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Abstract. It is shown that, in the neighborhood of a collision singularity, the motion in a perturbed
two-body problem ¥=—ur=3 r4P, where P remains bounded, has the same basic properties as the
motjon in the neighborhood of a collision in the unperturbed two-body problem P=0.

Notation
ab scalar product of vectors a and b; also aa=a%=4?;
axb vector product;
la]=a absolute value;
v=rf velocity.

¢, €, ¢, ¢, are constants and b, b, b, b, functions, bounded for the arguments under
consideration; without subscript they may change their value from one
occurrence to the next, while with subscripts they have specific values.

Ci denotes correspondingly a positive (or nonnegative) constant.

1. Introduction

The basic properties of the motion in the two-body and N-body problems in the
neighborhood of a binary collision are well known: approaching from <0 the
instant of collision 7=0, the mutual distance r and position r of the colliding bodies
approach zero as t*/3, while —# and v grow as —¢~1/3, In the N-body problem, the
equation of motion (for the body colliding with that resting at the origin) can be
written as

.. r
r:—,uF—I-P,

where P has, in the neighborhood of the collision point, the special form P =rb.

We shalil investigate the general problem where we assume only that P=P(r, v, ¢)
is bounded (and, say, continuous or R-integrable on the considered trajectories), and
we will show that in the neighborhood of a collision singularity the motion has
essentially the same properties as that in the two-body problem. In certain simple
cases this has been shown (explicitly or implicitly) before: for P(r, )= —grad, U,
with P, U, and 0U/0t bounded, see Sperling (1968), and for P=rb — an identical proof
holds for P =censt+rb and P=,/rb — see Arenstorf (1969) and Sperling (1969). In
the present general case the proof is, however, more delicate.
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The method of this paper could be used to get another proof of the boundedness
of the ‘cluster energy #;” in Sperling (1969).

2. Formulation of the Problem

All quantities in the following are real. Let the particle m, rest at the origin and m,
move about m, according to Newton’s gravitational law, with an additional ‘per-
turbing’ acceleration P relative to m, acting on it. The position vector r of m, with
respect to m, satisfies the equation

r
i:=_ﬂﬁ+Pa p=y(my +my); 2.1)

consider the solution r=r(¢) of (2.1) on 7,<¢<0 and assume that

r(f)>0 on [t,,0[
and
liminfr=0 as t-0.

Furthermore, let condition (a) or (b) or both be satisfied:

(a) r and P are bounded, i.e.: 0<r<r* on [ty, O] and P=|P(r, v, ¢)] S P* for all
r<r¥*,v arbitrary, te[z,, O[.

(b) P is bounded, i.e.: P=|P(r, v, £)| < P* for all r arbitrary, v arbitrary, ¢t [¢,,0[.

3

LEMMA: lim infr =0 implies limr =0 as t—0.
PrOOF: Assume contrariwise that lim infr=0 and lim supr>Q>0; then there
exist an arbitrarily small |#,| and z,, t; with #; <?, <3 <0 such that
r(t)=r1 =10
r(t)=r,=0 r(z1Q on [t 1] (3.1)
r(t)=r3=+5Q,

and Equation (2.1) implies that

100
lE| < —Q# +2c2=2¢,>0. (3.2)
Choose ¢, so small that
9
1o 9, (3.3)
1000c,

since on [#,, 5]

r(t)=r; +v1(t—t1)+f(t—r)f(1:)dt, 3.4
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we find for r=¢,

2
Q=750+ v |t =ty + ¢l — 1],

hence
8Q
> 2500t — ] =yt — > —. 3.5

v Z 75 Q2 1 iz 1 10]t, — 4] (3.5
At t=t5, Equation (3.4) yields

raZ vty — ] — 15 Q — ¢ty — 1,

[t — 14
>% 02— -0 - 0> %0,
[t; — ]
contradicting the assumption r; =750 (cf. (3.1)).
4

Define the ‘angular momentum’ K by

K=rxv. 4.1)
THEOREM: limK =0 as t—0.

