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Abstract

We give a brief survey on the interplay between forcing axioms and var-
ious other non-constructive principles widely used in many fields of abstract
mathematics, such as the axiom of choice and Baire’s category theorem.

First of all we outline how, using basic partial order theory, it is possible
to reformulate the axiom of choice, Baire’s category theorem, and many large
cardinal axioms as specific instances of forcing axioms. We then address forcing
axioms with a model-theoretic perspective and outline a deep analogy existing
between the standard Łoś Theorem for ultraproducts of first order structures
and Shoenfield’s absoluteness for Σ1

2-properties. Finally we address the question
of whether and to what extent forcing axioms can provide “complete” semantics
for set theory. We argue that to a large extent this is possible for certain initial
fragments of the universe of sets: The pioneering work of Woodin on generic
absoluteness show that this is the case for the Chang model L(Ordω) (where all
of mathematics formalizable in second order number theory can be developed)
in the presence of large cardinals, and recent works by the author with Asperó
and with Audrito show that this can also be the case for the Chang model
L(Ordω1) (where one can develop most of mathematics formalizable in third
order number theory) in the presence of large cardinals and maximal strength-
enings of Martin’s maximum or of the proper forcing axiom. A major open
question we leave completely open is whether this situation is peculiar to these
Chang models or can be lifted up also to L(Ordκ) for cardinals κ > ω1.
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Introduction

Since its introduction by Cohen in 1963 forcing has been the key and the most ef-
fective tool to obtain independence results in set theory. This method has found
applications in set theory and in virtually all fields of pure mathematics: in the
last forty years natural problems of group theory, functional analysis, operator al-
gebras, general topology, and many other subjects were shown to be undecidable
by means of forcing. Starting from the early seventies and during the eighties it
became transparent that many of these consistency results could all be derived by
a short list of set theoretic principles, which are known in the literature as forcing
axioms. These axioms gave set theorists and mathematicians a very powerful tool
to obtain independence results: for any given mathematical problem we are most
likely able to compute its (possibly different) solutions in the constructible universe
L and in models of strong forcing axioms. These axioms settle basic problems in
cardinal arithmetic like the size of the continuum and the singular cardinal prob-
lem (see among others the works of Foreman, Magidor, Shelah [10], Veličković [28],
Todorčević [25], Moore [17], Caicedo and Veličković [5], and the author [29]), as well
as combinatorially complicated ones like the basis problem for uncountable linear
orders (see Moore’s result [18] which extends previous work of Baumgartner [4],
Shelah [23], Todorčević [24], and others). Interesting problems originating from
other fields of mathematics and apparently unrelated to set theory have also been
settled appealing to forcing axioms, as it is the case (to cite two of the most promi-
nent examples) for Shelah’s results [22] on Whitehead’s problem in group theory
and Farah’s result [8] on the non-existence of outer automorphisms of the Calkin
algebra in operator algebra. Forcing axioms assert that for a large class of compact
topological spaces X Baire’s category theorem can be strengthened to the statement
that any family of ℵ1-many dense open subsets of X has non empty intersection. In
light of the success these axioms have met in solving problems a convinced platonist
may start to argue that these principles may actually give a “complete” theory of
a suitable fragment of the universe of sets. However it is not clear how one could
formulate such a result. The aim of this paper is to explain in which sense we can
show that forcing axioms can give such a “complete” theory and why they are so
“useful”.

Section 1 starts showing that two basic non-constructive principles which play a
crucial role in the foundations of many mathematical theories, the axiom of choice
and Baire’s category theorem, can both be formulated as specific instances of forc-
ing axioms. In section 2 we also argue that many large cardinal axioms can be
reformulated in the language of partial orders as specific instances of a more general
kind of forcing axioms. Sections 3 and 4 show that Shoenfield’s absoluteness for
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Σ1
2-properties and Łoś Theorem for ultraproducts of first order models are two sides

of the same coins: recasted in the language of boolean valued models, Shoenfield’s
absoluteness shows that there is a more general notion of boolean ultrapower (of
which the standard ultrapowers encompassed in Łoś Theorem are just special cases)
and that in the specific case one takes a boolean ultrapower of a compact, second
countable space X, the natural embedding of X in its boolean ultrapower is at
least Σ2-elementary. Section 5 embarks in a rough analysis of what is a maximal
forcing axiom. We are led by two driving observations, one rooted in topological
considerations and the other in model-theoretic arguments. First of all we outline
how Woodin’s generic absoluteness results for L(Ordω) entail that in the presence
of large cardinals the natural embeddings of a separable compact Hausdorff space
X in its boolean ultrapowers are not only Σ2-elementary but fully elementary. We
then present other recent results by the author, with Asperó [1] and with Audrito
[2] which show that, in the presence of natural strengthenings of Martin’s maximum
or of the proper forcing axiom, an exact analogue of Woodin’s generic absoluteness
result can be established also at the level of the Chang model L(Ordω1) and/or for
the first order theory of Hℵ2 . The main open question left open is whether these
generic absoluteness results are specific to the Chang models L(Ordωi) for i = 0, 1
or can be replicated also for other cardinals. The paper is meant to be accessible to
a wide audience of mathematicians, specifically the first two sections do not require
any special familiarity with logic or set theory other than some basic cardinal arith-
metic. The third section requires a certain familiarity with first order logic and the
basic model theoretic constructions of ultraproducts. The fourth and fifth sections,
on the other hand, presume the reader has some familiarity with the forcing method.
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1 The axiom of choice and Baire’s category theorem as
forcing axioms

The axiom of choice AC and Baire’s category theorem BCT are non-constuctive
principles which play a prominent role in the development of many fields of abstract
mathematics. Standard formulations of the axiom of choice and of Baire’s category
theorem are the following:

Definition 1.1. AC ≡
∏
i∈I Ai is non-empty for all families of non empty sets

{Ai : i ∈ I}, i.e. there is a choice function f : I →
⋃
i∈I Ai such that f(i) ∈ Ai for

all i ∈ I.

Theorem 1.2. BCT0 ≡ For all compact Hausdorff spaces (X, τ) and all countable
families {An : n ∈ N} of dense open subsets of X,

⋂
n∈NAn is non-empty.

There are large numbers of equivalent formulations of the axiom of choice and
it may come as a surprise that one of these is a natural generalization of Baire’s
category theorem and naturally leads to the notion of forcing axiom.

Definition 1.3. (P,≤) is a partial order if ≤ is a reflexive and transitive relation
on P .

Notation 1.4. Given a partial order (P,≤),

↑ A = {p ∈ P : ∃q ∈ A : q ≤ p}

denotes the upward closure of A and similarly ↓ A will denote its downward closure.

• A ⊆ P is open if it is a downward closed subset of P .

• The order topology τP on P is given by the downward closed subsets of P .

• D is dense if for all p ∈ P there is some q ∈ A refining p (q refines p if q ≤ p),

• G ⊆ P is a filter if it is upward closed and all q, p ∈ G have a common
refinement r ∈ G.

• p is incompatible with q (p ⊥ q) if no r ∈ P refines both p and q.

• X is a predense subset of P if ↓ X is open dense in P .

• X is an antichain of P if it is composed of pairwise incompatible elements,
and a maximal one if it is also predense.
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• X is a chain of P if ≤ is a total order on X.

The terminology for open and dense subsets of P comes from the observation
that the collection τP of downward closed subsets of P is a topology on the space
of points P (though in general not a Hausdorff one), whose dense sets are exactly
those satisfying the above property. Remark also that the downward closure of a
dense set is open dense in this topology.

A simple proof of the Baire Category Theorem is given by a basic enumeration
argument (which however needs some amount of the axiom of choice to be carried):

Lemma 1.5. BCT1 ≡ Let (P,≤) be a partial order and {Dn : n ∈ N} be a family of
predense subsets of P . Then there is a filter G ⊆ P meeting all the sets Dn.

Proof. Build by induction a decreasing chain {pn : n ∈ N} with pn ∈ ↓Dn and
pn+1 ≤ pn for all n. Let G = ↑ {pn : n ∈ N}. Then G meets all the Dn.

Baire’s category theorem can be proved from the above Lemma (without any
use of the axiom of choice) as follows:

Proof of BCT0 from BCT1. Given a compact Hausdorff space (X, τ) and a family of
dense open sets {Dn : n ∈ N} of X, consider the partial order (τ \ {∅} ,⊆) and the
family En = {A ∈ τ : Cl (A) ⊆ Dn}. Then it is easily checked that each En is dense
open in the order topology induced by the partial order (τ \{∅} ,⊆). By Lemma 1.5,
we can find a filter G ⊆ τ \ {∅} meeting all the sets En. This gives that for all
A1, . . . An ∈ G

Cl (A1) ∩ . . . ∩ Cl (An) ⊇ A1 ∩ . . . ∩An ⊇ B 6= ∅

for some B ∈ G (where Cl (A) is the closure of A ⊆ X in the topology τ .) By the
compactness of (X, τ), ⋂

{Cl (A) : A ∈ G} 6= ∅.

