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The validity of Sundman-type asymptotic estimates for collision solutions is established

for a wide class of dynamical systems with singular forces, including the classical n-

body problems with Newtonian, quasi-homogeneous and logarithmic potentials. The

solutions are meant in the generalized sense of Morse (locally-in space and time-minimal

trajectories with respect to compactly supported variations) and their uniform limits. The

analysis includes the extension of the Von Zeipel’s theorem and the proof of isolatedness

of collisions. Furthermore, such asymptotic analysis is applied to prove the absence of

collisions for locally minimal trajectories.

1 Introduction

Many systems of interacting bodies of interest in celestial and other areas of classical

mechanics have the form

miẍi = ∂U

∂xi
(t , x), i = 1, . . . , n, (1.1)

where the forces ∂U
∂xi

are undefined on a singular set �. This is, for example, the set

of collisions between two or more particles in the n-body problem. Such singularities

play a fundamental role in the phase portrait (see, e.g. [19]) and strongly influence the
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global orbit structure, as they can be held responsible, among others, of the presence

of chaotic motions (see, e.g. [15]) and of motions becoming unbounded in a finite time

[34, 53].

There are two major steps in the analysis of the impact of the singularities in

the n-body problem: the first consists in performing the asymptotic analysis along a

single collision (total or partial) trajectory and goes back, in the classical case, to the

works by Sundman [49], Wintner [52] and, in more recent years by Sperling, Pollard,

Saari, Diacu and other authors (see for instance [16, 23, 42, 43, 46, 48]). The second step

consists in blowing-up the singularity by a suitable change of coordinates introduced

by McGehee in [35] and replacing it by an invariant boundary—the collision manifold—

where the flow can be extended in a smooth manner. It turns out that, in many interesting

applications, the flow on the collision manifold has a simple structure: it is a gradient-

like, Morse-Smale flow featuring a few stationary points and heteroclinic connections

(see, for instance, the surveys [15, 37]). The analysis of the extended flow allows us to

obtain a full picture of the behavior of solutions near the singularity, despite the fact

that the flow fails to be fully regularizable (except in a few cases).

The geometric approach, via the McGehee coordinates and the collision manifold,

can be successfully applied also to obtain asymptotic estimates in some cases, such as

the collinear three-body problem [35], the anisotropic Kepler problem [12, 13, 21, 22],

the three-body problem both in the planar isosceles case [14] and the full perturbed

three body, as described in [15, 18]. Besides the quoted cases, however, one needs to

establish the asymptotic estimates before blowing up the singularity, in order to prove

convergence of the blow-up family. The reason is quite technical and mainly rests in

the fact that a singularity of the n-body problems need not be isolated, for the possible

occurrence of partial collisions in a neighborhood of the total collision. In the literature,

this problem has been usually overcome by extending the flow on partial collisions via

some regularization technique (such as Sundman’s, in [14], or Levi-Civita’s in [31]). Such

a device works well only when partial collisions are binary, which are the only singular-

ities to be globally removable. Thus, the extension of the geometrical analysis to the full

n-body problems finds a strong theoretical obstruction: partial collisions must be regu-

larizable, what is known to hold true only in few cases. Other interesting cases in which

the geometric method is not effective are that of quasi-homogeneous potentials (where

there is a lack of regularity for the extended flow) and that of logarithmic potentials (for

the failure of the blow-up technique).

In this paper we extend the classical asymptotic estimates near collisions in

three main directions.
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(1) We take into account a very general notion of solution for the dynamical

system (1.1), which fits particularly well to solutions found by variational

techniques. Our notion of solution includes, besides all classical noncollision

trajectories, all the locally minimal solutions (with respect to compactly

supported variations) that are often termed minimal in the sense of Morse.

Furthermore, we include in the set of generalized solutions all the limits of

classical and locally minimal solutions.

(2) We extend our analysis to a wide class of potentials including not only ho-

mogeneous and quasi-homogeneous potentials, but also those with weaker

singularities of logarithmic type.

(3) We allow potentials to strongly depend on time (we only require its time

derivative to be controlled by the potential itself—see assumption (U1)). In

this way, for instance, we can take into account models where masses vary

in time.

Our main results on the asymptotics near total collisions (at the origin) are

Theorems 4.18 and 4.20 (for quasi-homogeneous potentials) and Theorems 4.27 and 4.28

(when the potential is of logarithmic type) which extend the classical Sundman–Sperling

asymptotic estimates [48, 49] in the directions above (see also [18, 20]).

As a consequence of the asymptotic estimates, the presence of a total collision

prevents the occurrence of partial ones for neighboring times.

This observation plays a central role when extending the asymptotic estimates

to the full n-body problem, since it allows us to reduce from partial (even simultaneous)

collisions to total ones by decomposing the system in colliding clusters. Our results also

lead to the extension of the concept of singularity for the dynamical system (1.1) to the

class of generalized solutions. We shall prove an extension of the Von Zeipel’s theorem:

when the moment of inertia is bounded then every singularity of a generalized solution

admits a limiting configuration, hence all singularities are collisions. The results on total

collisions are then fully extended to partial ones in Theorem 5.2.

A further motivation for the study of generalized solutions comes from the vari-

ational approach to the study of selected trajectories to the n-body problem. Indeed, the

exclusion of collisions is a major problem in the application of variational techniques as

it results in the recent literature, where many different arguments have been introduced

to prove that the trajectories found in such a way are collisionless (see [1, 2, 4, 6–

8, 10, 11, 25, 26, 38–40, 47, 50, 51]). As a first application, we shall be able to extend

some of these techniques in order to prove that action-minimizing trajectories are free of
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collisions for a wider class of interaction potentials. For example, in the case of quasi-

homogeneous potentials, once collisions are isolated, the blow-up technique can be

successfully applied to prove that locally minimal solutions are, in many circumstances,

free of collisions. In order to do that, we can use the method of averaged variations

introduced by Marchal and developed in [9, 26, 33]. It has to be noticed that, when

dealing with logarithmic-type potentials, the blow-up technique is not available, since

converging blow-up sequences do not exist; we can anyway prove that the average over

all possible variations is negative by taking advantage of the harmonicity of the function

log |x| in R
2. With this result we can then extend to quasi-homogeneous and logarithmic

potentials all the analysis of the (equivariant) minimal trajectories carried in [26].

