
Programming for Data Science
Tidy Data in R

Marco Beccuti

Università degli Studi di Torino
Dipartimento di Informatica



Tidy data
You can represent the same underlying data in multiple ways;

The following example shows the same data organized in four different ways;

Each dataset shows the same values of four variables, country, year, cases,
and population, but each dataset organizes the values in a different way:

M. Beccuti PROGRAMMING FOR DATA SCIENCE 2 / 15



Tidy data

There are three interrelated rules which make a dataset tidy:
1 Each variable must have its own column;
2 Each observation must have its own row;
3 Each value must have its own cell.

M. Beccuti PROGRAMMING FOR DATA SCIENCE 3 / 15



Tidy data

In this example, only table1 is tidy;

It is the only representation where each column is a variable.

M. Beccuti PROGRAMMING FOR DATA SCIENCE 4 / 15



Spreading and Gathering

For most real analyses, you will need to do some tidying;

The first step is always to figure out what the variables and observations are;

The second step is to resolve one of two common problems:
I One variable might be spread across multiple columns;
I One observation might be scattered across multiple rows.
I Multiple values might be stored in a same cells.

in tidyr package the functions gather(), spread() and separete() can be
exploited to fix these problems.

M. Beccuti PROGRAMMING FOR DATA SCIENCE 5 / 15



Gathering

A common problem is a dataset where some of the column names are not
names of variables;
Take table4a the column names 1999 and 2000 represent values of the year
variable, and each row represents two observations;

we need to collect these columns into a new pair of variables.

M. Beccuti PROGRAMMING FOR DATA SCIENCE 6 / 15



Gathering

M. Beccuti PROGRAMMING FOR DATA SCIENCE 7 / 15



Gathering
To achieve this task we have to specify three parameters:

I The set of columns that represent values, not variables (i.e. 1999 and 2000).
I The name of the variable whose values form the column names (e.g. year).
I The name of the variable whose values are spread over the cells (e.g. cases).

> gather(table4a, “1999”, “2000”, key = “year”, value = “cases”)

M. Beccuti PROGRAMMING FOR DATA SCIENCE 8 / 15



Spreading

Spreading is the opposite of gathering;

It is used when an observation is scattered across multiple rows;

For example, each observation is spread across two rows:

M. Beccuti PROGRAMMING FOR DATA SCIENCE 9 / 15



Spreading

Spreading is the opposite of gathering;

M. Beccuti PROGRAMMING FOR DATA SCIENCE 10 / 15



Spreading

Spreading is the opposite of gathering;

> spread(table2, key = type, value = count)

M. Beccuti PROGRAMMING FOR DATA SCIENCE 11 / 15



Separating
it splits one column into multiple columns by separating wherever a separator
character appears;

For instance rate columns contains both cases then it must be split it into
two variables:

M. Beccuti PROGRAMMING FOR DATA SCIENCE 12 / 15



Separating

M. Beccuti PROGRAMMING FOR DATA SCIENCE 13 / 15



Separating

It splits one column into multiple columns by separating wherever a separator
character appears;

> separate(table3, rate, into = c(“cases”, “population”), sep = “/”)

M. Beccuti PROGRAMMING FOR DATA SCIENCE 14 / 15



Separating

It splits one column into multiple columns by separating wherever a separator
character appears;

We can ask separate() to try and convert to better types using convert =
TRUE:
> separate(table3, rate, into = c(“cases”, “population”), sep =
“/”, convert = TRUE )

M. Beccuti PROGRAMMING FOR DATA SCIENCE 15 / 15