Any point in this intersection belongs to the intersection of all the open sets Dn.

Remark the interplay between the order topology on the partial order (τ \{∅} ,⊆)
and the compact topology τ on X. Modulo the prime ideal theorem (a weak form
of the axiom of choice), BCT1 can also be proved from BCT0.

It is less well-known that the axiom of choice has also an equivalent formulation
as the existence of filters on posets meeting sufficiently many dense sets. In order
to proceed further, we need to introduce the standard notion of forcing axiom.

Definition 1.6. Let κ be a cardinal and (P,≤) be a partial order.
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FAκ(P ) ≡ For all families {Dα : α < κ} of predense subsets of P , there
is a filter G on P meeting all these predense sets.

Given a class Γ of partial orders FAκ(Γ) holds if FAκ(P ) holds for all P ∈ Γ.

Definition 1.7. Let λ be a cardinal. A partial order (P,≤) is < λ-closed if every
decreasing chain {Pα : α < γ} indexed by some γ < λ has a lower bound in P .

Γλ denotes the class of < λ-closed posets. Ωλ denotes the class of posets P for
which FAλ(P ) holds.

It is almost immediate to check that Γℵ0 is the class of all posets, and that BCT1
states that Ωℵ0 = Γℵ0 . The following formulation of the axiom of choice in terms of
forcing axioms has been handed to me by Todorčević, I’m not aware of any published
reference. In what follows, let ZF denote the standard first order axiomatization of
set theory in the first order language {∈,=} (excluding the axiom of choice) and
ZFC denote ZF+ the first order formalization of the axiom of choice.

Theorem 1.8. The axiom of choice AC is equivalent (over the theory ZF) to the
assertion that FAκ(Γκ) holds for all regular cardinals κ.

We sketch a proof of Theorem 1.8, the interested reader can find a full proof in
[20, Chapter 3, Section 2] (see the following hyperlink: Tesi-Parente). First of all,
it is convenient to prove 1.8 using a different equivalent formulation of the axiom of
choice.

Definition 1.9. Let κ be an infinite cardinal. The principle of dependent choices
DCκ states the following:

For every non-empty set X and every function F : X<κ → P (X) \ {∅}, there exists
g : κ→ X such that g(α) ∈ F (g � α) for all α < κ.

Lemma 1.10. AC is equivalent to ∀κDCκ modulo ZF.

The reader can find a proof in [20, Theorem 3.2.3]. We prove the Theorem
assuming the Lemma:

Proof of Theorem 1.8. We prove by induction on κ that DCκ is equivalent to FAκ(Γκ)
over the theory ZF + ∀λ < κDCλ. We sketch the ideas for the case κ-regular1:

Assume DCκ; we prove (in ZF) that FAκ(Γκ) holds. Let (P,≤) be a <κ-closed
partially ordered set, and {Dα : α < κ} ⊆ P (P ) a family of predense subsets of P .

1In this case the assumption ∀λ < κDCλ is not needed, but all the relevant ideas in the proof
of the equivalence are already present.

7

http://www.logicatorino.altervista.org/matteo_viale/thesis-parente.pdf


Matteo Viale

Given a sequence 〈pβ : β < α〉 call ξ~p the least ξ such that 〈pβ : ξ ≤ β < α〉 is a
decreasing chain if such a ξ exists, and fix ξ~p = α otherwise. Notice that when the
length α of ~p is successor then ξ~p < α.

We now define a function F : P<κ → P (P ) \ {∅} as follows: given α < κ and a
sequence ~p ∈ P<κ,

F (~p) =
{
{p0} if ξ~p = α{
d ∈ ↓Dα : d ≤ pβ for all ξ~p ≤ β < α

}
otherwise.

The latter set is non-empty since (P,≤) is <κ-closed, α < κ, and Dα is predense. By
DCκ, we find g : κ→ P such that g(α) ∈ F (g � α) for all α < κ. An easy induction
shows that for all α the sequence g � α is decreasing, so g(α) ∈ ↓Dα for all α < κ.
Then

G = {p ∈ P : there exists α < κ such that g(α) ≤ p}

is a filter on P , such that G ∩Dβ 6= ∅ for all β < κ.
Conversely, assume FAκ(Γκ), we prove (in ZF) that DCκ holds.
Let X be a non-empty set and F : X<κ → P (X) \ {∅}. Define the partially

ordered set

P =
{
s ∈ X<κ : for all α ∈ dom(s), s(α) ∈ F (s � α)

}
,

with s ≤ t if and only if t ⊆ s. Let λ < κ and let s0 ≥ s1 ≥ · · · ≥ sα ≥ . . . , for
α < λ, be a chain in P . Then

⋃
α<λ sα is clearly a lower bound for the chain. Since

κ is regular, we have
⋃
α<λ sα ∈ P and so P is <κ-closed. For every α < κ, define

Dα = {s ∈ P : α ∈ dom(s)} ,

and note that Dα is dense in P . Using FAκ(Γκ), there exists a filter G ⊂ P such
that G ∩ Dα 6= ∅ for all α < κ. Then g =

⋃
G is a function g : κ → X such that

g(α) ∈ F (g � α) for all α < κ.

2 Large cardinals as forcing axioms
From now on, we focus on boolean algebras rather than posets.

2.1 A fast briefing on boolean algebras

Definition 2.1. A boolean algebra B is a boolean ring i.e. a ring in which every ele-
ment is idempotent. Equivalently a boolean algebra is a complemented distributive
lattice (B,∧,∨,¬, 0, 1) (see [11]).
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Notation 2.2. Given a boolean algebra (B,∧,∨,¬, 0, 1), the poset (B+;≤B) is given
by its non-zero elements, with order relation given by b ≤B q iff b∧q = b iff b∨q = q.

A boolean ring (B,+, ·, 0, 1) has a natural structure of complemented distributive
lattice (B,∧,∨,¬, 0, 1), for which the sum on the boolean ring becomes the operation
∆ of symmetric difference (a∆b = a∨b∧(¬(a∧b))) on the complemented distributive
lattice, and the multiplication of the ring the operation ∧.

We refer to filters, antichains, dense sets, predense sets, open sets on B, meaning
that these notions are declined for the corresponding partial order (B+;≤B).

We also recall the following:

• An ideal I on B is a non-empty downward closed subset of B with respect to
≤B which is also closed under ∨ (equivalently it is an ideal on the boolean ring
(B, δ,∧, 0, 1)). Its dual filter Ĭ is the set {¬a : a ∈ I}. It is a filter on the poset
(B+;≤B) (equivalently I is an ideal in the boolean ring B).

• An ideal I on B is < δ-complete (δ-complete) if all the subsets of I of size less
than δ (of size δ) have an upper bound in I.

• A maximal ideal I is an ideal properly contained in B and maximal with
respect to this property (equivalently it is a prime ideal on the boolean ring
(B, δ,∧, 0, 1)). Its dual filter is an ultrafilter. An ideal I is maximal if and only
if a ∈ I or ¬a ∈ I for all a ∈ B.

• B is < δ-complete (δ-complete) if all subsets of size less than δ (of size δ) have
a supremum and an infimum.

• Given an ideal I on B, B/I is the quotient boolean algebra given by equivalence
classes [a]I obtained by a =I b iff a∆b ∈ I.

• B/I is < κ-complete if I and B are both < κ-complete.

• B is atomless if there are no minimal elements in the partial order (B+;≤B).

• B is atomic if the set of minimal elements in the partial order (B+;≤B) is open
dense.

Usually we insist in the formulation of forcing axioms on the requirement that for
certain partial orders P any family of predense subsets of P of some fixed size κ can
be met in a single filter. In order to obtain a greater variety of forcing axioms, we
need to consider a much richer variety of properties which characterizes the families
of predense sets of P which can be met in a single filter. Using boolean algebras, by
considering partial orders of the form (B+;≤B) for some boolean algebra B, we can
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formulate (using the algebraic structure of B) a wide spectrum of properties each
defining a distinct forcing axiom.

2.2 Measurable cardinals

A cardinal κ is measurable if and only if there is a uniform < κ-complete ultrafilter
on the boolean algebra P (κ). The requirement that G is uniform amounts to say
that G is disjoint from the ideal I on the boolean algebra (P (κ) ,∩,∪, ∅, κ) given
by the bounded subsets of P (κ). This means that we are actually looking for an
ultrafilter G on the boolean algebra P (κ) /I. This is an atomless boolean algebra
which is < κ-complete. The requirement that G is < κ-complete amounts to ask
that G selects an unique member of any partition of κ in < κ-many pieces, moreover
any maximal antichain {[Ai]I : i < γ} in the boolean algebra P (κ) /I of size γ less
than κ is induced by a partition of κ in γ-many pairwise disjoint pieces.

All in all, we have the following characterization of measurability:

Definition 2.3. κ is a measurable cardinal if and only if there is a ultrafilter G on
P (κ) /I (where I is the ideal of bounded subsets of κ) which meets all the maximal
antichain on P (κ) /I of size less than κ.

