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Abstract. It is shown that, in the neighborhood of a collision singularity, the motion in a perturbed 
two-body problem "/'= --pr -3 r-I-P, where P remains bounded, has the same basic properties as the 
motion in the neighborhood of a collision in the unperturbed two-body problem P =0 .  
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Notation 

scalar product of vectors a and b; also a a = a  2 =a2; 
vector product;  
absolute value ; 
velocity. 
are constants and b, b, bk, bk functions, bounded for the arguments under 
consideration; without subscript they may change their value from one 
occurrence to the next, while with subscripts they have specific values. 
denotes correspondingly a positive (or nonnegative) constant. 

1. Introduction 

The basic properties of the motion in the two-body and N-body problems in the 
neighborhood of a binary collision are well known: approaching from t<O the 
instant of collision t =0, the mutual distance r and position r of the colliding bodies 
approach zero as t 2/3, while - ?  and v grow as - t  -~/3. In the N-body problem, the 
equation of motion (for the body colliding with that resting at the origin) can be 
written as 

r 

where P has, in the neighborhood of the collision point, the special form P =rb.  
We shall investigate the general problem where we assume only that P =P( r ,  v, t) 

is bounded (and, say, continuous or R-integrable on the considered trajectories), and 
we will show that in the neighborhood of a collision singularity the motion has 
essentially the same properties as that in the two-body problem. In certain simple 
cases this has been shown (explicitly or implicitly) before: for P(r,  t ) = - g r a d ,  U, 
with P, U, and aU/Ot bounded, see Sperling (1968), and for P = rb  - an identical proof 
holds for P = e o n s t + r b  and P = x / r b  - see Arenstorf (1969) and Sperling (1969). In 
the present general case the proof  is, however, more delicate. 
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The method  of  this paper  could be used to get another  p roo f  of  the boundedness  
of  the 'cluster energy h l' in Sperling (1969). 

2. Formulation of the Problem 

All quantities in the following are real. Let  the particle mx rest at the origin and m2 
move abou t  rnt according to Newton ' s  gravitat ional  law, with an addit ional  'per-  
turbing '  acceleration P relative to mt  acting on it. The posit ion vector  r o f  m 2 with 
respect to rn 1 satisfies the equat ion 

r 
i : = - - # ~ + P ,  # = ? ( m l  + mz) ;  (2.1) 

r 

consider the solution r = r  (t) o f  (2.1) on to < t < 0 and assume that  

r ( t ) > O  on [to, 0[  
and 

l i m i n f r = 0  as t ~ 0 .  

Fur thermore ,  let condit ion (a) or (b) or both  be satisfied: 
(a) r and P are bounded,  i.e.: 0 < r < r *  on [to, 0 [  and P = I P ( r ,  v, t ) l < P *  for  all 

r<=r*, v arbitrary,  te[to, 0[.  
(b) P is bounded,  i.e. : P =  IP(r, v, t)l < P *  for  all r arbitrary,  v arbi t rary,  t e [ to ,0[ .  

3 

LEMMA: lim infr  = 0  implies l imr  = 0  as t ~ 0 .  
PROOF: Assume contrariwise that  l i m i n f r = 0  and lira s u p r > Q > 0 ;  then there 

exist an  arbitrari ly small ]t~[ and t2, t3 with t~ < /2  < t3 < 0  such that  

r ( t l )  = r~ = ~ o  Q 

r( t2)  = r2 = Q r(t)  >= 1~o Q on [tx, t3] (3.1) 

r( t3)  = r3 = ~ Q, 

and Equat ion  (2.1) implies that  

100# 
I~1 < ~ -  + 2c2 = 2c2 > o.  (3.2) 

Choose tl so small that  

90 
t 2 < - - ;  (3.3) 

1 0 0 0 C  2 

since on It1, t3] 
t 

r ( t )  = r 1 + v l ( t -  t l)  + j" ( t -  z) [ (z)  dz ,  (3.4) 

t i  
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we find for t = t 2 

Q < ~o Q + vl Ita -- tl[ + c2 it2 - tll 2 , 
hence 

8Q 
V l >  1 - ~ Q I t 2 - t l [  - x - c 2 ) z - q [ >  

101t2 - t l l "  

At  t = t 3, Equat ion (3.4) yields 

r3 _-> vl It3 - q[ - ~o Q -  c21ta - tl[ 2 

It3 - hl  
> l~o Q - L Q - l ogoo Q > I~-a Q ,  

I t2  - t~ l  

contradict ing the assumption r 3 =@sQ (cir. (3.1)). 