Besides the direct method, other variational techniques—Morse and minimax

theory—have been applied to the search of periodic solutions in singular problems [1,

3, 32, 45]. In the quoted papers, however, only the case of strong force interaction (see

[27]) has been treated. Let us consider a sequence of solutions to penalized problems

where an infinitesimal sequence of strong force terms is added to the potential: then its

limit enjoys the same conservation laws as the generalized solutions. Hence, our main

results apply also to this class of trajectories. We believe that our study can be usefully

applied to develop a Morse theory that takes into account the topological contribution

of collisions. Partial results in this direction are given in [5, 44], where the contribution

of collisions to the Morse index is computed.

2 Singularities of Locally Minimal Solutions

2.1 Locally minimal solutions

We fix a scalar product on the configuration space R
k, with associated norm, and we

denote by I (x) = |x|2 the moment of inertia associated to the configuration x ∈ R
k and

E := {x ∈ R
k : |x|2 = 1},

the inertia ellipsoid. We define the radial and “angular” variables associated to x ∈ R
k as

r := |x| = I
1
2 (x) ∈ [0, +∞), s := x

|x| ∈ E . (2.1)

We consider the dynamical system

ẍ = ∇U (t , x) (2.2)
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on the time interval (a, b) ⊂ R, −∞ ≤ a < b ≤ +∞. Here U is a positive time-dependent

potential function U : (a, b) × (Rk
��) → R

+, and it is supposed to be of class C1 on its

domain; by ∇U we denote its gradient with respect to the given metric.

Remark 2.1. In the case of n-body-type systems as described in equation (1.1), given

m1, . . . , mn, n ≥ 2 positive real numbers, we define the scalar product induced by the

mass metric on the configuration space R
nd between x = (x1, . . . , xn) and y = (y1, . . . , yn),

as

x · y =
n∑

i=1

mi〈xi, yi〉, (2.3)

where 〈·, ·〉 is the scalar product in R
d . We denote by | · | the norm induced by the mass

scalar product (2.3). Then ∇U (t , x) denotes the gradient of the potential, in the mass

metric, with respect to the spatial variable x, that is,

∇U (t , x) = M−1 ∂U

∂x
(t , x),

where ( ∂U
∂x )i = ∂U

∂xi
, i = 1, . . . , n, and M = [Mij], Mij = miδi j1d (1d is the d-dimensional iden-

tity matrix) for every i, j = 1, . . . , n. �

Furthermore, we suppose that � is the closed singular set for U of an attractive

type, in the sense that

(U0) lim
x→�

U (t , x) = +∞, uniformly in t ;

U + |∇U (t , x)| ∈ L∞((a, b) × K), for every compact K ⊂ R
k
��.

Borrowing the terminology from the study of the singularities of the n-body problem,

the set � will be often referred as collision set and it is required to be a cone, that is,

x ∈ � ⇒ λx ∈ �, ∀λ ∈ R.

We observe that being a cone implies that 0 ∈ �. When x(t∗) = x∗ ∈ � for some t∗ ∈ (a, b),

we will say that x has an interior collision at t = t∗ and that t∗ is a collision instant for x.

When lim
t→t∗ x(t ) = x∗ ∈ � and t∗ = a or t∗ = b (when finite), we will talk about a boundary

collision. In particular, if x∗ = 0 ∈ �, we will say that x has a total collision at the origin

at t = t∗. A collision instant t∗ is termed isolated if there exists δ > 0 such that, for every

t ∈ (t∗ − δ, t∗ + δ) ∩ (a, b), x(t ) /∈ �.
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We consider the following assumptions on the potential U .

(U1) There exists a constant C1 ≥ 0 such that, for every (t , x) ∈ (a, b) × (Rk
��),

∣∣∣∣∂U

∂t
(t , x)

∣∣∣∣ ≤ C1(U (t , x) + 1).

(U2) There exist constants α̃ ∈ (0, 2) and C2 ≥ 0 such that

∇U (t , x) · x + α̃U (t , x) ≥ −C2.

We then define the Lagrangian action functional on the interval (a, b) as

A(x, [a, b]) :=
∫ b

a
K(ẋ) + U (t , x) dt , (2.4)

where

K(ẋ) := 1
2 |ẋ|2 (2.5)

is the kinetic energy. We observe that A(·, [a, b]) is bounded and C1 on the Hilbert space

H1((a, b), Rk
��). In terms of the variables r and s introduced in equation (2.1), the action

functional reads as

A(rs, [a, b]) :=
∫ b

a

1

2
(ṙ2 + r2|ṡ|2) + U (t , rs) dt

and the corresponding Euler–Lagrange equations, whenever x ∈ H1((a, b), Rk
��), are

− r̈ + r|ṡ|2 + ∇U (t , rs) · s = 0,

−2rṙṡ − r2s̈ + r∇TU (t , rs) = µs, (2.6)

where µ = r2|ṡ|2 is the Lagrange multiplier due to the presence of the constraint |s|2 = 1

and the vector ∇TU (t , rs) is the tangent component to the ellipsoid E of the gradient

∇U (t , rs), that is, ∇TU (t , rs) = ∇U (t , rs) − ∇U (t , rs) · s.

Definition 2.2. A path x ∈ H1
loc((a, b), Rk) is a locally minimal solution for the dynamical

system (2.2) if, for every t0 ∈ (a, b), there exists δ0 > 0 such that the restriction of x to the
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interval I0 = [t0 − δ0, t0 + δ0], is a local minimizer for A(·, I0) with respect to compactly

supported variations (fixed ends). �

Remark 2.3. Since locally minimal solutions are in the local Sobolev space, they are

continuous (actually locally Hölder) in the interval (a, b). We observe that a priori a

locally minimal solution x can have a large collision set, x−1(�); this set, though closed

and of Lebesgue measure zero, can very well admit many accumulation points. For this

reason, the Euler–Lagrange equations (2.6) and the dynamical system (2.2) do not hold

for a locally minimal trajectory, not even in a distributional sense. On the other hand,

one easily proves that a locally minimal solution satisfies the differential system (2.2) in

the complement of the collision set x−1(�). �

Remark 2.4. When the potential is of class C2 outside the collision set �, then every

classical noncollision solution in the interval (a, b) is a locally minimal solution. �

Definition 2.5. A path x is a generalized solution for the dynamical system (2.2) if there

exists a sequence xn of locally minimal solutions such that

(1) xn → x uniformly on compact subsets of (a, b);

(2) for almost all t ∈ (a, b) the associated total energy hn(t ) := K(ẋn(t )) − U (t , xn(t ))

converges.