In particular the measurability of κ holds if and only if (P (κ) /I)+ satisfies a cer-
tain forcing axiom stating that certain collections of predense subsets of (P (κ) /I)+

can be simultaneously met in a filter.
We are led to the following definitions:

Definition 2.4. Let (P,≤) be a partial order and D be a family of non-empty
subsets of P . A filter G on P is D-generic if G ∩D is non-empty for all D ∈ D.

Let φ(x, y) be a property and (P,≤) a partial order. FAφ(P ) holds if for any
family D of predense subsets of P such that φ(P,D) holds there is some D-generic
filter G on P .

For instance, FAκ(P ) says that FAφ(P ) holds for φ(x, y) being the property:

“x is a partial order and y is a family of predense subsets of x of size κ”

The measurability of κ amounts to say that FAφ(P ) holds for φ(x, y) being the
property

“x is the partial order (P (κ) /I)+ and y is the (unique) family of predense
subsets of x consisting of maximal antichains of (P (κ) /I)+ of size less
than κ”
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We do not want to expand further on this topic but many other large cardinal
properties of a cardinal κ can be formulated as axioms of the form FAφ(P ) for some
property φ (for example this is the case for supercompactness, hugeness, almost
hugeness, strongness, superstrongness, etc....).

In these first two sections we have already shown that the language of partial
orders can accomodate three completely distinct and apparently unrelated families
of non-constructive principles which are essential tools in the development of many
mathematical theories (as it is the case for the axiom of choice and of Baire’s category
theorem) and of crucial importance in the current developments of set theory (as it
is the case for large cardinal axioms).

3 Boolean valued models, Łoś theorem, and generic ab-
soluteness

We address here the correlation between forcing axioms and generic absoluteness
results. We show how Shoenfield’s absoluteness for Σ1

2-properties and Łoś Theorem
are two sides of the same coin: more precisely they are distinct specific cases of a
unique general theorem which follows from AC.

After recalling the basic formulation of Łoś Theorem for ultraproducts, we in-
troduce boolean valued models, and we argue that Łoś Theorem for ultraproducts is
the specific instance for complete atomic boolean algebras of a more general theorem
which applies to a much larger class of boolean valued models. Then we introduce
the concept of boolean ultrapower of a first order structure on a Polish space X
endowed with Borel predicates R1, . . . , Rn, and show that Shoenfield’s absoluteness
for Σ1

2-properties amounts to say that the boolean ultrapower of 〈X,R1, . . . , Rn〉 by
any complete boolean algebra is a Σ2-elementary superstructure of 〈X,R1, . . . , Rn〉.

3.1 Łoś Theorem

Theorem 3.1. Let {Ml : l ∈ L} be models in a given first order signature

L = {Ri : i ∈ I, fj : j ∈ J, ck : k ∈ K} ,

i.e. each Ml = (Ml, R
l
i : i ∈ I, f lj : j ∈ J, clk : k ∈ K). Let G be a ultrafilter on L

(i.e. its dual is a prime ideal on the boolean algebra P (L)). Let

[f ]G =

g ∈∏
l∈L

Ml : {l ∈ L : g(l) = f(l)} ∈ G


11



Matteo Viale

for each f ∈
∏
l∈LMl, and set

∏
l∈L

Ml/G =

[f ]G : f ∈
∏
l∈L

Ml

 .
For each i ∈ I let R̄i([f1]G, . . . , [fn]G) hold on

∏
l∈LMl/G if and only if{

l ∈ L : Ml |= Rli(f1(l), . . . , fn(l))
}
∈ G.

Similarly interpret f̄j :
∏
l∈l(Ml/G)n →

∏
l∈LMl/G and c̄k ∈

∏
l∈lM

n
l /G for each

j ∈ J and k ∈ K.
Then:

1. For all formulae φ(x1, . . . , xn) in the signature L

(
∏
l∈L

Ml/G, R̄i : i ∈ I, f̄j : j ∈ J, c̄k : k ∈ K) |= φ([f1]G, . . . , [fn]G)

if and only if
{l ∈ L : Ml |= φ(f1(l), . . . , fn(l))} ∈ G.

2. Moreover if Ml = M for all l ∈ L (i.e.
∏
l∈LMj/G is the ultrapower of M

by G), we have that the map m 7→ [cm]G (where cm : L→M is constant with
value m) defines an elementary embedding.

It is a useful exercise to check that the axiom of choice is essentially used in the
induction step for existential quantifiers in the proof of Łoś Theorem. Moreover Łoś
Theorem is clearly a strenghtnening of the axiom of choice, for the very existence of
an element in

∏
l∈LMl/G grants that

∏
l∈LMl is non-empty.

One peculiarity of the above formulation of Łoś theorem is that it applies just
to ultrafilters on P (X). We aim to find a “most” general formulation of this Theo-
rem, which makes sense also for other kind of “ultraproducts” and of ultrafilters on
boolean algebras other than P (X). This forces us to introduce the boolean valued
semantics.

3.2 A fast briefing on complete boolean algebras and Stone duality

Recall that for a given topological space (X, τ) the regular open sets are those A ∈ τ
such that A = Reg (A) = Int (Cl (A)) (A coincides with the interior of its closure)
and that RO(X, τ) is the complete boolean algebra whose elements are regular open
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sets and whose operations are given by A ∧ B = A ∩ B,
∨
i∈I Ai = Reg (

⋃
i∈I Ai),

¬A = X \ Cl (A).
For any partial order (P,≤) the map i : P → RO(P, τP ) given by p 7→ Reg (↓ {p})

is order and incompatibility preserving and embeds P as a dense subset of the non-
empty regular open sets in RO(P, τP ).

Recall also that the Stone space St(B) of a boolean algebra B is given by its
ultrafilters G and it is endowed with a compact topology τB whose clopen sets are the
setsNb = {G ∈ St(B) : b ∈ G} so that the map b 7→ Nb defines a natural isomorphism
of B with the boolean algebra CLOP(St(B)) of clopen subset of St(B). Moreover a
boolean algebra B is complete if and only if CLOP(St(B)) = RO(St(B), τB). Spaces
X satisfying the property that its regular open sets are closed are extremally (or
extremely) disconnected.

We refer the reader to [11] or [33, Chapter 1] (available at the following hyper-
link: Notes on Forcing) for a detailed account on these matters.

3.3 Boolean valued models

In a first order model, a formula can be interpreted as true or false. Given a complete
boolean algebra B, B-boolean valued models generalize Tarski semantics associating
to each formula a value in B, so that propositions are not only true and false anymore
(that is, only associated to 1B and 0B respectively), but take also other “intermediate
values” of truth. A complete account of the theory of these boolean valued models
can be found in [21]. We now recall some basic facts, an expanded version of the
material of this section can be found in [26] (see also the following hyperlink: Tesi-
Vaccaro) and in [33, Chapter 3]. In order to avoid unnnecessary technicalities,
we define boolean valued semantics just for relational first order languages (i.e.
signatures with no function symobols).

Definition 3.2. Given a complete boolean algebra B and a first order relational
language

L = {Ri : i ∈ I} ∪ {cj : j ∈ J}

a B-boolean valued model (or B-valued model)M in the language L is a tuple

〈M,=M, RMi : i ∈ I, cMj : j ∈ J〉

where:

1. M is a non-empty set, called domain of the B-boolean valued model, whose
elements are called B-names;
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2. =M is the boolean value of the equality:

=M: M2 → B
(τ, σ) 7→ Jτ = σKMB

3. The forcing relation RMi is the boolean interpretation of the n-ary relation
symbol Ri:

RMi : Mn → B
(τ1, . . . , τn) 7→ JRi(τ1, . . . , τn)KMB

4. cMj ∈M is the boolean interpretation of the constant symbol cj .

We require that the following conditions hold:

• for τ, σ, χ ∈M ,

1. Jτ = τKMB = 1B;
2. Jτ = σKMB = Jσ = τKMB ;
3. Jτ = σKMB ∧ Jσ = χKMB ≤ Jτ = χKMB ;

• for R ∈ L with arity n, and (τ1, . . . , τn), (σ1, . . . , σn) ∈Mn,

1. (
∧
h∈{1,...,n} Jτh = σhKMB ) ∧ JR(τ1, . . . , τn)KMB ≤ JR(σ1, . . . , σn)KMB ;

Given a B-model 〈M,=M 〉 for equality, a forcing relation R on M is a map
R : Mn → B satisfying the above condition for boolean predicates.

The boolean valued semantics is defined as follows:

Definition 3.3. Let
〈M,=M, RMi : i ∈ I, cMj : j ∈ J〉

be a B-valued model in a relational language

L = {Ri : i ∈ I} ∪ {cj : j ∈ J} ,

φ a L-formula whose free variables are in {x1, . . . , xn}, and ν a valuation of the
free variables in M whose domain contains {x1, . . . , xn}. Since L is a relational
languages, the terms of a formula are either free variable or constants, let us define
ν(cj) = cMj for cj a constant of L. We denote with JφKM,ν

B the boolean value of φ
with the assignment ν.

