given a topological space (X, τ) and an arbitrary subset A of X, we denote by
Cl(A) (the closure of A) the smallest closed set containing A. We denote by Int(A)
(the interior of A) the biggest open set that is contained in A. An open set A is
regular open if A = Int(Cl(A)). For any A ⊆ X Reg(A) = Int(Cl(A)) denotes the
regularization of the set A.

Example 8.0.1. Let τ be the euclidean topology on R; then any interval is a regular
open set.
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If a < b < c, we have that (a; b), (b; c) are regular open while (a; b) ∪ (b; c) is not
with its regularization being (a; c).

In general regular open sets are those open sets which can be written in the form⋃
j∈J(aj; bj) with the family {(aj; bj) : j ∈ J} consisting of pairwise disjoint open

intervals such that ai 6= bj for any i, j ∈ J .

Given B ⊆ A, B is dense in A if Cl(B) = Cl(A). Remark that if B is dense in A
and C ⊆ A is open, then B ∩ C is dense in C.

A map f : X → Y between topological spaces (X, τ) and (Y, σ) is continuous if
the preimage by f of any open set of Y is open, open if the (direct) image of an open
set of X is open in Y , a homeomorphism if it is an open and continuous bijection.

Given a topological space (X, τ) and Y ⊆ X the restriction τ � Y of τ to Y is
given by the family {A ∩ Y : A ∈ τ} and is a topology on Y .

Product topologies
Let I be a set of indexes and for all i ∈ I, let (Xi, τi) be a topological space and

X =
∏

i∈I Xi be the cartesian product of the sets Xi. The product topology τ on X
is the weakest topology making all the projections maps πi : f 7→ f(i) continuous. It
is generated by the family of sets of the form

∏
i∈I Ai, where each Ai is open in Xi

and Ai 6= Xi only for finitely many i.

Compactness
A topological space (X, τ) is compact if any of the following equivalent conditions

are met:

� every family F of closed sets with the finite intersection property1 has a
non-empty intersection.

� Every open covering of X has a finite subcovering.

We emphasize the following two statements:

� We focus on either Hausdorff compact spaces or on order topologies.

� We often interplay between the topological notion of density and the notion of
dense subset of a partial order.

8.1 Stone-Cech compactifications

Recall that the compactification of a space (X, τ) is a compact space (K, σ) together
with a topological embedding i : X → K (i.e. a continuous injective map such that
(X, τ) is homeomorphic to (i[X], σ�i[X])).

The aim of this section is to characterize the Hausdorff spaces which admit at
least one compactification. These are the Tychonoff spaces. We will show that for
these spaces it is always possible to build the largest possible compactification.

1F has the finite intersection property if any finite subfamily of F has a non-empty intersection.
A family A of subsets of X such that

⋃
A = X is a covering of X.
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Definition 8.1.1. Let (X, τ) be a topological space.
C ⊆ X is a 0-set if there exists f : X → [0; 1] continuous such that f−1[0] = C.

Notation 8.1.2. Let (X, τ) be a topological space. τ 0 denotes the family of 0-sets
of (X, τ).

Remark that clopen sets are 0-sets (as witnessed by the characteristic function of
their complement) and 0-sets are closed. The basic geometric picture captured by
these definitions is that 0-sets are those closed sets which can be approximated from
above continuously and with great precision by open supersets. On the other hand
in general closed sets may not be 0-sets.

Definition 8.1.3. A space (X, τ) is Tychonoff if singletons of points are closed sets
and for all x ∈ X and C closed with x /∈ C, we can find f : X → [0; 1] continuous
and such that f(x) = 0, f � C = 1.

The following is fundamental in the arguments to follow:

Proposition 8.1.4. Let (X, τ) be a topological space and C0, C1 be closed subsets of
X.

1. Assume C0, C1 are 0-sets. Then C0 ∩ C1 and C0 ∪ C1 are also 0-set.

2. Assume C0, C1 are disjoint 0-sets. Then there are open sets Vi ⊇ Ci for i = 0, 1
with disjoint closures, and which are the complement of 0-sets.