To avoid trivialities, we shall assume that the collision set x−1(�) is not the full interval

(a, b). �

Remark 2.6. Though generalized solutions could be quite weird objects, still they in-

herit some of the properties of locally minimal solutions. At first, we remark that it is

a continuous path and it still satisfies the differential system (2.2) outside the (closed)

collision set x−1(�) (cf. Remark 2.3). This can be easily seen by selecting a noncollision

instant t �∈ x−1(�) such that the energy hn(t ) : K(ẋn(t )) − U (t , xn(t )) converges, and passing

to the limit in the differential system (2.2). �

In the framework of classical solutions to n-body systems, a solution x on the

interval (t1, t∗), has a singularity at t∗ (finite) if it is not possible to extend it as a classical

solution to a larger interval (t1, t3) with t3 > t∗. The Painlevé’s theorem [17, 41] asserts

that the occurrence of a singularity at a finite time t∗ is equivalent to the fact that the

minimal of the mutual distances becomes infinitesimal as t → t∗. This fact reads as

follows.
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Painlevé’s theorem 1. Let x̄ be a classical solution for the n-body dynamical system on

the interval (t1, t∗). If x̄ has a singularity at t∗ < +∞, then the potential associated to the

problem diverges to +∞ as t approaches t∗. �

Painlevé’s theorem does not necessarily imply that a collision (that is a singu-

larity such that the whole configuration admits a definite limit) occurs when there is a

singularity at a finite time; indeed, these two facts are equivalent only if each particle

approaches a definite configuration (on this subject we refer to [42, 43, 46]). This result

has been stated by Von Zeipel in 1908 (see [54] and also [36]) and definitely proved by

Sperling in 1970 (see [48]): in the n-body problem, the occurrence of singularities (in finite

time) that are not collisions is then equivalent to the existence of an unbounded motion.

Von Zeipel’s theorem 1. If x̄ is a classical solution for the n-body dynamical system on

the interval (t1, t∗) with a singularity at t∗ < +∞ and lim supt→t∗ I (x̄(t )) < +∞, then x̄(t )

has a definite limit configuration x∗ as t tends to t∗. �

We will come back later on the proof of this result (in Corollary 3.3 and in Section

5). One natural way of extending the notion of singularity to generalized solutions could

be to say that a (classical, locally minimal, generalized) solution x on the interval (t1, t∗),

has a singularity at t∗ (finite) if it is not possible to extend x̄ as a (respectively, classical,

locally minimal, generalized) solution to a larger interval (t1, t3) with t3 > t∗. On the other

hand, as done in Lemma 5.1, one can very easily extend Painlevé’s theorem to the wider

class of locally minimal, or even generalized solutions. In other words, for generalized

solutions,

lim sup
t→t∗

U (t , x̄(t )) = +∞ ⇒ lim inf
t→t∗ U (t , x̄(t )) = +∞.

Notice that the above limit makes sense, because x̄ is a continuous function and therefore

so is U (t , x̄(t )) as an extended valued function. This observation motivates the next weaker

definition.

Definition 2.7. We say that the (generalized) solution x̄ for the dynamical system (2.2)

has a singularity at t = t∗ if

lim
t→t∗ U (t , x̄(t )) = +∞.

�
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Definition 2.8. The singularity t∗ is said to be a collision for the generalized solution x̄

if it admits a limit configuration as t tends to t∗. �

2.2 Approximation of locally minimal solutions

Let x̄ be a locally minimal solution on the interval (a, b) and let I0 ⊂ (a, b) be an inter-

val such that x̄ is a (local) minimizer for A(·, I0) with respect to compactly supported

variations. Generally, local minimizers need not to be isolated; we illustrate below a

penalization argument to select a particular solution from the possibly large set of local

minimizers. To begin with, we define the auxiliary functional on the space H1(I0, Rk),

Ā(x, I0) :=
∫

I0

K(ẋ) + U (t , x) + |x − x̄|2
2

dt. (2.7)

When the interval I0 is sufficiently small, x̄ is actually the global minimizer for the

penalized functional Ā(·, I0) defined in equation (2.7). Of course, we may assume that

Ā(x̄, I0) = A(x̄, I0) < +∞, (2.8)

which is equivalent to require that Ā(·, I0) takes a finite value at least at one point.

Proposition 2.9. Let x̄ be a locally minimal solution on the interval (a, b), let δ0 > 0 and

t0 ∈ (a, b) be such that x̄ is a local minimizer for A(·, I0), where I0 = [t0 − δ0, t0 + δ0] ⊂ (a, b).

Then there exists δ̄ = δ̄(x̄) > 0 such that whenever δ0 ≤ δ̄, x̄ is the unique global minimizer

for Ā(·, I0) with the fixed boundary conditions x̄|∂ I0 . �

Proof. For every x ∈ H1
loc(I0, Rk), the inequality A(x, I0) ≤ Ā(x, I0) holds true, and it is

an equality only if x = x̄. Since x̄ is a local minimizer for A(x, I0), one easily infers, by a

simple convexity argument and the semicontinuity of the action functional, the existence

of ε > 0 such that

‖x − x̄‖∞ < ε and x|∂ I0 = x̄|∂ I0 ⇒ A(x̄, I0) ≤ A(x, I0).