Given a formula φ, we define recursively JφKM,ν
B as follows:

14
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• for atomic formulae this is done letting

Jt = sKM,ν
B = Jν(t) = ν(s)KMB ,

and
JR(t1, . . . , tn)KM,ν

B = JR(ν(t1), . . . , ν(tn))KMB

• if φ ≡ ¬ψ, then
JφKM,ν

B = ¬ JψKM,ν
B ;

• if φ ≡ ψ ∧ θ, then
JφKM,ν

B = JψKM,ν
B ∧ JθKM,ν

B ;

• if φ ≡ ∃yψ(y), then
JφKM,ν

B =
∨
τ∈M

Jψ(y/τ)KM,ν
B ;

If no confusion can arise, we omit the superscripts M, ν and the subscript B, and
we simply denote the boolean value of a formula φ with parameters inM by JφK.

With elementary arguments it is possible prove the Soundness Theorem for
boolean valued models.

Theorem 3.4 (Soundness Theorem). Assume L is a relational language and φ is a
L-formula which is syntactically provable by a L-theory T . Assume each formula in
T has boolean value at least b ∈ B in a B-valued model M with valuation ν. Then
JφKM,ν

B ≥ b as well.

On the other hand the completeness theorem for the boolean valued semantics
with respect to first order calculi is a triviality, given that 2 is complete boolean
algebra.

We get a standard Tarski model from a B-valued model passing to a quotient by
a ultrafilter G ⊆ B.

Definition 3.5. Take B a complete boolean algebra, M a B-valued model in the
language L, and G a ultrafilter over B. Consider the following equivalence relation
on M :

τ ≡G σ ⇔ Jτ = σK ∈ G

The first order modelM/G = 〈M/G,R
M/G
i : i ∈ I, cM/G

j : j ∈ J〉 is defined letting:

• For any n-ary relation symbol R in L

RM/G = {([τ1]G, . . . , [τn]G) ∈ (M/G)n : JR(τ1, . . . , τn)K ∈ G} .

15
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• For any constant symbol c in L

cM/G = [cM]G.

If we require M to satisfy a key additional condition, we get an easy way to
control the truth value of formulas inM/G.

Definition 3.6. A B-valued model M for the language L is full if for every L-
formula φ(x, ȳ) and every τ̄ ∈M |ȳ| there is a σ ∈M such that

J∃xφ(x, τ̄)K = Jφ(σ, τ̄)K

Theorem 3.7 (Boolean Valued Models Łoś’s Theorem). Assume M is a full B-
valued model for the relational language L. Then for every formula φ(x1, . . . , xn) in
L and (τ1, . . . , τn) ∈Mn:

1. For all ultrafilters G over B

M/G |= φ([τ1]G, . . . , [τn]G) if and only if Jφ(τ1, . . . , τn)K ∈ G.

2. For all a ∈ B the following are equivalent:

(a) Jφ(f1, . . . , fn)K ≥ a,
(b) M/G |= φ([τ1]G, . . . , [τn]G) for all G ∈ Na,
(c) M/G |= φ([τ1]G, . . . , [τn]G) for densely many G ∈ Na.

A key observation to relate standard ultraproducts to boolean valued models is
the following:

Fact 3.8. Let (Mx : x ∈ X) be a family of Tarski-models in the first order relational
language L. Then N =

∏
x∈XMx is a full P (X)-model letting for each n-ary relation

symbol R ∈ L, JR(f1, . . . , fn)KP(X) = {x ∈ X : Mx |= R(f1(x), . . . , fn(x))}.

Let G be any non-principal ultrafilter on X. Then, using the notation of the
previous fact, N/G is the familiar ultraproduct of the family (Mx : x ∈ X) by G,
and the usual Łoś Theorem for ultraproducts of Tarski models is the specialization
to the case of the full P (X)-valued model N of Theorem 3.7. Notice that in this
special case, if the ultraproduct is an ultrapower of a model M , the embedding
a 7→ [ca]G (where ca(x) = a for all x ∈ X and a ∈M) is elementary.
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3.4 Boolean ultrapowers of compact Hausdorff spaces and Shoen-
field’s absoluteness

Take X a set with the discrete topology, and let for any a ∈ X, Ga ∈ St(P (X))
denote the principal ultrafilter given by supersets of {a}. The map a 7→ Ga embedsX
as an open, dense, discrete subspace of St(P (X)). In particular for any topological
space (Y, τ), any function f : X → Y is continuous (since X has the discrete
topology) and in the case Y is compact Hausdorff it induces a unique continuous
f̄ : St(P (X))→ Y mapping G ∈ St(P (X)) to the unique point in Y which is in the
intersection of

{
Cl (A) : A ∈ τ, f−1[A] ∈ G

}
(we are in the special situation in which

St(P (X)) is also the Stone-Cech compactification of X).
This gives that for any compact Hausdorff space (Y, τ), the space C(X,Y ) =

Y X of (continuous) functions from X to Y is canonically isomorphic to the space
C(St(P (X)), Y ) of continuous functions from St(P (X)) to Y .

What if we replace P (X) with an arbitrary (complete) boolean algebra? In
view of the above remarks, it is a fair inference to state that C(St(B), Y ) is the
B-ultrapower of Y for any compact Hausdorff space Y , since this is exactly what
occurs for the case B = P (X).

Let us examine closely this situation in the case Y = 2ω with product topology.
This will unfold the relation existing between the notion of Boolean ultrapowers of
2ω and Shoenfield’s absoluteness.

Let us fix B arbitrary (complete) boolean algebra, and set M = C(St(B), 2ω).
Fix also R a Borel relation on (2ω)n. The continuity of an n-tuple f1, . . . , fn ∈ M
grants that the set

{G : R(f1(G) . . . , fn(G))} = (f1 × · · · × fn)−1[R]

has the Baire property in St(B) (i.e. it has symmetric difference with a unique
regular open set — see [13, Lemma 11.15, Def. 32.21]), where f1 × · · · × fn(G) =
(f1(G), . . . , fn(G)). So we can define

RM :Mn → B
(f1, . . . , fn) = Reg ({G : R(f1(G), . . . , fn(G)}) .

Also, since the diagonal is closed in (2ω)2,

=M (f, g) = Reg ({G : f(G) = g(G)})

is well defined.
It is not hard to check that, for any Borel relation R on (2ω)n, the structure

(M,=M , RM ) is a full B-valued extension of (2ω,=, R), where 2ω is copied inside

17



Matteo Viale

M as the set of constant functions. It is also not hard to check that whenever G is
an ultrafilter on St(B), the map iG : 2ω → M/G given by x 7→ [cx]G (the constant
function with value x) defines an injective morphism of the 2-valued structure (2ω, R)
into the 2-valued structure (M/G,RM/G). Nonetheless it is not clear whether this
morphism is an elementary map or not. This is the case for B = P (X), since in this
case we are analyzing the standard embedding of the first order structure (2ω, R)
in its ultrapowers induced by ultrafilters on P (X). What are the properties of this
map if B is some other complete boolean algebra?

We can relate the degree of elementarity of the map iG with Shoenfield’s abso-
luteness for Σ1

2-properties. This can be done if one is eager to accept as a black-
box the identification of the B-valued model C(St(B), 2ω) with the B-valued model
given by the family of B-names for elements of 2ω in V B (which is the canonical
B-valued model for set theory), we will expand further on this identification in the
next section. Modulo this identity, Shoenfield’s absoluteness can be recasted as a
statement about boolean valued models. We choose to name Cohen’s absoluteness
the following statement, which gives (as we will see) an equivalent reformulation of
Shoenfield’s absoluteness. Its proof (as we will see in the next section) ultimately
relies on Cohen’s forcing theorem, hence the name.

Theorem 3.9 (Cohen’s absoluteness). Assume B is a complete boolean algebra and
R ⊆ (2ω)n is a Borel relation. Let M = C(St(B), 2ω) and G ∈ St(B). Then

(2ω,=, R) ≺Σ2 (M/G,=M /G,RM/G).

4 Getting Cohen’s absoluteness from Baire’s category
Theorem

Let us now show how Theorem 3.9 is once again a consequence of forcing axioms.
To do so, we dwelve deeper into set theoretic techniques and assume the reader has
some acquaintance with the forcing method. We give below a brief recall sufficient
for our aims.

4.1 Forcing

Let V denote the standard universe of sets and ZFC the standard first order axiom-
atization of set theory by the Zermelo-Frankel axioms. For any complete boolean
algebra B ∈ V let

V B =
{
f : V B → B

}
be the class of B-names with boolean relations ∈B,⊆B,=B: (V B)2 → B given by:
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1.
∈B (τ, σ) = Jτ ∈ σK =

∨
τ0∈dom(σ)

(Jτ = τ0K ∧ σ(τ0)).

2.
⊆B (τ, σ) =

∧
σ0∈dom(τ)

(¬τ(σ0) ∨ Jσ0 ∈ σK).