Proof. Let fi witness that Ci is a 0-set for i = 0, 1. Then:

1. h = f1+f0
2

and k = f1 · f0 are continuous and witness that C0 ∩C1 and C1 ∪C2

are 0-sets.

2. g = f0
f0+f1

is continous and such that g−1[{i}] = Ci. V0 = g−1[[0; 1/3)] V1 =

g−1[(2/3; 1]] are the complements of 0-sets (as witnessed by g0(x) = 1 −
min {1, 3g(x)} for V0 and g1(x) = max {0, 3g(x)− 2} for V1 which are both
continuous) such that Ci ⊆ Vi and Cl(V0) ∩ Cl(V1) is empty.

The notion of 0-set has been introduced to get the separation property given by
the second item above: in general for an Hausdorff topological space it is not true
that disjoint closed sets can be separated by disjoint open sets, on the other hand
for disjoint 0-sets this is always possible. This separation property of 0-sets will be
used to define βX and to prove that it is Hausdorff.

Definition 8.1.5. (X, τ) is normal if for every pair of closed disjoint sets C0, C1

there is f : X → [0, 1] continuous such that f−1[i] = Ci for i = 0, 1.

Lemma 8.1.6 (Urysohn Lemma). (X, τ) is normal if and only if any two closed
disjoint sets can be separated by disjoint open sets.

Proof. See [8, Thm. 1.5.6]
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Exercise 8.1.7. Assume (X, τ) is normal (i.e. any two closed disjoint sets can be
separated by open disjoint sets). Then any closed set in X is a 0-set.

The outcome is that for spaces which are not normal, the 0-sets define a large
collection of closed sets Γ which is closed under finite unions and intersections,
contains the clopen sets, and satysfies the property that any two disjoint sets in Γ
can be separated by disjoint open sets whose complement are in Γ. As we will see
below, these are the key properties one needs to prove that the space of maximal
filters on Γ is Hausdorff and compact.

Fact 8.1.8. Locally compact Hausdorff spaces are normal and Hausdorff.

Proof. Left to the reader.

Definition 8.1.9. Given a topological space (X, τ), βX is the family of maximal
filters of 0-sets in the partial order (τ 0 \ {∅} ,⊇).

The following is a fundamental easy outcome of Proposition 8.1.4.

Proposition 8.1.10. Let (X, τ) be a topological space.

� C,D ∈ τ 0 are compatible in the partial order (τ 0 \ {∅} ,⊇) if and only if C ∩D
is non-empty.

� If F is a filter in the partial order (τ 0 \{∅} ,⊇) and C1, . . . , Cn ∈ F ,
⋂n
i=1Ci ∈

F , hence is non-empty.

� If F is a maximal filter in the partial order (τ 0 \ {∅} ,⊇), C ∈ F , and C =
C1 ∪ · · · ∪ Cn with each Ci a 0-set, at least one Ci is in F .

� Assume X is normal. Then βX coincides with the family of maximal filters of
closed sets.

� Assume X is Tychonoff. Then for all x ∈ X the set

Fx = {F : F ⊆ X is a 0-set with x ∈ F}

is a non-empty maximal filter in (τN \ {∅} ,⊇).

Proof. We prove just the last assertion: Assume C ∩D 6= ∅ for all D ∈ Fx but x /∈ C.
Then there exists f : X → [0; 1] continuous such that f(x) = 0 and f � C = 1. Hence
C ∩ f−1[{0}] = ∅, but f−1[{0}] ∈ Fx since x ∈ f−1[{0}], a contradiction.

Definition 8.1.11. Given a topological space (X, τ) and Y ⊆ X

βcY = {F ∈ βX : ∃C ∈ F (C ⊆ Y )} .

βoY = {F ∈ βX : ∀C ∈ F (C ∩ Y 6= ∅)} .

