12.2 Lemma

Let W, X be topological spaces and suppose that $W = A \cup B$ with A, B both closed subsets of W. If f: $A \rightarrow X$ and g: $B \rightarrow X$ are continuous functions such that f(w) = g(w) for all $w \in A \cap B$ then h: $W \rightarrow X$ defined by

$$h(w) = \begin{cases} f(w) & \text{if } w \in A, \\ \\ g(w) & \text{if } w \in B \end{cases}$$

is a continuous function.

Proof Note that h is well defined. Suppose that C is a closed subset of X, then

$$h^{-1}(C) = h^{-1}(C) \cap (A \cup B)$$

= $(h^{-1}(C) \cap A) \cup (h^{-1}(C) \cap B)$
= $f^{-1}(C) \cup g^{-1}(C).$

Since f is continuous, $f^{-1}(C)$ is closed in A and hence in W since A is closed in W. Similarly $g^{-1}(C)$ is closed in W. Hence $h^{-1}(C)$ is closed in W and h is continuous.

12.3 Definition

A space X is said to be *path connected* if given any two points x_0, x_1 in X there is a path in X from x_0 to x_1 .

Note that by Lemma 12.1 it is sufficient to fix $x_0 \in X$ and then require that for all $x \in X$ there is a path in X from x_0 to x. (Some books use the term *arcwise connected* instead of path connected.)

For example \mathbb{R}^n with the usual topology is path connected. The reason is that given any pair of points $a, b \in \mathbb{R}^n$ the mapping f: $[0,1] \to \mathbb{R}^n$ defined by f(t) = tb + (1-t)a is a path from a to b. More generally any convex subset of \mathbb{R}^n is path connected. A subset E of \mathbb{R}^n is *convex* if whenever a, $b \in E$ then the set { $tb + (1-t)a; 0 \le t \le 1$ } is contained in E, i.e. E is convex if the straight-line segment joining any pair of points in E is in E itself. See Figure 12.1 for an example of a convex and of a non-convex subset of \mathbb{R}^2 .

Figure 12.1

A convex subset.

A non-convex subset.