3.
=B (τ, σ) = Jτ = σK = Jτ ⊆ σK ∧ Jσ ⊆ τK .

Theorem 4.1 (Cohen’s forcing theorem I). (V B,∈B,=B) is a full boolean valued
model which assigns the boolean value 1B to all axioms φ ∈ ZFC.

V is copied inside V B as the family of B-names ǎ =
{
〈b̌, 1B〉 : b ∈ a

}
and has the

property that for all Σ0-formulae (i.e with quantifiers bounded to range over sets)
φ(x0, . . . , xn) and a0, . . . , an ∈ V

Jφ(ǎ0, . . . , ǎn)K = 1B if and only if V |= φ(a0, . . . , an).

This procedure can be formalized in any first order model (M,E,=) of ZFC for
any B ∈M such that (M,E,=) models that B is a complete boolean algebra.

Two ingredients are still missing to prove Cohen’s absoluteness (Theorem 3.9)
from Baire’s category theorem: the notion of M -generic filter and the duality be-
tween C(St(B), 2ω) and the B-names in V B for elements of 2ω. We first deal with
the duality.

4.2 C(St(B), 2ω) is the family of B-names for elements of 2ω

Definition 4.2. Let B be a complete boolean algebra. Let σ ∈ V B be a B-name
such that

q
σ : ω̌ → 2̌

y
B = 1B. We define fσ : St(B)→ 2ω by

fσ(G)(n) = i ⇐⇒
r
σ(ň) = ǐ

z
∈ G.

Conversely assume g : St(B)→ 2ω is a continuous function, then define

τg = {〈 ˇ(n, i), {G : g(G)(n) = i}〉 : n ∈ ω, i < 2} ∈ V B.

Observe indeed that

{G ∈ St(B) : g(G)(n) = i} = g−1[Nn,i],

where Nn,i = {f ∈ 2ω : f(n) = i}. Since g is continuous, g−1[Nn,i] is clopen and so
it is an element of B.

We can prove the following duality:
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Proposition 4.3. Assume that
q
σ : ω̌ → 2̌

y
B = 1B and g : St(B) → 2ω is continu-

ous. Then

1. τg ∈ V B;

2. fσ : St(B)→ 2ω is continuous;

3. Jτfσ = σKB = 1B;

4. fτg = g.

In particular letting

(2ω)B =
{
σ ∈ V B :

q
σ : ω̌ → 2̌

y
B = 1B

}
,

the 2-valued models ((2ω)B/G,=B /G) and (C(St(B), 2ω),=St(B) /G) are isomorphic
for all G ∈ St(B) via the map [g]G 7→ [τg]G.

This is just part of the duality, as the duality can lift the isomorphism also to
all B-Baire relations on 2ω, among which are all Borel relations. Recall that for any
given topological space (X, τ) a subset Y of X is meager for τ if Y is contained
in the countable union of closed nowhere dense (i.e. with complement dense open)
subsets of X. Y has the Baire property if Y∆A is meager for some unique regular
open set A ∈ τ .

Definition 4.4. R ⊆ (2ω)n is a B-Baire subset of (2ω)n if for all continuous functions
f1, . . . , fn : St(B)→ 2ω we have that

(f1 × · · · × fn)−1[A] = {G : f1 × · · · × fn(G) ∈ A}

has the Baire property in St(B).
R ⊆ (2ω)n is universally Baire if it is B-Baire for all complete boolean algebras

B.

It can be shown in ZFC that Borel (and even analytic) subsets of (2ω)n are
universally Baire (see [13, Def. 32.21]).

An important result of Feng, Magidor, and Woodin [9] can be restated as follows:

Theorem 4.5. R ⊆ (2ω)n is B-Baire if and only if there exist ṘB ∈ V B such that
r
ṘB ⊆ ˇ(2ω)n

z
= 1B,

and for all τ1, . . . , τn ∈ (2ω)B

Reg ({G : R(fτ1(G), . . . , fτn(G))}) =
r

(τ1, . . . , τn) ∈ ṘB
z
.
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In particular an easy Corollary is the following:

Theorem 4.6. Let R ⊆ (2ω)n be a B-baire relation. Then the map [f ]G 7→ [τf ]G
implements an isomorphism between

〈C(St(B)/G,RSt(B)/G〉 ∼= 〈(2ω)B/G, ṘB/G〉

for any G ∈ St(B).

These results can be suitably generalized to arbitrary Polish spaces. We refer the
reader to [26] and [27]. [31] gives an application of this result to tackle a problem in
number theory related to Schanuel’s conjecture.

4.3 M-generic filters and Cohen’s absoluteness

Definition 4.7. Let (P,≤) be a partial order and M be a set. A subset G of P is
M -generic if G ∩D is non-empty for all D ∈M predense subset of P .

By BCT1 every countable set M admits M -generic filters for all partial orders
P .

Theorem 4.8 (Cohen’s forcing theorem II). Assume (N,∈) is a transitive model
of ZFC, B ∈ N is a complete boolean algebra in N , and G ∈ St(B) is an N -generic
filter for B+.

Let

valG :NB → V

σ 7→ σG = {τG : ∃b ∈ G 〈τ, b〉 ∈ σ} ,

and N [G] = valG[NB].
Then N [G] is transitive, the map [σ]G 7→ σG is the Mostowski collapse of the

Tarski models 〈NB/G,∈B /G〉 and induces an isomorphism of this model with the
model 〈N [G],∈〉.

In particular for all formulae φ(x1, . . . , xn) and τ1 . . . , τn ∈ NB

〈N [G],∈〉 |= φ((τ1)G, . . . , (τn)G)

if and only if Jφ(τ1, . . . , τn)K ∈ G.

Recall that:

• For any infinite cardinal λ, Hλ is the set of all sets a ∈ V such that | trcl(a)| < λ
(where trcl(a) is the transitive closure of the set a).
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• If κ is a strongly inaccessible cardinal (i.e. regular and strong limit), Hκ is a
transitive model of ZFC.

• A property R ⊆ (2ω)n is Σ1
2, if it is of the form

R = {(a1, . . . , an) ∈ (2ω)n : ∃y ∈ 2ω ∀x ∈ 2ω S(x, y, a1, . . . , an)}

with S ⊆ (2ω)n+2 a Borel relation.

• If φ(x0, . . . , xn) is a Σ0-formula and M ⊆ N are transitive sets or classes, then
for all a0, . . . , an ∈M

M |= φ(a0, . . . , an) if and only if N |= φ(a0, . . . , an).

Observe that for any theory T ⊇ ZFC there is a recursive translation of Σ1
2-

properties (provably Σ1
2 over T ) into Σ1-properties over Hω1 (provably Σ1 over the

same theory T ) [13, Lemma 25.25].

Lemma 4.9. Assume φ(x, r) is a Σ0-formula in the parameter ~r ∈ (2ω)n. Then the
following are equivalent:

1. Hω1 |= ∃xφ(x, r).

2. For all complete boolean algebra B J∃xφ(x, r)K = 1B.

3. There is a complete boolean algebra B such that J∃xφ(x, r)K > 0B.

Summing up we get: a Σ1
2-statement holds in V iff the corresponding Σ1-

statement over Hω1 holds in some model of the form V B/G.
Combining the above Lemma with Proposition 4.3, we can easily infer the proof

of Theorem 3.9.

Proof. We shall actually prove the following slightly stronger formulation of the
non-trivial direction in the three equivalences above:

Hω1 |= ∃xφ(x, r) if J∃xφ(x, r)K > 0B for some complete boolean algebra
B ∈ V .

To simplify the exposition we prove it with the further assumption that that there ex-
ists an inaccessible cardinal κ > B. With the obvious care in details the large cardinal
assumption can be removed. So assume φ(x, ~y) is a Σ0-formula and

r
∃xφ(x, ~̌r)

z
> 0B

for some complete boolean algebra B ∈ V with parameters ~r ∈ (2ω)n. Pick a model
M ∈ V such thatM ≺ (Hκ)V ,M is countable in V , and B, ~r ∈M . Let πM : M → N
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be its transitive collapse (i.e. πM (a) = πM [a ∩M ] for all a ∈ M) and Q = πM (B).
Notice also that πM (~r) = ~r: since ω ∈ M is a definable ordinal contained in M ,
πM (ω) = πM [ω] = ω, consequently πM fixes also all the elements in 2ω ∩M .

Since πM is an isomorphism of M with N ,

N |= ZFC ∧ (b =
r
∃xφ(x, ~̌r)

z
> 0Q).

Now let G ∈ V be N -generic for Q with b ∈ G (G exists since N is countable), then,
by Cohen’s theorem of forcing applied in V to N , we have that N [G] |= ∃xφ(x,~r).
So we can pick a ∈ N [G] such that N [G] |= φ(a,~r). Since N,G ∈ (Hω1)V , we
have that V models that N [G] ∈ HV

ω1 and thus V models that a as well belongs to
HV
ω1 . Since φ(x, ~y) is a Σ0-formula, V models that φ(a,~r) is absolute between the

transitive sets N [G] ⊂ Hω1 to which a,~r belong. In particular a witnesses in V that
HV
ω1 |= ∃xφ(x,~r).