ProoF: From Equation (2.1) we find that

K=rxi=rxP ,

implying that K is bounded on [#,, 0] and limK =K (0) as r—0 exists;
t
K=K(0)+fr><Pdt=K(0)+tb on [t 0[. 4.2)
0

Substituting

f=—pu/r +rP, (4.3)
which results from Equation (2.1), into the identity

i =1k + v® — 72, (4.4)
after having used the identity

K? = (r x v)* = r*0® — r*f?, (4.5)
we get

F=K*r—ur*+b, b=rP|r. (4.6)

Assume now that contrary to the assertion K(0)#0, i.e., K*>1K(0)*>0 for all
sufficiently small ¢; we conclude that, as -0,

7 is ultimately positive, hence

7 ultimately increases and does not change sign.
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Now let #* be so small that 7 does not change sign on [#*, O] ; multiply Equation
(4.6) by F#£0, integrate from ¢* to ¢, and evaluate the first and third term on the
right by the mean value theorem; we find

|
PP =—b? 4+ pbrdc, 0<K(0) <4b;
r r

np=

for t—0, i.e., r—0, the right side becomes negative, which is absurd. Thus

K =tb. 4.7)

LeMMA: ri=rv—0 as 1—0.
PROOF, first case: Assume that ultimately r—0 monotonically.
Then ultimately K=rb, since

t

K = .frdet]_frPdtSrdet,

observing that ultimately maxr(z)=r(t) for 7e[¢, O[. Substituting K'=rb into (4.6),
we find

b
i‘:—’%-i—;-}—c 5.H

and conclude that

7 is ultimately negative, hence

¢ ultimately decreases and does not change sign.

Again, let £* be so small that 7 does not change sign on [¢*, O[, multiply Equation
(5.1) by ##£0, integrate and evaluate; then

172 7+b10gr+br+c
implying that

r?=2u as t—0, (5.2)
i.e., rr—0.

Second case: Assume now that ultimately r—0 non-monotonically; then there
exists a sequence {r,} -0 such that 7, =#(#,) =0 and 7 does not change sign on [ ¢,, £, ; .
Consider such an interval [#,, #,]; r is monotonic on it, and without restriction we can
assume that the maximum of r occurs at #, (otherwise we integrate from f, to ¢):
r.=r{t)=r(r), te[t, t,]. Now multiply Equation (4.6) by #, integrate from 7, to
te[t, 1], and evaluate the first and third term by the mean value theorem; then, since
F (tk) =0,

=3k (o= )+ u(o- ) b=, sel

k K,
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and
(7 = — K(z)? <1 - <r1k>2> + 2ur (1 . :-k> b (r—r) on [t 1],

implying the assertion ri—0 because of r<r, and K?(1)—0, r—0, as t—>0.

Define the ‘energy’ & by

h= 10— r; (6.1)
using the Equation of motion (2.1), we derive

h=vP. (6.2)

THEOREM: /4 remains bounded as 1—0.
Prook: Integrate Equation (4.3) from ¢, to #,, f,<t,; <t, <0, and evaluate the left
side by partial integration; then

t2

Jri’ dt =r1,v, — 1V, —fvz dt
tp
dt
=—pu|--+ | Pdt.
r

Substitute for p/r from Equation (6.1) and observe that by Section 5 Lemma rv is
bounded; we get

t2 t2

fvzdt=—2fhdt+2b1,

I
1 i1
t2

by =r1,v, —r v — f rP ds. (6.3)
ty
Assume now that contrary to our assertion lim sup|k|=c0 as t—0. We can choose

t, and ¢, so close to =0 that the following conditions are satisfied:

0

21t fpz dt <1 (6.42)

[Ba| = [hy| > 1, (6.4b)
0

<|h1] + 2by] fzﬂ dt> [h,| ™' <4 (6.4c)

[f,] = [h (1 )] = max |h ()], te[ty, t,]. (6.4d)
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The following sequence of inequalities will lead to a contradiction: Using Equation

(6.2),

t2
1< [hy] — [hy] |h2—h1|=Udet

131

gfdet< (fdet>2
<(] ) ()

the last step by Schwarz’s inequality ; substitute for the last integral from Equation
(6.3) and evaluate:

hy| — 1hy] <2 <f p2 dt) <f k] dt + |b1|>

<2 (f p? dt) \hs) 1t; — 1] + |bs]

or finally

2

Ihy] < [znz— " fpz dr + <Ih1I +2lb11fP2 dr) ]hzl_l] Ihal < 3 lhal

1 ty

which is absurd.