We conclude that, for every x ∈ H1
loc(I0, Rk), such that 0 < ‖x − x̄‖∞ < ε, the following

chain of inequalities holds:

Ā(x̄, I0) = A(x̄, I0) ≤ A(x, I0) < Ā(x, I0);

hence x̄ is a strict local minimizer for Ā(·, I0), independently on δ0.
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In order to complete the proof, we show that Ā(x̄, I0) < Ā(x, I0) also for those

functions x ∈ H1
loc(I0, Rk) such that ‖x − x̄‖∞ ≥ ε, provided δ0 is sufficiently small. Indeed,

since the Sobolev space H1
loc(I0, Rk) is embedded in the space of absolutely continuous

functions, we can compute, by Hölder inequality,

|(x − x̄)(t )| ≤
∫

I0

|ẋ(s)|ds +
∫

I0

| ˙̄x(s)|ds

≤
√

2δ0

(√∫
I0

|ẋ(s)|2ds +
√∫

I0

| ˙̄x(s)|2ds

)
. (2.9)

By taking the supremum at both sides of equation (2.9), it follows that

‖x − x̄‖∞√
2δ0

−
√∫

I0

| ˙̄x(s)|2 ds ≤
√∫

I0

|ẋ(s)|2 ds,

and therefore, for every x ∈ H1(I0, Rk),

Ā(x, I0) ≥ 1

2

∫
I0

|ẋ(s)|2 ds ≥ 1

2

(
‖x − x̄‖∞√

2δ0
−

√∫
I0

| ˙̄x(s)|2 ds

)2

≥ 1

2

(
ε√
2δ0

−
√∫

I0

| ˙̄x(s)|2 ds

)2

. (2.10)

Hence, by choosing δ0 such that 2δ0 < ε2(
√∫

I0
| ˙̄x(s)|2ds +

√
Ā(x̄, I0))−2, it follows that

Ā(x, I0) ≥ 1

2

(
ε√
2δ0

−
√∫

I0

| ˙̄x(s)|2ds

)2

> Ā(x̄, I0)

also for those paths x ∈ H1
loc(I0, Rk) such that ‖x − x̄‖∞ ≥ ε. This concludes the proof. �

We now wish to approximate the singular potential U with a family of smooth

potentials Uε: (a, b) × R
k → R

+, depending on a parameter ε > 0. To this aim, consider

the function

η(s) =

⎧⎪⎪⎨
⎪⎪⎩

s if s ∈ [0, 1]
−s2+6s−1

4 if s ∈ [1, 3]

2 if s ≥ 3;
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notice that η ∈ C1(R+, R+) and, for every s ∈ [0, +∞),

η̇(s) s ≤ η(s) and η̇(s) ≤ 1.

Now let us define, for ε > 0,

ηε(s) := 1

ε
η(εs);

then the following inequalities hold for every s ∈ [0, +∞):

η̇ε(s) s ≤ ηε(s), and η̇ε(s) ≤ 1. (2.11)

By means of the family ηε, we can regularize the potential U in the following way:

Uε(t , x) =
{

ηε(U (t , x)), if x ∈ R
k
��,

2/ε, if x ∈ �.
(2.12)

It is worthwhile noticing that each Uε(t , x) coincides with U (t , x) whenever U (t , x) ≤ 1/ε;

in fact

ηε(s) = 1

ε
η(εs) = s

whenever εs ∈ [0, 1], that is, s ∈ [0, 1/ε]. Next, we consider the associated family of bound-

ary value problems on the interval I0 ⊂ (a, b),

{
ẍ = ∇Uε(t , x) + (x − x̄),

x|∂ I0 = x̄|∂ I0

(2.13)

where, as usual, ∇Uε(t , x) is the gradient, in the mass metric, with respect to the spatial

variable x. Solutions of equation (2.13) are critical points of the action functional

Āε(x, I0) :=
∫

I0

K(ẋ) + Uε(t , x) + |x − x̄|2
2

dt. (2.14)

We observe that Āε(·, I0) is bounded and C2 is on H1
loc(I0, Rk), since Uε is smooth on the

whole R
k. We also remark that the infimum of Āε(·, I0) is achieved, for Āε(·, I0) is a positive

and coercive functional on H1
loc(I0, Rk).
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In the next proposition, we prove that a locally minimal solution has the funda-

mental property of being the limit of a sequence of global minimizers for the (smooth)

approximating functionals Āε(·, I0), provided the interval I0 ⊂ (a, b) is chosen so small

that the restriction of the minimal solution to I0 is the unique global minimizer for

Ā(·, I0). This is a crucial result; indeed, as already observed in Remark 2.3, although the

Euler-Lagrange equations and the differential system do not hold for a locally minimal

solution, we will anyway be able to take advantage of the the differential equations asso-

ciated with the approximating global minimizers (for the regularized problems). In this

way, we will be in a position to prove the basic qualitative properties of locally minimal

(and generalized) solutions, namely the conservation laws and the monotonicity formula,

which will be widely exploited in the rest of the paper.

Proposition 2.10. Let x̄ and I0 be given by Proposition 2.9. Let ε > 0 and xε be a global

minimizer for Āε(·, I0), with boundary conditions xε |∂ I0
= x̄|∂ I0 . Then, up to subsequences,

as ε → 0,

(i) Uε(t , xε) → U (t , x̄) almost everywhere and in L1;

(ii) xε → x̄ uniformly;

(iii) ẋε → ˙̄x in L2;

(iv) ẋε → ˙̄x almost everywhere;

(v) ∂Uε

∂t (t , xε) → ∂U
∂t (t , x̄) almost everywhere and in L1. �

Proof. As we have already observed, for every ε > 0, the potential Uε coincides with U

on the sublevel {(t , x) : U (t , x) ≤ 1/ε} and, by its definition, for every (t , x) ∈ I0 × (Rk��)

there holds

Uε(t , x) ≤ U (t , x).

Therefore

Āε(x, I0) ≤ Ā(x, I0)

for every x ∈ H1
loc(I0, Rk). It follows from equation (2.8) that

Āε(xε, I0) = inf
x∈H1

loc

Āε(x, I0) ≤ Ā(x̄, I0) < +∞, (2.15)
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which implies the boundedness of the family {∫I0
|ẋε|2 + |xε − x̄|2}ε. Hence, we deduce

the existence of a sequence (xεn )εn ⊂ (xε)ε such that (ẋεn )εn converges weakly in L2 and

uniformly to some limit x̃. In addition, we observe that

lim
εn→0

Uεn (t , xεn (t )) = U (t , x̃(t ))

for every t ∈ I0, regardless of the finiteness of U (t , x̃(t )).

From equation (2.15), we also deduce the boundedness of the following integrals:

∫
I0

Uεn (t , xεn ) dt ≤ Āεn (xεn , I0) < +∞,

and therefore, since the sequence (Uεn (t , xεn ))εn is positive, by applying Fatou’s lemma one

deduces that

∫
I0

U (t , x̃) ≤ lim inf
n→+∞

∫
I0

Uεn (t , xεn ) < +∞.