5 Maximal forcing axioms
Guided by all the previous results we want to formulate maximal forcing axioms.
We pursue two directions:

1. A direction led by topological considerations: we have seen that FAℵ0(P ) holds
for any partial order P , and that AC is equivalent to the satisfaction of FAλ(P )
for all regular λ and all < λ-closed posets P .
We want to isolate the largest possible class of partial orders Γλ for which
FAλ(P ) holds for all P ∈ Γλ. The case λ = ℵ0 is handled by Baire’s category
theorem, that shows that Γℵ0 is the class of all posets. We will outline that the
case λ = ℵ1 is settled by the work of Foreman, Magidor, and Shelah [10] and
leads to Martin’s maximum. On the other hand, the case λ > ℵ1 is wide open
and until recently only partial results have been obtained. New techniques to
handle the case λ = ℵ2 are being developed (notably by Neeman, and also
by Asperò, Cox, Krueger, Mota, Velickovic, see among others [14, 15, 19]),
however the full import of their possible applications is not clear yet.

2. A direction led by model-theoretic considerations: Baire’s category theorem
implies that the natural embedding of 2ω into C(St(B), 2ω)/G is Σ2-elementary,
whenever 2ω is endowed with B-baire predicates (among which all the Borel
predicates). We want to reinforce this theorem in two directions:

(A) We want to be able to infer that (at least for Borel predicates) the natural
embedding of 2ω into C(St(B), 2ω)/G yields a full elementary embedding
of 2ω into C(St(B), 2ω)/G.

23



Matteo Viale

(B) We want to be able to define boolean ultrapowers MB also for other first
order structures M other than 2ω and be able to infer that the natural
embedding ofM intoMB/G is elementary for these boolean ultrapowers.

Both directions (the topological and the model-theoretic) converge towards the iso-
lation of certain natural forcing axioms. Moreover for each cardinal λ, the relevant
stuctures for which we can define a natural notion of boolean ultrapower are either
the structure Hλ+ , or the Chang model L(Ordλ).

We believe that we have now a satisfactory understanding of the maximal forcing
axioms one can get following both directions for the cases λ = ℵ0,ℵ1. The main
open question remains how to isolate (if at all possible) the maximal forcing axioms
for λ > ℵ1.

5.1 Woodin’s generic absoluteness for Hω1 and L(Ordω)
We start by the model-theoretic direction, following Woodin’s work in Ω-logic. Ob-
serve that a set theorist works either with first order calculus to justify some proofs
over ZFC, or with forcing to obtain independence results over ZFC. However, in
axiom systems extending ZFC there seems to be a gap between what we can achieve
by ordinary proofs and the independence results that we can obtain by means of
forcing. To close this gap we miss two desirable features of a “complete” first order
theory T that contains ZFC, specifically with respect to the semantics given by the
class of boolean valued models of T :

• T is complete with respect to its intended semantics, i.e for all statements φ
only one among T + φ and T + ¬φ is forceable.

• Forceability over T should correspond to a notion of derivability with respect
to some proof system, for instance derivability with respect to a standard first
order calculus for T .

Both statements appear to be rather bold and have to be handled with care:
Consider for example the statement ω = ω1 in a theory T extending ZFC with the
statements ω is the first infinite cardinal and ω1 is the first uncountable cardinal.
Then clearly T proves |ω| 6= |ω1|, while if one forces with Coll(ω, ω1) one produce
a model of set theory where this equality holds (however the formula ω1 is the first
uncountable cardinal is now false in this model).

At first glance, this suggests that as we expand the language for T , forcing starts
to act randomly on the formulae of T , switching the truth value of its formulae with
parameters in ways which it does not seem simple to describe. However the above
difficulties are raised essentially by our lack of attention to define the type of formulae
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for which we aim to have the completeness of T with respect to forceability. We
can show that when the formulae are prescribed to talk only about a suitable initial
segment of the set theoretic universe (i.e. Hω1 or L(Ordω)), and we consider only
forcings that preserve the intended meaning of the parameters by which we enriched
the language of T (i.e. parameters in Hω1), this random behaviour of forcing does
not show up anymore.

We take a platonist stance towards set theory, thus we have one canonical model
V of ZFC of which we try to uncover the truths. To do this, we may use model
theoretic techniques that produce new models of the part of Th(V ) on which we are
confident. This certainly includes ZFC, and (if we are platonists) all the axioms of
large cardinals.

We may start our quest for uncovering the truth in V by first settling the theory of
HV
ω1 (the hereditarily countable sets), then the theory of HV

ω2 (the sets of hereditarily
cardinality ℵ1) and so on and so forth, thus covering step by step all infinite cardinals.
To proceed we need some definitions:

Definition 5.1. Given a theory T ⊇ ZFC and a family Γ of partial orders definable
in T , we say that φ is Γ-consistent for T if T proves that there exists a complete
boolean algebra B ∈ Γ such that JφKB > 0B.

Given a model V of ZFC we say that V models that φ is Γ-consistent if φ is
Γ-consistent for Th(V ).

Definition 5.2. Let

T ⊇ ZFC + {λ is an infinite cardinal}

Ωλ is the definable (in T ) class of partial orders P which satisfy FAλ(P ).

In particular Baire’s category theorem amounts to say that Ωℵ0 is the class of
all partial orders (denoted by Woodin as the class Ω). The following is a careful
reformulation of Lemma 4.9 which do not require any commitment on the onthology
of V .

Lemma 5.3 (Cohen’s absoluteness Lemma). Assume T ⊇ ZFC + {p ⊆ ω} and
φ(x, p) is a Σ0-formula. Then the following are equivalent:

• T ` ∃xφ(x, p),

• T ` ∃xφ(x, p) is Ω-consistent.

This shows that for Σ1-formulae with real parameters the desired overlap between
the ordinary notion of provability and the semantic notion of forceability is provable
in ZFC. Now it is natural to ask if we can expand the above in at least two directions:
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1. Increase the complexity of the formula,

2. Increase the language allowing parameters also for other infinite cardinals.

The second direction will be pursued in the next subsection. Concerning the first
direction, the extent by which we can increase the complexity of the formula requires
once again some attention to the semantical interpretation of its parameters and its
quantifiers. We have already observed that the formula ω = ω1 is inconsistent but
Ω-consistent in a language with parameters for ω and ω1. One of Woodin’s main
achievements2 in Ω-logic show that if we restrict the semantic interpretation of φ to
range over the structure L([Ord]ℵ0) and we assume large cardinal axioms, we can
get a full correctness and completeness result3 [16, Corollary 3.1.7]:

Theorem 5.4 (Woodin). Assume T is a theory extending

ZFC + {p ⊂ ω}+ there are class many supercompact cardinals,

φ(x, y) is any formula in free variables x, y, A ⊆ (2ω)n is universally Baire. Then
the following are equivalent (where ȦB is the B-name given by Theorem 4.5 lifting
A to V B):

• T ` [L([Ord]ℵ0 , A) |= φ(p,A)],

• T ` ∃B
q
L([Ord]ℵ0 , ȦB) |= φ(p, ȦB)

y
> 0B,

• T ` ∀B
q
L([Ord]ℵ0 , ȦB) |= φ(p, ȦB)

y
= 1B.

Remark that since Hω1 ⊆ L([Ord]ℵ0), via Theorem 4.5 and natural generaliza-
tions of [13, Lemma 25.25] establishing a correspondence between Σ1

n+1-properties
and Σn-properties over Hω1 , we obtain that for any complete boolean algebra B and
any Σ1

n-predicate R ⊆ (2ω)n the map x 7→ [cx]G of (2ω, R) into (C(St(B, 2ω), RSt(B))
is an elementary embedding. In particular the above theorem provides a first fully
satisfactory answer to the question of whether the natural embeddings of 2ω in its
boolean ultrapowers can be elementary: the answer is yes if we accept the existence
of large cardinal axioms!

The natural question to address now is whether we can step up this result also
for uncountable λ. If so in which form?

2We follow Larson’s presentation as in [16].
3The large cardinal assumptions on T of the present formulation can be significantly reduced.

See [16, Corollary 3.1.7].
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5.2 Topological maximality: Martin’s maximum MM

Let us now address the quest for maximal forcing axioms from the topological di-
rection. Specifically: what is the largest class of partial orders Γ for which we can
predicate FAℵ1(Γ)?

Shelah proved that FAℵ1(P ) fails for any P which does not preserve stationary
subsets of ω1. Nonetheless it cannot be decided in ZFC whether this is a necessary
condition for a poset P in order to have the failure of FAℵ1(P ). For example let P
be a forcing which shoots a club of ordertype ω1 through a projectively stationary
and costationary subset of Pω1(ω2) by selecting countable initial segments of this
club: It is provable in ZFC that P preserve stationary subsets of ω1 for all such P .
However in L, FAℵ1(P ) fails for some such P while in a model of Martin’s maximum
MM, FAℵ1(P ) holds for all such P .