Proposition 8.1.12. Assume (X, τ) is a Topological space. Then for all Y1, . . . , Yn ⊆
X the following holds:

1. For any 0-set E βcE = ∅ if and only if E = ∅,
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2. βcY1 ⊆ βoY1,

3. βoY1 = βX \ βc(X \ Y1),

4. βcY1 = βX \ βo(X \ Y1),

5. βcY1 ∩ · · · ∩ βcYn = βc(Y1 ∩ · · · ∩ Yn),

6. βoY1 ∪ · · · ∪ βoYn = βo(Y1 ∪ · · · ∪ Yn),

7. If E is a 0-set, βoE = βcE. Hence F 6∈ βcE if and only if some D ∈ F is
disjoint from E, and βo(X \ E) = βc(X \ E).

Proof.

1. Given E ∈ τ 0 and non-empty, extend {E} to a maximal filter.

2. Trivial by definition.

3. Unravelling the definitions

βX \ βc(X \ Y1) = βX \ {F : ∃C ∈ F C ⊆ (X \ Y1)} =

= {F : ∀C ∈ F C 6⊆ (X \ Y1)} = {F : ∀C ∈ F C ∩ Y1 6= ∅} = βo(Y1).

4. Again unravelling the definitions

βX \ βo(X \ Y1) = βX \ {F : ∀C ∈ F C ∩ (X \ Y1) 6= ∅} =

= {F : ∃C ∈ F C ∩ (X \ Y1) = ∅} = {F : ∃C ∈ F C ⊆ Y1} = βc(Y1).

5. F ∈ βcY1 ∩ · · · ∩ βcYn if and only if there are Ci ∈ F such that Ci ⊆ Ui for all
i = 1, . . . , n, which gives that C =

⋂n
i=1Ci ⊆ Y1 ∩ · · · ∩ Yn is a 0-set in F . We

conclude that βcY1 ∩ · · · ∩ βcYn ⊆ βc(Y1 ∩ · · · ∩ Yn). The converse inclusion is
trivial.

6. By the previous items:

βX \ (βoY1 ∪ · · · ∪ βoYn) = (βX \ βoY1) ∩ · · · ∩ (βX \ βoYn) =

= βc(X \ Y1) ∩ · · · ∩ βc(X \ Yn) =

= βc((X \ Y1) ∩ · · · ∩ (X \ Yn)) =

= βc(X \ (Y1 ∪ · · · ∪ Yn)) =

= βX \ βo(Y1 ∪ · · · ∪ Yn).

Hence the thesis.

7. Assume F ∈ βoC. Observe that

G =
{
E ∈ τN : ∃D ∈ F E ⊇ D ∩ C

}
is a filter on (τ 0 \ {∅} ,⊇) containing F ∪ {C}. By maximality of F , C ∈ F ,
hence F ∈ βcC.
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Definition 8.1.13. Given a topological space (X, τ) We let βτ be the topology on
βX generated by the family {

βoU : X \ U ∈ τ 0
}

(i.e. βτ is the weakest topology containing all βoU with X \ U ∈ τ 0).

By the previous propositions ∅ = βo∅, βX = βoX, βoU = βcU for all X \U ∈ τ 0

and

βo(U1 ∩ · · · ∩ Un) = βc(U1 ∩ · · · ∩ Un) = βcU1 ∩ · · · ∩ βcUn = βoU1 ∩ · · · ∩ βoUn.

Therefore:

Fact 8.1.14. Let (X, τ) be a topological space. Then {βoU : X \ U ∈ τ 0} is a base
for βτ and any closed set for βτ is the intersection of a family of basic closed sets of
the form βcE with E ∈ τ 0.

We are ready to prove the main properties of the Stone-Cech compactification of
a topological space.