7. Properties of the Collision Singularity

Substituting from Equation (4.3) into Equation (4.4) and replacing »? from Equation

(6.1), we find the Lagrange-Jacobi equation
LI LR 7.1)
R .
de? r k (

which we write with

R=r? (7.2)
as
R=2u//R+b. (7.3)

Since R—0 as t—0, R is ultimately positive, hence R ultimately increases and does
not change sign; assume now that this holds on the considered interval. Multiplying
Equation (7.3) by R and integrating from ¢ to 0, we find, since R(0)=0 by Section 5
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Lemma and observing that R does not change sign on the integration interval,
R2=8u\/ﬁ+bR, (7.4)

R T

fR_”“(l + bR'?)dR = (8u)"? fdt,

0 0

4R3* 4+ BR** = (8u)'* ¢, R=(3u)** *?*(1 + bR'?)
and finally

r=(30)"* 1?7 1 + b*?) (7.5)
and, by Equation (7.4),

F= (&) A+ ). (7.6)
Substituting from (7.5) into the Equation of motion (2.1) results in

P=—272(1+b*)r +P. (7.7

Introduce new independent and dependent variables 3 and u by

=1, r="0u; (7.8)
then Equation (7.7) transforms into

v =bu+ 98P, '=d/dI. (7.9
Equation (7.5) implies that ¢ ~2/3r remains bounded, hence so does 9~ 'u as ¢, $—0;
Equation (7.9) can now be written as

u’' =39b. (7.10)
u”—0 implies that limu’ =u’(0) as 7, 30 exists;
integrating Equation (7.10) and transforming back to ¢ and r, we find

r=u'(0) *? + t*°b (7.11)
and, substituting this into Equation (7.7) and integrating,

E=v=23u(0)t" 3+, (7.12)
and comparison of Equation (7.11) with Equation (7.5) yields

' () = (3)"°.

Equations (7.5), (7.11), (7.6), and (7.12) describe the behavior of r, r, 7, and v as
t <0 approaches r=0.

8. Regularization of the Equations of Motion

Equation (7.5) implies the convergence of Sundman’s integral
t

dt
J— as t*—0.

r

*
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i.e., the existence (and finiteness) of Sundman’s variable

t

dt
s=|—. (8.1)
r
(4]

Following Sundman, we introduce s instead of 7 as the new independent variable and,
denoting differentiation with respect to s by a prime ’, transform Equations (2.1)
and (7.1) into

= % (r'v' — ur) + r°P (8.2)
and
' =p+2rh + rP; (8.3)
setting
1 1,
w=- (r't’ — pr) = . (r*fv — pr), (8.4

we find by means of Equations (7.5), (7.6), (7.11), and (7.12) that
limw existsas ¢,s—0, (8.5)

and differentiating and using Equation (8.3),

r
w=r'P+-(" —p
r

and finally
W =rr'P + (2h + rP)Y’ , (8.6)
follow.
By Equations (7.5) and (7.12) limr’' =limrv=0 exists as f, s—0. The system of
‘regularized’ equations now reads

r' =w+rP
w=(r)P+ (2h+1P)r
" =rP (8.7a)

r''=u+2rh + P
t=r. (8.7b)

We have used quotation marks above since P has been defined only for #<0; there-
fore our results hold only up to the instant of collision £=0. If we impose on P (r, v, ¢)
further suitable conditions, e.g., boundedness and continuity for |¢| < T (>0), we see
that the motion can be continued to ¢>>0; if we assume that P (x, v, ¢) is holomorphic
for |rj< 4, all v, |t|<T, then we conclude in the usual manner that r(s), w(s), A(s),
r(s), and ¢(s) are holomorphic at s=0, and particularly that the motion possesses a
real analytic continuation into >0, provided that P is real for real arguments.
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Other systems of regularized equations can be derived by transforming also the
dependent variables, following Levi-Civita, Stiefel and Kustaanheimo, or others; we
shall not go into details here.

References

Arenstorf, R. F.: 1969, ‘Regularization Theory for the Elliptic Restricted Three-Body Problem’ (to
be published in J. Differential Equations).

Sperling, H. J.: 1968, ‘The Binary Collision in the N-Body Problem’, Icarus 9, 305-314.

Sperling, H. J.: 1969, ‘On the Real Singularities of the N-Body Problem’ (to be published in J. Reire
Angew. Math).