The remarkable result of Foreman, Magidor, and Shelah [10] is that the above
necessary condition is consistently also a sufficient condition: it can be forced that
FAℵ1(P ) holds if and only if P is a forcing notion preserving all stationary subsets
of ω1. This axiom is known in the literature as Martin’s maximum MM. In view of
Theorem 1.8, MM realizes a maximality property for forcing axioms: it can be seen
as a maximal strengthening of the axiom of choice AC �ω2 for ℵ1-sized families of
non-empty sets. Can we strengthen this further? if so in which form? It turns out
that stronger and stronger forms of forcing axioms can be expressed in the language
of categories and provide means to extend Woodin’s generic absoluteness results to
third order arithmetic or more generally to larger and larger fragments of the set
theoretic universe.

5.3 Category forcings and category forcing axioms

Assume Γ is a class of complete boolean algebras and →Θ is a family of complete
homomorphisms between elements of Γ closed under composition and containing
all identity maps. (Γ,→Θ) is the category whose objects are the complete boolean
algebras in Γ and whose arrows are given by complete homomorphisms i : B→ Q in
→Θ. We call embeddings in→Θ, Θ-correct embeddings. Notice that these categories
immediately give rise to natural class partial orders associated with them, partial
orders whose elements are the complete boolean algebras in Γ and whose order
relation is given by the arrows in →Θ (i.e. B ≤Θ C if there exists i : C→ B in →Θ).
We denote these class partial orders by (Γ,≤Θ).

Depending on the choice of Γ and →Θ these partial orders can be trivial (as
forcing notions), for example:

Remark 5.5. Assume Ω = Ωℵ0 is the class of all complete boolean algebras and
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→Ω is the class of all complete embeddings, then any two conditions in (Γ,≤Ω) are
compatible, i.e. (Γ,≤Ω) is forcing equivalent to the trivial partial order. This is
the case since for any pair of partial orders P,Q and X of size larger than 2|P |+|Q|
there are complete injective homomorphisms of RO(P ) and RO(Q) into the boolean
completion of Coll(ω,X) (see [16, Thm A.0.7] and its following remark). These
embeddings witness the compatibility of RO(P ) with RO(Q).

On the other hand these class partial orders will in general be non-trivial: let
SSP be the class of stationary set preserving forcings. Then the Namba forcing
shooting a cofinal ω-sequence on ω2 and Coll(ω1, ω2) are incompatible conditions
in (SSP,≤Ω): any forcing notion absorbing both of them makes the cofinality of
ωV2 at the same time of cofinality ωV1 (using the generic filter for Coll(ω1, ω2)) and
countable (using the generic filter for Namba forcing); this means that this forcing
must collapse ωV1 to become a countable ordinal, hence cannot be stationary set
preserving.

Forcing axioms as density properties of category forcings

The following results are one of the main reasons leading us to analyze in more
details these type of class forcings:

Theorem 5.6 (Woodin, Thm. 2.53 [34]). Assume there are class many supercom-
pact cardinals. Then the following are equivalent for any complete cba B and cardinal
κ:

1. FAκ(B);

2. there is a complete homomorphism of B into a presaturated tower inducing a
generic ultrapower embedding with critical point κ+.

Theorem 5.7 (V. Thm. 2.12 [32]). Assume there are class many supercompact
cardinals. Then the following are equivalent:

1. MM++;

2. the class of presaturated normal towers is dense in (SSP,≤SSP).

It is not in the scope of this paper to dwelve into the definition and properties
of presaturated tower forcings and of the axiom MM++. Let us just remark the
following two facts:

• MM++ is a natural strengthening of Martin’s maximum whose consistency is
proved by exactly the same methods producing a model of Martin’s maximum.
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• A presaturated tower T inducing a generic ultrapower embedding with critical
point κ+ is such that whenever G is V -generic for T we have that

HV
κ+ ≺ HV [G]

κ+ . (1)

In particolar the above theorems show that forcing axioms can be also stated as
density properties of class partial orders. We will see that any AX(Γ, κ) yielding a
dense class of forcings in (Γ,≤Γ) whose generic extensions satisfy (1) produce generic
absoluteness results. We refer the reader to [3, 2, 30] for details.

5.4 Iterated resurrection axioms and generic absoluteness for Hκ+

The results and ideas of this subsection expand on the seminal work of Hamkins and
Johnstone [12] on resurrection axioms.

Definition 5.8. Let Γ be a definable class of complete Boolean algebras closed
under two step iterations. The cardinal preservation degree cpd(Γ) of Γ is the largest
cardinal κ such that every B ∈ Γ forces that every cardinal ν ≤ κ is still a cardinal
in V B. If all cardinals are preserved by Γ, we say that cpd(Γ) =∞.

The distributivity degree dd(Γ) of Γ is the largest cardinal κ such that every
B ∈ Γ is <κ-distributive.

We remark that the supremum of the cardinals preserved by Γ is preserved
by Γ, and the same holds for the property of being <κ distributive. Furthermore,
dd(Γ) ≤ cpd(Γ) and dd(Γ) 6=∞ whenever Γ is non trivial (i.e., it contains a Boolean
algebra that is not forcing equivalent to the trivial Boolean algebra). Moreover
dd(Γ) = cpd(Γ) whenever Γ is closed under two steps iterations and contains the
class of < cpd(Γ)-closed posets.

Definition 5.9. Let Γ be a definable class of complete Boolean algebras. We let
γ = γΓ = cpd(Γ).

For example, γ = ω if Γ is the class of all posets, while for axiom-A, proper, SP,
SSP we have that γ = ω1, and for <κ−closed we have that γ = κ.

We aim to isolate for each cardinal γ classes of forcings ∆γ and axioms AX(∆γ)
such that:

1. γ = cpd(∆γ) and assuming certain large cardinal axioms, the family of B ∈ ∆γ

which force AX(∆γ) is dense in (∆γ ,≤∆γ );

2. AX(∆γ) gives generic absoluteness for the theory with parameters of Hγ+ with
respect to all forcings in ∆γ which preserve AX(∆γ);
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3. the axioms AX(∆γ) are mutually compatible for the largest possible family of
cardinals γ simultaneously;

4. the classes ∆γ are the largest possible for which the axioms AX(∆γ) can pos-
sibly be consistent.

Towards this aim remark the following:
• dd(Γ) is the least possible cardinal γ such that AX(Γ) is a non-trivial axiom

asserting generic absoluteness for the theory of Hγ+ with parameters. In fact,
Hdd(Γ) is never changed by forcings in Γ.

• cpd(Γ) is the largest possible cardinal γ for which an axiom AX(Γ) as above
can grant generic absoluteness with respect to Γ for the theory of Hγ+ with
parameters. To see this, let Γ be such that cpd(Γ) = γ and assume towards a
contradiction that there is an axiom AX(Γ) yielding generic absoluteness with
respect to Γ for the theory with parameters of Hλ with λ > γ+.
Assume that AX(Γ) holds in V . Since cpd(Γ) = γ, there exists a B ∈ Γ which
collapses γ+. Let C ≤Γ B be obtained by property (1) above for Γ = ∆γ , so
that AX(Γ) holds in V C, and remark that γ+ cannot be a cardinal in V C as
well. Then γ+ is a cardinal in Hλ and not in HC

λ , witnessing failure of generic
absoluteness and contradicting property (2) for AX(Γ).

We argue that there are axioms RAω(Γ) satisfying the first two of the above
requirements, and which are consistent for a variety of forcing classes Γ. These
axioms also provide natural examples for the last two requirements. We will come
back later on with philosophical considerations outlining why the last two require-
ments are also natural. We can prove the consistency of RAω(Γ) for forcing classes
which are definable in Gödel-Bernays set theory with classes NBG, closed under two
steps iterations, weakly iterable (a technical definition asserting that most set sized
descending sequences in ≤Γ have lower bounds in Γ, see [2] or [3] for details), and
contain all the < cpd(Γ)-closed forcings.

The axioms RAα(Γ) for α an ordinal can be formulated in the Morse Kelley
axiomatization of set theory MK as follows:
Definition 5.10. Given an ordinal α and a definable4 class of forcings Γ closed
under two-steps iterations, the axiom RAα(Γ) holds if for all β < α the class{

B ∈ Γ : Hγ+ ≺ HB
γ+ ∧ V B |= RAβ(Γ)

}
4Γ must be definable by a formula with no class quantifier and no class parameter to be on the

safe side for what concerns the definability issues regarding the iterated resurrection axioms raised
by the remark right after this definition. All usual classes of forcings such as proper, semiproper,
stationary set preserving, < κ-closed, etc.... are definable by formulae satisfying these restrictions.
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is dense in (Γ,≤Γ) (where γ = γΓ).
RAOrd(Γ) holds if RAα(Γ) holds for all α.

Remark 5.11. The above definition can be properly formalized in MK (but most likely
not in ZFC if α is infinite). The problem is the following: the axioms RAα(Γ) can
be formulated only by means of a transfinite recursion over a well-founded relation
which is not set-like. It is a delicate matter to argue that this transfinite recursion
can be carried. [2] shows that this is the case if the base theory is MK.