Hence, from the weak semicontinuity of the norm in L2 (the sequence (ẋεn )εn converges

weakly in L2 to x̃), we obtain the inequalities

Ā(x̃, I0) ≤ lim inf
n→+∞ Āεn (xεn , I0) ≤ Ā(x̄, I0)

that contradict Proposition 2.9, unless x̃ = x̄ and

lim inf
n→+∞ Āεn (xεn , I0) = Ā(x̄, I0). (2.16)

Therefore, we deduce the L2-convergence of the sequence (ẋεn )εn and its convergence

almost everywhere to ˙̄x, up to subsequences. From equation (2.16), it also follows that

lim
εn→0

∫
I0

Uεn (t , xεn ) =
∫

I0

U (t , x̄). (2.17)

From the convergence almost everywhere of (Uεn (t , xεn ))εn , together with equation (2.17)

and Egorov’s theorem, we conclude its convergence in L1 to U (t , x̄).

We now turn to the convergence of the sequence (ϕn(t ))εn = ( ∂Uεn
∂t (t , xεn ))εn . To this

aim, we observe that condition (U1) together with equation (2.11) imply the following
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chain of inequalities:

∣∣∣∣∂Uεn

∂t
(t , xεn (t ))

∣∣∣∣ = η̇εn (U (t , xεn (t )))

∣∣∣∣∂U

∂t
(t , xεn (t ))

∣∣∣∣
≤ C1η̇εn

(
U

(
t , xεn (t )

))(
U

(
t , xεn (t )

) + 1
)

≤ C1
(
ηεn

(
U

(
t , xεn (t )

)) + 1
)

= C1
(
Uεn

(
t , xεn (t )

) + 1
)
.

This implies the convergence of (ϕn(t ))εn for all t such that U (t , x̄(t )) is finite, and xεn (t )

converges, that is almost everywhere in I0. In order to prove convergence in L1(I0), we ap-

ply Vitali’s necessary and sufficient condition for convergence, in both logical directions.

Indeed, we already know that Uεn (t , xεn (t )) converges in L1(I0): hence this sequence is uni-

formly integrable, and thus the same is true for the sequence (ϕn(t ))εn . Applying again

Vitali’s theorem, as, by Egorov’s theorem, the almost everywhere convergence implies

convergence in measure, we finally obtain the convergence of (ϕn(t ))εn in L1. �

2.3 Conservation laws for locally minimizing solutions

In this section, we use the sequence of solutions to the regularized problems in order to

prove boundedness of the energy for locally minimal solutions.

Proposition 2.11. Let x̄ and I0 be given by Proposition 2.9. Then the energy associated

to x̄,

h: I0 → R, h(t ) := K( ˙̄x(t )) − U (t , x̄(t )), (2.18)

is of class W1,1 on I0 and its weak derivative is

ḣ(t ) = −∂U

∂t
(t , x̄).

�

Proof. Let (xε)ε be the sequence, converging to x̄, of global minimizers for the corre-

sponding functionals Āε(·, I0) whose existence is proved in Proposition 2.10. Let hε be the

energy associated to xε, that is,

hε: I0 → R, hε(t ) := K(ẋε(t )) − Uε(t , xε(t )) + 1
2 |x̄(t ) − xε(t )|2. (2.19)
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From Proposition 2.10, we immediately deduce that the sequence (hε)ε converges almost

everywhere and L1(I0) to h(x̄). Now we compute the weak derivative of h. To this end, let

us consider a test function ϕ ∈ C∞
0 (I0); we can write

∫
I0

h(t )ϕ̇(t ) dt = lim
ε→0

∫
I0

hε(t )ϕ̇(t ) dt

= lim
ε→0

∫
I0

∂Uε

∂t
(t , xε(t ))ϕ(t ) dt.

In consequence of Proposition 2.10, the sequence ( ∂Uε

∂t (t , xε(t )))ε converges to ∂U
∂t (t , x̄(t )) in

L1; then

lim
ε→0

∫
I0

∂Uε

∂t
(t , xε(t ))ϕ(t ) dt =

∫
I0

∂U

∂t
(t , x̄(t ))ϕ(t ) dt , ∀ϕ ∈ C∞

0 (I0), (2.20)

and hence

∫
I0

h(t )ϕ̇(t ) dt =
∫

I0

∂U

∂t
(t , x̄)ϕ(t ) dt , ∀ϕ ∈ C∞

0 (I0),

which means that ∂U
∂t (t , x̄) is the weak derivative of h(x̄). �

Let us remark that Proposition 2.11 implies that the sequence hε of the energies

of the approximating global minimizers converges to h, the energy of the locally minimal

solution, on compact intervals. The next corollary follows straightforwardly.

Corollary 2.12. The energy associated with a locally minimal solution on the interval

(a, b) is in the Sobolev space W1,1
loc ((a, b), R). Moreover,

ḣ(t ) = −∂U

∂t
(t , x̄).

�

We now investigate the behavior of the moment of inertia of a locally minimal

solution when a singularity occurs (see Definition 2.7). The results contained in Proposi-

tion 2.13 and Corollary (2.14) are the natural extensions of the classical Lagrange–Jacobi

inequality to locally minimal solutions (see [52]).
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Proposition 2.13. Let x̄ be a locally minimal solution and I0 be given by Proposition 2.9.

Then

1

2

∫
I0

I (x̄(t ))ϕ̈(t ) dt ≥
∫

I0

[2h(x̄(t )) + (2 − α̃)U (t , x̄(t )) − C2]ϕ(t ) dt (2.21)

for every ϕ ∈ C∞
0 (I0, R), ϕ(t ) ≥ 0. �

Proof. Let (xε)ε be the sequence of global minimizers for the corresponding functionals

Āε(·, I0) convergent to x̄ whose existence is proved in Proposition 2.10. When we compute

the second derivative of the moment of inertia of xε, we obtain

1
2 Ï (xε(t )) = |ẋε(t )|2 + ẍε(t ) · xε(t )

= 2hε(t ) + 2Uε(t , xε(t )) − |x̄(t ) − xε(t )|2 + [∇Uε(t , xε(t )) + (xε(t ) − x̄(t ))] · xε(t )