Theorem 8.1.15. Assume (X, τ) is a topological space. Then (βX, βτ ) is a compact
Hausdorff space. Moreover assume (X, τ) is a Tychonoff space, then:

� The map
iX : X 7→ Fx =

{
C ∈ τ 0 : x ∈ C

}
is a topological embedding.

� Any continuous f : X → K with K compact Hausdorff admits a unique
continuous extension to a βf : βX → K such that f = βf ◦ iX .

� (βX, βτ ) is unique up to homeomorphisms with these properties. In particular
any compactification of (X, τ) is the continuous image of (βX, βτ ).

� (X, τ) is locally compact and normal if and only if iX [X] is a dense open subset
of βX.

Proof. We divide the proof of the theorem in several distinct steps:

βX is Hausdorff. Pick F1 6= F0 ∈ βX, let C ∈ F1 \ F0. By Proposition 8.1.12
applied to F0 and C, there is D ∈ F0 such that C ∩D is empty. By Proposi-
tion 8.1.4 find U and V complement of 0-sets and disjoint such that C ⊆ U
and D ⊆ V . Then F1 ∈ βoU , F0 ∈ βoV and βoU ∩ βoV = βcU ∩ βcV =
βc(U ∩ V ) = ∅.

βX is compact. Fix a family H of closed sets of βX with the finite intersection
property. We can assume H consists of basic closed sets of the form βcE with
E a 0-set (by the same argument we used in the proof of the compactness of
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St(B) in 2.8.2, since any closed set is the intersection of a family of sets of type
βcE with E ∈ τ 0).

Consider the family H0 given by the 0-sets E such that βcE ∈ H. Then H0

is non empty (since X ∈ H0) and has the finite intersection property: fix
C1, . . . , Cn ∈ H0. Then

βc(C1 ∩ · · · ∩ Cn) = βc(C1) ∩ · · · ∩ βc(Cn) 6= ∅,

hence C1 ∩ · · · ∩ Cn 6= ∅.
Find F maximal filter of 0-sets extending H0. Then F ∈

⋂
H: pick βcE ∈ H,

then E ∈ F , hence F ∈ βcE.

iX is a topological embedding if (X, τ) is Tychonoff. iX is well defined since
Fx is a maximal filter of 0-sets for all x ∈ X by Proposition 8.1.10.

iX is continous, and open on its target iX [X] (seen as a subspace of βX with
the inherited topology), with a dense image in βX: for all U complement of a
0-set, Fx ∈ βcU if and only if x ∈ U , hence

� iX [X] is a dense subset of βX, since it has non-empty intersection with
all basic open sets;

� iX is open and continuous, since iX [X] ∩ βcU = iX [U ] for all basic open
sets βcU .

iX is injective: if x 6= y, find f : X → [0; 1] continuous with f(x) = 0 and
f(y) = 1, then we can separate Fx,Fy with the basic open sets βo(f−1[[0; 1/3)]),
βo(f−1[(2/3; 1]]).

Unique extension property. We show that any continuous f : X → K with K
compact Hausdorff extends uniquely to a continuous βf : βX → K such that
βf ◦ iX = f . Let F ∈ βX. Choose a net (xC)C∈F with xC ∈ C for all C ∈ F .
By [8, Theorem 1.3.8] there is a universal subnet (xλ)λ∈Λ of (xC)C∈F . Since
(iX(xC))C∈F is eventually in any open neighborhood of F of the form βU , we
have that (iX(xλ))λ∈Λ converges to F . Now the image of any universal net
under any function is again a universal net. Since K is compact Hausdorff,
we have that the image net (f(xλ))λ∈Λ converges to some unique point βf(F)
(see [8, Prop 1.5.2, Thm 1.6.2]). Now if f is continuous βf(F) does not depend
on the choice of the net with values in X converging to F (we leave to the reader
to check this property). In particular βf is well defined. The uniqueness and
continuity of βf follows from the fact that continuous functions on Hausdorff
spaces are determined by their restriction to a dense subset; iX [X] is a dense
subset of βX on which βf is continuous; on βX \ iX [X] βf is defined exactly
in the unique way to make it continuous (see [8, Prop. 1.4.3]).