The axiom RAω(Γ) yields generic absoluteness by the following elementary ar-
gument:

Theorem 5.12. Suppose n ∈ ω, Γ is well behaved, RAn(Γ) holds, and B ∈ Γ forces
RAn(Γ). Then Hγ+ ≺n HB

γ+ (where γ = γΓ).

Proof. We proceed by induction on n. Since γ+ ≤ (γ+)V B , Hγ+ ⊆ HB
γ+ and the

thesis holds for n = 0 by the fact that for all transitive structures M , N , if M ⊂ N
then M ≺0 N . Suppose now that n > 0, and fix G V -generic for B. By RAn(Γ),
let C ∈ V [G] be such that whenever H is V [G]-generic for C, V [G ∗H] |= RAn−1(Γ)
and HV

γ+ ≺ HV [G∗H]
γ+ . Hence we have the following diagram:

HV
γ+ H

V [G∗H]
γ+

H
V [G]
γ+

Σω

Σn−1Σn−1

obtained by inductive hypothesis applied both on V , V [G] and on V [G], V [G ∗H]
since in all those classes RAn−1(Γ) holds.

Let φ ≡ ∃xψ(x) be any Σn formula with parameters in HV
γ+ . First suppose that

φ holds in V , and fix x̄ ∈ V such that ψ(x̄) holds. Since HV
γ+ ≺n−1 H

V [G]
γ+ and ψ is

Πn−1, it follows that ψ(x̄) holds in V [G] hence so does φ. Now suppose that φ holds
in V [G] as witnessed by x̄ ∈ V [G]. Since HV [G]

γ+ ≺n−1 H
V [G∗H]
γ+ it follows that ψ(x̄)

holds in V [G ∗H], hence so does φ. Since HV
γ+ ≺ HV [G∗H]

γ+ , the formula φ holds also
in V concluding the proof.

Corollary 5.13. Assume Γ is closed under two-steps iterations and contains the <
cpd(Γ)-closed forcings. If RAω(Γ) holds, and B ∈ Γ forces RAω(Γ), then Hγ+ ≺ HB

γ+

(where γ = γΓ).

Regarding the consistency of the axioms RAω(Γ) we have the following:
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Proposition 5.14. Assume there are class-many Woodin cardinals. Then RAOrd(Ω)
holds.

Theorem 5.15. RA1(Γ) implies Hγ+ ≺1 V
B for all B ∈ Γ, hence it is a strenght-

ening of the bounded forcing axiom5 BFAγ(Γ) (where γ = γΓ).

Theorem 5.16 ([2]). Assume there is a super huge cardinal.6
Then RAOrd(SSP) + MM++ and RAOrd(proper) + PFA++ are consistent.
For the consistency of RAOrd(proper) a Mahlo cardinal suffices.
Moreover it is also consistent relative to a Mahlo cardinal that RAOrd(Γκ) holds

simultaneously for all cardinals κ (where Γκ is the class of < κ-closed forcings)7.

In this regard the axioms RAα(Γ) for Γ ⊇ Γκ (Γκ being the class of < κ-closed
forcings) appear to be natural companions of the axiom of choice, while the axioms
RAOrd(Ω) and RAOrd(SSP) + MM are natural maximal strengthenings of the axiom
of choice at the levels ω and ω1. Hence it is in our opinion natural to try to isolate
classes of forcings ∆κ as κ ranges among the cardinals such that:

1. κ = cpd(∆κ) for all κ.

2. ∆κ ⊇ Γκ for all κ.

3. FAκ(∆κ) and RAω(∆κ) are simultaneously consistent for all κ.

4. For all cardinals κ, ∆κ is the largest possible Γ with cpd(Γ) = κ for which
FAκ(∆κ) and RAω(∆κ) are simultaneously consistent (and if possible for all κ
simultaneously).

Compare the above requests with requirements (3) and (4) in the discussion mo-
tivating the introduction of the iterated resurrection axioms on page 29. In this
regard it appears that we have now a completely satisfactory answer on what are
∆ω and ∆ω1 : i.e., respectively the class of all forcing notions and the class of all
SSP-forcing notions.

5The bounded forcing axiom BFAγ(Γ) asserts that Hγ+ ≺1 V
B for all B ∈ Γ.

6A cardinal κ is super huge iff for every ordinal α there exists an elementary embedding j : V →
M ⊆ V with crit(j) = κ, j(κ) > α and j(κ)M ⊆M .

7It is also consistent the following:

RAOrd(Ωℵ0 ) + RAOrd(SSP) + ∀κ > ω1 RAOrd(Γκ)
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5.5 Boosting Woodin’s absoluteness to L(Ordκ): the axioms CFA(Γ)
We gave detailed arguments bringing us to axioms which can be stated as density
properties of certain category forcings and yielding generic absoluteness results for
the theory of Hκ+ for various cardinals κ. Carving in Woodin’s proof for the generic
absoluteness of the Chang model L(Ordω) one can get an even stronger type of
category forcing axioms yielding generic absoluteness results for the Chang models
L(Ordκ). The best result we can currently produce is the following (we refer the
interested reader to [1, 3, 30] for details):

Theorem 5.17. Let Γ be a κ-suitable class of forcings8.
Let MK∗ stands for9

MK + there are stationarily many inaccessible cardinals.

There is an axiom10 CFA(Γ) which implies FAκ(Γ) as well as RAOrd(Γ) and is such
that for any T ∗ extending

MK∗ + CFA(Γ) + κ is a regular cardinal + S ⊂ κ,

and for any formula φ(S), the following are equivalent:

1. T ∗ ` [L(Ordκ) |= φ(S)],

2. T ∗ proves that for some forcing B ∈ Γ

JCFA(Γ)KB = JL(Ordκ) |= φ(S)KB = 1B.

We also have that

8This is a lenghty and technical definition; roughly it requires that:
• Γ is closed under two steps iterations, and contains all the < κ-closed posets (where κ =

cpd(Γ)),
• there is an iteration theorem granting that all set sized iterations of posets in Γ has a limit

in Γ,
• Γ is defined by a syntactically simple formula (i.e. Σ2 in the Levy hierarchy of formulae),
• Γ has a dense set of Γ-rigid elements (i.e. the B ∈ Γ admitting at most one i : B → C

witnessing that C ≤Γ B for all C ∈ Γ form a dense subclass of Γ).

9In MK one can define the club filter on the class Ord, hence the notion of stationarity for
classes of ordinals makes sense.

10CFA(Γ) can be formulated as a density property of the class forcing (Γ,≤Γ).
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Theorem 5.18 ([1, 3]). Assume Γ is κ-suitable. Then CFA(Γ) is consistent relative
to the existence of a 2-superhuge cardinal11.

While the definition of κ-suitable Γ is rather delicate, it can be shown that many
interesting classes are ω1-suitable, among others: proper, semiproper, ωω-bounding
and (semi)proper, preserving a suslin tree and (semi)proper. [1] contains a detailed
list of classes which are ω1-suitable. It is not known whether there can be κ-suitable
classes Γ for some κ > ω1.

6 Some open questions
Here is a list of questions for which we do not have many clues.....

1. What are the Γ which are κ-suitable for a given cardinal κ > ℵ1 (i.e. such
that CFA(Γ) is consistent)?

2. Do they even exist for κ > ℵ1?

3. In case they do exist for some κ > ℵ1, do we always have a unique maximal Γ
such that cpd(Γ) = κ as it is the case for κ = ℵ0 or κ = ℵ1?

Any interesting iteration theorem for a class Γ ⊇ Γω2 closed under two steps iter-
ations can be used to prove that RAOrd(Γ) is consistent relative to suitable large
cardinal assumptions and freezes the theory of Hω3 with respect to forcings in Γ
preserving RAω(Γ) (see [2]). It is nonetheless still a mystery which classes Γ ⊇ Γω2

can give us a nice iteration theorem, even if the recent works, by Neeman, Asperò,
Krueger, Mota, Velickovic and others are starting to shed some light on this problem
(see among others [14, 15, 19]).

We can dare to be more ambitious and replicate the above type of issue at a
much higher level of the set theoretic hierarchy. There is a growing set of results
regarding the first-order theory of L(Vλ+1) assuming λ is a very large cardinal (i.e.,
for example admitting an elementary j : L(Vλ+1) → L(Vλ+1) with critical point
smaller than λ, see among others [6, 7, 35]). It appears that large fragments of this
theory are generically invariant with respect to a great variety of forcings.

Assume j : L(Vλ+1)→ L(Vλ+1) is elementary with critical point smaller
than λ . Can any of the results presented in this paper be of any use in
the study of which type of generic absoluteness results may hold at the
level of L(Vλ+1)?

11A cardinal κ is 2-superhuge if it is supercompact and this can be witnessed by 2-huge embed-
dings.
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The reader is referred to [1, 3, 2, 30, 32] for further examinations of these topics.
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