= 2hε(t ) + 2Uε(t , xε(t )) + x̄(t ) · (xε(t ) − x̄(t )) + η̇ε(U (t , xε))∇U (t , xε(t )) · xε(t ),

hence, by assumption (U2) on the potential U and inequality (2.11), it follows that

1
2 Ï (xε(t )) ≥ 2hε(t ) + 2Uε(t , xε(t )) + x̄(t ) · (xε(t ) − x̄(t )) − η̇ε(U (t , xε))[αU (t , xε) + C2]

≥ 2hε(t ) + (2 − α̃)Uε(t , xε(t )) + x̄(t ) · (xε(t ) − x̄(t )) − C2 (2.22)

for some α̃ ∈ (0, 2) and C2 > 0. Therefore, since xε ∈ C2(I0), for every ϕ ∈ C∞
0 (I0, R), ϕ(t ) ≥ 0

1

2

∫
I0

I (xε(t ))ϕ̈(t ) dt
1

2

∫
I0

Ï (xε(t ))ϕ(t ) dt

and, from equation (2.22),

1

2

∫
I0

I (xε(t ))ϕ̈(t ) dt ≥
∫

I0

[2hε(t ) + (2 − α̃)Uε(t , xε(t )) + x̄(t ) · (xε(t ) − x̄(t )) − C2]ϕ(t ) dt.

We conclude by passing to the limit as ε → 0 in equation (2.22) and using the L1-

convergences proved in Propositions 2.10 and 2.11. �

The corollaries presented ahead follow directly.
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Corollary 2.14 (Lagrange–Jacobi inequality). Let x̄ be a locally minimal solution on the

interval (a, b). Then the following inequality holds in the distributional sense:

1
2 Ï (x̄(t )) ≥ 2h(t ) + (2 − α̃)U (t , x̄(t )) − C2.

�

Remark 2.15. As a consequence, the function İ is not only (locally) in L2, but it is also

of (local) bounded variation in (a, b), for it is the sum of an increasing function and a

W1,1
loc one. Therefore, it has at most a countable number of discontinuities. In addition,

we have, for any pair of regular points a ≤ t1 < t2 ≤ b,

İ (x̄(t2)) − İ (x̄(t2)) =
∫ t2

t1

d İ
def=

∫ t2

t1

Ï (x̄(t )) dt ≥
∫ t2

t1

[4h(t ) + 2(2 − α̃)U (t , x̄(t )) − 2C2] dt ,

where the first is a Lebesgue–Stieltjes integral, the second has to be intended in the sense

of measures, while the last one is a Lebesgue integral. �

Corollary 2.16. Let x̄ be a locally minimal solution and I0 be given by Proposition 2.9.

Then its moment of inertia is a convex function on the interval I0 whenever x̄ has a

singularity in t0 and δ0 is small enough. �

Proof. Whenever ε and δ0 are sufficiently small, the right-hand side of inequality (2.22)

is strictly positive, indeed hε(t ) is bounded, xε converges to x̄ uniformly and Uε(t , xε(t ))

diverges to +∞. Whenever ε is small enough, we conclude that

Ï (xε(t )) > 0,

and hence I (xε) are strictly convex functions in a neighborhood of t0. Since the

sequence I (xε) uniformly converges to I (x̄), we conclude that also I (x̄) is convex on the

interval I0. �

Now we extend the above corollary to the case of boundary singularities. This will

rule the occurrence of accumulation of a sequence of singularities at the right boundary

of the finite interval (a, b); from now on, we will suppose that b < +∞.
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Lemma 2.17. Let x̄ be a locally minimizing solution in (a, b), let h be its energy (defined

in equation (2.18)) and fix τ ∈ (a, b). Then there exists a constant K > 0 such that

∣∣∣∣
∫ t

τ

h(s)ds

∣∣∣∣ ≤ C1(b − τ )
∫ t

τ

U (ξ , x̄(ξ )) dξ + K, ∀t ∈ (τ , b). (2.23)

�

Proof. Since h is absolutely continuous on every interval [τ , t ] ⊂ (a, b) (Corollary 2.12),

we have

|h(t )| ≤ |h(τ )| +
∫ t

τ

|ḣ(ξ )| dξ , ∀t ∈ (τ , b).

From Proposition 2.11 and assumption (U1), we obtain

|h(t )| ≤ |h(τ )| +
∫ t

τ

∣∣∣∣∂U

∂ξ
(ξ , x̄(ξ ))

∣∣∣∣ dξ

≤ |h(τ )| + C1

∫ t

τ

(U (ξ , x̄(ξ )) + 1) dξ , (2.24)

and, integrating both sides of the inequality on the interval [τ , t ],

∫ t

τ

|h(s)|ds ≤ |h(τ )|(t − τ ) + C1
(t − τ )2

2
+ C1

∫ t

τ

ds
∫ s

τ

U (ξ , x̄(ξ )) dξ.

Since U is positive, the integral
∫ s
τ

U (ξ , x̄(ξ )) dξ increases in the variable s, hence we

conclude that

∣∣∣∣
∫ t

τ

h(s)ds

∣∣∣∣ ≤
∫ t

τ

|h(s)|ds ≤ |h(τ )|(t − τ ) + C1
(t − τ )2

2
+ C1(b − τ )

∫ t

τ

U (ξ , x̄(ξ )) dξ ,

which proves the assertion with K = |h(τ )|(b − τ ) + C1(b − τ )2/2. �

Next, we show that the potential integral is finite on a left neighborhood of

b < +∞. This fact will imply boundedness of the whole action and smoothness of the

total energy up to b. This is a remarkable fact when b is a boundary singularity for the

locally minimal solution.

Lemma 2.18. Let x̄ be a locally minimal solution on a finite interval (a, b). Suppose that

lim inf
t→b−

İ (x̄(t )) = C < +∞ (2.25)
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(here the lower limit is meant up to zero-measure sets, namely as limt→b− ess inf[t ,b) İ )

and let δ > 0 be such that

λ := 2 − α̃

2
− C1δ > 0. (2.26)

Then there exists τ ∈ (b − δ, b) such that

∫ b

τ

U (t , x̄(t )) dt < +∞.

�

Proof. It follows from equation (2.25) that there exists an increasing sequence of in-

stants (tn)n of continuity of İ such that

tn → b as n → +∞ and lim
n→∞ İ (x̄(tn)) = C .