(3.5) 

4 

Define the 'angular  m o m e n t u m '  K by 

K = r  x v .  (4.1) 

THEOREM: l i m K = 0  as t ~ 0 .  
PROOF: F rom Equat ion (2.1) we find that 

l ( = r  x ~ = r  •  

implying that K is bounded  on [t 0, 0 [  and l i m K =  K(0) as t--,0 exists; 

t 

K = K ( 0 ) +  I'r  x P d t = K ( 0 ) + t b  on [to, 0[. (4.2) 
~d 
0 

Substituting 

r ~  = - p / r  + rP, (4.3) 

which results f rom Equat ion  (2.1), into the identity 

r/~ = r~ + v 2 - i 2, (4.4) 

after having used the identity 

K 2 = (r x v) 2 = r2v 2 - rZ i  z ,  (4.5) 

we get 
i z = K 2 / r  3 -- 12/r 2 -.}- b ,  b = r P / r .  (4.6) 

Assume now that  contrary to the assertion K ( 0 ) r  i.e., K 2 > � 8 9  for  all 

sufficiently small t; we conclude that, as t ~ 0 ,  
/~ is ultimately positive, hence 

ultimately increases and does not  change sign. 
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NOW let t* be so small that/3 does not change sign on It*, 0[ ;  multiply Equation 
(4.6) by /3~0, integrate from t* to t, and evaluate the first and third term on the 
right by the mean value theorem; we find 

�89 - -  b2 1 = r E d  . d . b r + c ,  0<K(0)2<4b 2" 
/. 

for t~0 ,  i.e., r ~ 0 ,  the right side becomes negative, which is absurd. Thus 

K = tb. (4.7) 

LEMMA: r?=rv-~0 as t-~0. 
PROOF, first case: Assume that ultimately r ~ 0  monotonically. 
Then ultimately K=rb, since 

K =  i r  x P d t  < = f r P d t ~ r f P d t ,  
0 

observing that ultimately max r (z) = r (t) for z e [t, 0 [. Substituting K =  rb into (4.6), 
we find 

# b 
/ ; = -  r2 + r  + c  (5.1) 

and conclude that 
/~ is ultimately negative, hence 
/3 ultimately decreases and does not change sign. 
Again, let t* be so small that/3 does not change sign on It*, 0 [, multiply Equation 

(5.1) by/3~0, integrate and evaluate; then 

1-2 # + b l o g r  + br + c,  
r 

implying that 

r/3 2 --* 2/z as t -~ 0, (5.2) 
i.e., r/3~0. 

Second case: Assume now that ultimately r o 0  non-monotonically; then there 
exists a sequence {tv}~0 such that/3~ =/3(tv) =0  and/3 does not change sign on [tv, t~+ 1J- 
Consider such an interval [tk, hi ; r is monotonic on it, and without restriction we can 
assume that the maximum of r occurs at t k (otherwise we integrate from h to t): 
rk=r(tk)>r(t), te[t  k, tJ. Now multiply Equation (4.6) by /3, integrate from t, to 
te It k, hi, and evaluate the first and third term by the mean value theorem; then, since 
/3(t~) =0, 

(' C 1) �89 2 = - � 8 9  2 r 2 -  + #  - + b ( r - r t )  , ze[ tk , t ] ,  
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and 

((5) (ri') z = - K ( z )  / 1 -  +2/~r 1 -  + b r  z ( r - r k )  on 

implying the assertion r ? ~ 0  because of r < r  k and KZ(z)~0, r~0 ,  as t--*0. 

[tk, tl] , 

6 

Define the 'energy' h by 

= I 2 h ~v - p/r  ; (6.1) 

using the Equation of motion (2.1), we derive 

h = vP.  (6.2) 

THEOREM: h remains bounded as t--*0. 
PROOF: Integrate Equation (4.3) from t~ to t2, to < tx < t2 < 0, and evaluate the left 

side by partial integration; then 
t2 

f r '  dt = r2v2 - rlVl - f V2 dt 
tT 

: - # f ~ + f r P d t .  

Substitute for p/r from Equation (6.1) and observe that by Section 5 Lemma rv is 
bounded; we get 

t2 t2 

t l  t l  
t2 

bl = r2vl - rivl  - [ rP dt.  (6.3) 

t l  

Assume now that contrary to our assertion lira sup[hi =oo as t~0 .  We can choose 
tl and t2 so close to t = 0  that the following conditions are satisfied: 

0 

2[tl] f p2 d t <  1 (6.4a) 

t l  

l h2[ -  Ihal > 1, (6.4b) 

0 

(]hx]+2lbllfPZdt)[h2[-l< 1 (6.4c) 
t l  

[h2[ = Ih(t2) [ = maxlh(t)[ ,  t e [ t l ,  t2]. (6.4d) 
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The following sequence of  inequalities will lead to a contradic t ion:  Using Equat ion  
(6.2), 

t2 

1 < ]h21 - Ih,I < Ih2 - hll = f vP dt 

t l  

f < vP dt < vP dt = 

<=(f p 2 d t ) ( f  v2dt) 

the last step by Schwarz 's  inequality;  substitute for  the last integral f rom Equat ion  
(6.3) and evaluate:  

t2 

Ih2l-lhll<2(f P2dt)(f lhldt+[bll) 
t l  

 2(f O ,, 
or finally 

t2 

t l  

which is absurd. 