Uniqueness up to homeomorphism of βX. We now show that any compact
space (Y, σ) satisfying the above extension property for (X, τ) is homeomorphic
to (βX, βτ ). So assume that (Y, σ) is a Hausdorff compactification of X via a
topological embedding j : X → Y such that any continuous map f : X → K
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with K compact Hausdorff admits a unique extension continuous extension
f ∗ : Y → K such that f ∗ ◦ j = f .

Now consider βj : βX → Y . This map is surjective since any point y in Y is
the limit of a net (j(xλ))λ∈Λ, hence y = βj(F) where F is the limit in βX of
the net (iX(xλ))λ∈Λ.

By the universal property of Y find i∗X : Y → βX extending iX . Then i∗X ◦βj �
iX [X] is the identity map on iX [X] (since i∗X ◦ βj(iX(x)) = i∗X(j(x)) = iX(x)).
The identity map on βX is a continuous extension of i∗X ◦ βj � iX [X], hence by
the uniqueness property of βX, we get that i∗X ◦ βj is the identity map on βX.
By a symmetric argument we get that βj ◦ i∗X is the identity map on Y . Hence
βj and i∗X are homeomorphisms which invert one another.

iX [X] is open in βX if and ony if X is locally compact and normal: In case
X is normal, we have that βX is the family of maximal filters of closed sets
(all closed sets are 0-sets since X is normal). If some C ∈ F is a compact
subset of X, F has a non-empty intersection in X. Since X is Hausdorff and
F maximal, this intersection must be a singleton {x}. Hence F = Fx for some
x ∈ X if and only if some C ∈ F is compact in X. We get that iX [X] is the
union of βoU such that Cl(U) is compact in X, hence iX [X] is open in βX.
Conversely any open subset of βX is locally compact.

Remark 8.1.16. Notice that normality is not preserved for subspaces: given K
compact, X ⊆ K dense subset of K, and C1, C2 closed subsets of K with Ci ∩X 6= ∅
for both i = 0, 1, it is well possible that C1 ∩C2 ∩X is empty while C1 ∩C2 is not. If
this were the case, in K these two closed sets cannot be separated by disjoint open sets,
hence also in X (being it a dense subset of K). However this potential counterexample
cannot occur if C1 is the singleton of a point in X. This is one of the reason why
one introduces the weaker Tychonoff property which uses the characterization of
normality given by Urysohn Lemma. Remark that the separation property for disjoint
closed sets C0, C1 given by the existence of a continuous f : X → [0; 1] such that
f � Ci = i, when predicated for disjoint closed sets of which one is the singleton of a
point, is strictly stronger than the assertion that closed sets can be separated from
points by disjoint open sets.

Remark 8.1.17. One resorts to the introduction of the notion of 0-sets to grant that
βX is Hausdorff. If one defines β∗X as the set of maximal filters of closed sets
with the topology given by the corresponding definition of βoU for U open in X, we
would run into trouble in proving the Hausdorff property for βX. It actually fails
if X is not Tychonoff. The compactness part of the proof survives with these new
definitions. The problem in the proof of the Hausdorff property is the separation of
arbitrary disjoint closed sets C,D by means of disjoint open sets (to establish the
Hausdorff property of βX we used that two disjoint 0-sets can be separated by open
disjoint sets which are the complements of 0-sets). If C and D are closed but not
0-sets, this cannot always be done.

It is somewhat peculiar that one has to introduce the space [0; 1] to describe a
family of closed sets which are then used with almost no reference to the properties of
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real numbers. One explanation is given by the following post on math.stackexchange
where it is argued that [0; 1] can be described in purely topological terms in a variety
of ways. These topological characterizations of [0; 1] are essential in the arguments
we sketched above.

https://math.stackexchange.com/questions/322411/topological-characterization-of-the-closed-interval-0-1
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