Now let the constant λ defined in equation (2.26) be strictly positive and let τ ∈ (b − δ, b)

be a point of continuity and finiteness for İ (x̄). Hence, for every integer n sufficiently

large,

C + 1 − İ (x̄(τ )) ≥ İ (x̄(tn)) − İ (x̄(τ )) =
∫ tn

τ

d İ .

Therefore, Remark 2.15 implies the estimate

C + 1 − İ (x̄(τ )) ≥ 4
∫ tn

τ

h(t ) dt + 2(2 − α̃)
∫ tn

τ

U (t , x̄(t )) dt − 2C2(tn − τ ).

We now apply Lemma 2.17 to deduce that

4
(

2 − α̃

2
− C1(b − τ )

) ∫ tn

τ

U (t , x̄(t )) dt ≤ 2C2(tn − τ ) + C + 1 + 4K − İ (x̄(τ ))

and therefore,

4λ

∫ tn

τ

U (t , x̄(t )) dt ≤ 2C2(tn − τ ) + C + 1 + 4K − İ (x̄(τ )).
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Since λ > 0 is fixed, as n → +∞ the proof is completed. Notice that, inserting the value

of the constant K, the following estimate holds:

4λ

∫ b

τ

U (t , x̄(t )) dt ≤ 2C2(b − τ ) + C + 1 + 4
[
|h(τ )|(b − τ ) + C1

(b − τ )2

2

]
− İ (x̄(τ )). (2.27)

�

Corollary 2.19. Let x̄ be a locally minimal solution on a finite interval (a, b). Suppose

that b is a singularity such that

lim inf
t→b−

İ (x̄(t )) < +∞,

where, as above, the lower limit is meant up to zero-measure sets, namely as lim
t→b−

ess inf
[t ,b)

İ .

Then, if a < τ < b < +∞, there hold

(i)
∫ b

τ

U (t , x̄(t )) dt < +∞;

(ii)

∣∣∣∣
∫ b

τ

h(t ) dt

∣∣∣∣ < +∞;

(iii)
∫ b

τ

K( ˙̄x(t )) dt < +∞;

(iv) ‖h‖∞ < +∞ on [τ , b).

(v) lim
t→b−

x̄(t ) exists.

(vi) İ has bounded variation on [τ , b) and the following inequality holds in the

distributional sense:

1
2 Ï (x̄(t )) ≥ 2h(t ) + (2 − α̃)U (t , x̄(t )) − C2.

(vii) I is a strictly convex function in a neighborhood [b − δ, b) of b. �

Proof. The boundedness of the first integral follows from the assumption of local

boundedness of the action functional on a locally minimal trajectory, assumption (2.8),

and from Lemma 2.18. Concerning the second one, we use Corollary 2.12 and inequal-

ity (2.23); (iii) follows straightforwardly from (i), (ii), and the definition of the energy

h. The boundedness of ‖h‖∞ on (a, b) follows from Corollary 2.12 and inequality (2.24).

To deduce (v), it is sufficient to remark that, from (iii), x̄ is Hölder continuous on (a, b).

Assertions (vi) and (vii) just follow from the Lagrange–Jacoby inequality (2.14), together

with the boundedness of the energy and assertion (i). �



Singularities of Generalized Solutions 21

3 Conservation Laws for Generalized Solutions

In order to extend the estimates of the previous section to the case of generalized solu-

tions, we take a sequence xn of minimal solutions as in Definition 2.5, that is converging

to x̄ on compact subsets of (a, b), and such that, for almost all t ∈ (a, b), the associated

total energy hn(t ) := K(ẋn(t )) − U (t , xn(t )) converges. The next Lemma will be a crucial

result in order to improve the regularity of a generalized solution.

Lemma 3.1. Let x̄ be a generalized solution, let τ �∈ x̄−1(�) be a point of convergence of

the energy sequence, and let 0 < δ < b − τ be such that equation (2.26) holds. Then

(i) lim sup
n→+∞

∫ τ+δ/2

τ

U (t , xn(t )) dt < +∞;

(ii) lim sup
n→+∞

∫ τ+δ/2

τ

|ḣn| dt < +∞;

(iii) lim sup
n→+∞

∫ τ+δ/2

τ

K(ẋn(t )) dt < +∞.

Equivalent estimates hold in a left neighborhood of τ . �

Proof. Since τ �∈ x̄−1(�), the kinetic and the potential energy sequences converges sep-

arately. Since x̄ is continuous, we can change τ into a close value τ ′ < τ such that these

facts still hold true, and moreover, the derivatives İ (xn(t )) := İn(t ) are continuous in τ ′

for every n. On the other hand, as the In’s are positive and absolutely continuous, there

holds, for every n,

In(τ + δ) ≥ In(τ + δ) − In

(
τ + δ

2

)
≥

∫ τ+δ

τ+δ/2
İn(t ) dt ≥ δ

2
essinf

[τ+δ/2,τ+δ]
İn.

Since In(τ + δ) converges to I (x(τ + δ)) := C δ/2, for any n sufficiently large, there are points

τ ′′
n ∈ [τ + δ/2, τ + δ] where İn is continuous and such that İn(τ ′′

n) ≤ C + 1. Now we argue

similarly to the proof of Lemma 2.18. From the inequality

C + 1 − İn(τ ′) ≥ İn(τ ′′
n) − İn(τ ′) =

∫ τ ′′
n

τ ′
d İn

and Remark 2.15, we obtain the estimate

C + 1 − İn(τ ′) ≥ 4
∫ τ ′′

n

τ ′
hn(t ) dt + 2(2 − α̃)

∫ τ ′′
n

τ ′
U (t , xn(t )) dt − 2C2(τ ′′

n − τ ′).
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Let the constant λ defined in equation (2.26) be strictly positive; for every sufficiently

large integer n, we deduce, using Lemma 2.17, the estimate (cf. equation (2.27))

4λ

∫ τ+δ/2

τ

U (t , xn(t )) dt ≤ 4λ

∫ τ ′′
n

τ ′
U (t , xn(t )) dt ≤ 2C2δ + C + 1 + 4|hn(τ ′)|δ + 2C1δ

2 − İn(τ ′).