t2 

dt+(,hl,+2,bl, f P2dt),h2,1] Ih2,  ,h2, 
t l  

7. Properties of the Collision Singularity 

Substituting f rom Equat ion  (4.3) into Equat ion (4.4) and replacing v 2 f rom Equat ion  
(6.1), we find the Lagrange-Jacobi  equat ion 

d 2 2# 
r 2 = - -  + 4h + 2rP (7.1) 

dt 2 r 

which we write with 

a s  

R = r  2 (7.2) 

J~ = 2# /x /R + b. (7.3) 

Since R-+0 as t - . 0 ,  /~ is ult imately positive, hence /~  ultimately increases and does 
not  change sign; assume now that  this holds on the considered interval. Mult iplying 
Equat ion  (7.3) by k and integrating f rom t to 0, we find, since/~(0) = 0  by Section 5 
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Lemma and observing that/~ does not change sign on the integration interval, 

p2 = 8p x / R  + bR,  (7.4) 
R t 

f R - 1 / 4 ( l  + bR1/2)dR=(812)l/2 f dt ,  

0 0 

~R 3/4 + bR 5/4 = (8p) 1/2 t, R = (~2p) 2/3 t 4/3 (1 + bR 1/2) 

and finally 
r = (9#)1/3 t2/3 1 + bt 2/3) (7.5) 

and, by Equation (7.4), 

i = (~j//)1/3 t - ' /3  (1 + bt2/3).  (7.6) 

Substituting from (7.5) into the Equation of motion (2.1) results in 

[ = - -  ~ t  - 2  ( 1  + bt 2/3) r + P.  (7.7) 

Introduce new independent and dependent variables O and u by 

0 = t 1/3 , r = 0u ; (7.8) 

then Equation (7.7) transforms into 

u" = bn + 903p, ' = d/d0. (7.9) 

Equation (7.5) implies that t-2/3r remains bounded, hence so does 0-1u as t, O~0; 
Equation (7.9) can now be written as 

u" = 0b.  (7.10) 

u"~0  implies that limu' =u'(0) as t, 0 ~ 0  exists ; 
integrating Equation (7.10) and transforming back to t and r, we find 

r - :  u '  ( 0 )  t 2/3 + t4/ab (7.11) 

and, substituting this into Equation (7.7) and integrating, 
2 t 1 / 3  i: = v = 7n (0) t -  + tl/ab, (7.12) 

and comparison of Equation (7.11) with Equation (7.5) yields 

lu  t (0)1  = 

Equations (7.5), (7.11), (7.6), and (7.12) describe the behavior of r, r, ?, and v as 
t < 0 approaches t = 0. 

8. Regnlarization of the Equations of Motion 

Equation (7.5) implies the convergence of Sundman's integral 

~ as t * ~ 0 .  

l* 
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i.e., the existence (and finiteness) of  Sundman's  variable 

s i;, 
0 

(8.1) 

Following Sundman, we introduce s instead of  t as the new independent  variable and, 
denoting differentiation with respect to s by a prime ', t ransform Equat ions (2.1) 
and (7. l) into 

1 
r"  = - (r ' r '  - / ~ r )  + r2p (8.2) 

1, 

and 

setting 
r" = # + 2rh + r rP  ; (8.3) 

1 1 
w = - ( r ' r ' - g r ) =  ( r 2 ? v - ~ r ) ,  (8.4) 

r r 

we find by means of  Equations (7.5), (7.6), (7.11), and (7.12) that 

lira w exists as t, s ---, 0,  

and differentiating and using Equat ion (8.3), 

r~ (r ,~ w' = r r ' P  + - #) 
l" 

and finally 

(8.5) 

w' = r r ' P  + (2h + rP)  r' (8.6) 
follow. 

By Equat ions (7.5) and (7.12) l i m r ' = l i m r v = 0  exists as t, s ~ 0 .  The system of  
'regularized' equations now reads 

r" = w + r 2 p  

w' = (rr ')  P + (2h + rP) r' 

h' = r ' P  

r" = # + 2rh + r rP  

t ' = r .  

(8.7a) 

(8.7b) 

We have used quotat ion marks above since P has been defined only for  t < 0 ;  there- 
fore our results hold only up to the instant of  collision t =0.  If  we impose on P (r, v, t) 
further suitable conditions, e.g., boundedness and continuity for  It] < T ( >  0), we see 
that  the mot ion  can be continued to t > 0; if we assume that  P (r, v, t) is holomorphic  
for  I rl < ~ ,  all v, I t[< T, then we conclude in the usual manner  that  r (s), w(s), h(s) ,  

r(s),  and t (s)  are holomorphic  at s = 0 ,  and particularly that  the mot ion  possesses a 
real analytic continuation into t >  0, provided that  P is real for real arguments.  
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Other  systems of  regular ized equat ions  can be der ived by t rans forming  also the 

dependen t  variables,  fo l lowing Levi-Civita,  Stiefel and  Kus t aanhe imo ,  or  others ;  we 

shall not  go into detai ls  here. 
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