12.2 Lemma

Let \mathbf{W}, X be topological spaces and suppose that $\mathbf{W}=\mathrm{A} \cup \mathrm{B}$ with A, B both closed subsets of W. If $f: A \rightarrow X$ and $g: B \rightarrow X$ are continuous functions such that $f(w)=g(w)$ for all $w \in A \cap B$ then $h: W \rightarrow X$ defined by

$$
h(w)= \begin{cases}f(w) & \text { if } w \in A \\ g(w) & \text { if } w \in B\end{cases}
$$

is a continuous function.
Proof Note that h is well defined. Suppose that C is a closed subset of X, then

$$
\begin{aligned}
h^{-1}(C) & =h^{-1}(C) \cap(A \cup B) \\
& =\left(h^{-1}(C) \cap A\right) \cup\left(h^{-1}(C) \cap B\right) \\
& =f^{-1}(C) \cup g^{-1}(C) .
\end{aligned}
$$

Since f is continuous, $f^{-1}(C)$ is closed in A and hence in W since A is closed in W. Similarly $g^{-1}(C)$ is closed in W. Hence $h^{-1}(C)$ is closed in W and h is continuous.

12.3 Definition

A space X is said to be path connected if given any two points x_{0}, x_{1} in X there is a path in X from X_{0} to x_{1}.

Note that by Lemma 12.1 it is sufficient to fix $x_{0} \in X$ and then require that for all $x \in X$ there is a path in X from x_{0} to x. (Some books use the term arcwise connected instead of path connected.)

For example $\mathbf{R}^{\mathbf{n}}$ with the usual topology is path connected. The reason is that given any pair of points $a, b \in R^{n}$ the mapping $f:[0,1] \rightarrow R^{n}$ defined by $f(t)=t b+(1-t) a$ is a path from a to b. More generally any convex subset of R^{n} is path connected. A subset E of R^{n} is convex if whenever a, $b \in E$ then the set $\{t b+(1-t) a ; 0 \leq t \leq 1\}$ is contained in E, i.e. E is convex if the straight-line segment joining any pair of points in E is in E itself. See Figure 12.1 for an example of a convex and of a non-convex subset of \mathbf{R}^{2}.

Figure 12.1

A convex subset.

A non-convex subset.