By our choice of τ ′, both the kinetic energy Kn(τ ′) and the total energy hn(τ ′) converge:

therefore, since | İn(τ ′)| ≤ √
In(τ ′)Kn(τ ′), we obtain part (i) of the assertion. The second point

of the assertion follows directly from the first, taking into account Corollary 2.12 and

assumption (U1). As the sequence of the energies converges at the point τ , this implies

in particular the boundedness of the energies in the L∞ norm. Finally, by integration of

the energy sequence, point (iii) easily follows. �

By repeatedly applying this lemma, we can cover every compact subinterval of

(a, b) and then, passing to the limit as n tends to infinity, we easily obtain the next result,

which states that generalized solutions are actually much more regular, together with

their energies. Moreover, the set of collision instants has zero measure, and the energy

is bounded. Furthermore, we can pass into the limit in Lagrange–Jacobi distributional

inequality (2.21), and, by applying Fatou’s lemma on its right-hand side, we obtain the

validity of the Lagrange–Jacobi inequality also for the generalized solutions.

Corollary 3.2. Let x̄ be a generalized solution on a finite interval (a, b). Then

(i) U (t , x̄(t )) ∈ L1
loc(a, b);

(ii) h ∈ BVloc(a, b);

(iii) x̄ ∈ H1
loc(a, b);

(iv) İ (x̄) ∈ BVloc(a, b) and the following inequality holds in the distributional

sense:

1
2 Ï (x̄(t )) ≥ 2h(t ) + (2 − α̃)U (t , x̄(t )) − C2.

�

As a consequence, we can extend to generalized solutions all the analysis devel-

oped in the previous section about the asymptotics at the bounday points of the finite

interval (a, b).
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Corollary 3.3. Let x̄ be a generalized solution on a finite interval (a, b). Suppose that b

is a singularity such that

lim inf
t→b−

İ (x̄(t )) < +∞,

where the lower limit is meant up to zero-measure sets, namely as lim
t→b−

ess inf
[t ,b)

İ . Then

the same conclusions of Corollary 2.19 hold. Namely,

(i)
∫ b
τ

U (t , x̄(t )) dt < +∞;

(ii)
∣∣∣∫ b

τ
h(t ) dt

∣∣∣ < +∞;

(iii)
∫ b
τ

K( ˙̄x(t )) dt < +∞;

(iv) ‖h‖∞ < +∞ on [τ , b).

(v) limt→b− x̄(t ) exists.

(vi) İ has bounded variation on [τ , b) and the following inequality holds in the

distributional sense:

1
2 Ï (x̄(t )) ≥ 2h(t ) + (2 − α̃)U (t , x̄(t )) − C2;

(vii) I is a strictly convex function in a neighborhood [b − δ, b) of b. �

A key remark is that, as one can easily check with a slight modification of the

argument used in proving Lemma 3.1, the conclusions of Corollary 2.19 hold indeed,

uniformly along the approximating sequence as shown in the following corollary.

Corollary 3.4. Let x̄ be a generalized solution, as in Corollary 3.3 and let xn be the

approximating sequence of locally minimal solutions. Then we have

(i) lim
s→b

lim sup
n→+∞

∫ s

τ

U (t , xn(t )) dt < +∞;

(ii) lim
s→b

lim sup
n→+∞

∫ s

τ

|ḣn| + |hn| dt < +∞;

(iii) lim
s→b

lim sup
n→+∞

∫ s

τ

K(ẋn(t )) dt < +∞;

(iv) lim sup
n→+∞

‖hn‖ < +∞. �

Remark 3.5. In Corollary 3.3 (v), Von Zeipel’s theorem is proved, for generalized

solutions, under the additional assumption (2.25). The proof will be completed in

Section 5. �
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4 Asymptotic Estimates at Total Collisions

The purpose of this section is to deepen the analysis of the asymptotics of generalized

solutions as they approach a total collision at the origin. We recall that x̄ has a total

collision at the origin at t = t∗ if limt→t∗ x̄(t ) = 0. Since, by our assumptions, 0 belongs

to the singular set � of the potential, assumption (U0) implies in particular that a total

collision instant is a singularity for x̄. We will perform here all the analysis in a left

neighborhood of the collision instant: this allows us to treat at the same time the case

of interior or boundary collision instants. Needless to say, the analysis concerning right

neighborhoods is the exact analogue.

The analysis carried in the previous sections has some relevant implications in

the case of total collisions at the origin; indeed, as

lim
t→(t∗)−

I (t ) = 0,

and I is always non-negative and convex, we immediately deduce that

lim inf
t→(t∗)−

İ (t ) ≤ 0.

Hence, Corollary 3.3 applies and we obtain the following result.

Corollary 4.1. Let x̄ be a generalized solution. If lim
t→(t∗)−

|x̄(t )| = 0, then there exists δ > 0

such that I (x̄) is continuous on I0 = (t∗ − δ, t∗), it admits weak derivative almost ev-

erywhere, the function İ (x̄) is monotone increasing and İ (x̄) ∈ BV (I0). Furthermore, the

following inequalities hold:

Ï (x̄(t )) > 0 in the distributional sense in I0,

İ (x̄(t )) < 0, almost everywhere in I0.

�

Of course, the symmetric result holds in a left neighborhood of a total collision.

As a straightforward consequence, we deduce that whenever a total collision occurs at

t = t∗, no other total collisions take place in its neighborhood, regardless of the fact

whether the total collision lies in the interior or at the boundary of a finite interval (a, b).

We summarize these remarks in the next theorem.
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Theorem 4.2. Let x̄ be a generalized solution for the dynamical system (2.2) in a

bounded interval (a, b). Denote r(t ) = |x̄(t )| and suppose that there exists t∗ ∈ [a, b] such

that limt→t∗ r(t ) = 0. Then there exists δ > 0 such that, for every t ∈ (t∗ − δ, t∗ + δ) ∩ (a, b),

we have

r(t ) �= 0, ṙ(t ) < 0, almost everywhere in (t∗ − δ, t∗) ∩ (a, b),

r(t ) �= 0, ṙ(t ) > 0, almost everywhere in (t∗, t∗ + δ) ∩ (a, b). (4.1)

�

It is worthwhile noticing that the isolatedness of total collisions does not prevent,

at this stage, the occurrence of infinitely many other singularities in a neighborhood of

a total collision at the origin. In this section, we introduce a suitable hypothesis on the

potential U that will prevent accumulation of partial collisions and will imply a regular

behavior of both the radial and the angular components of the motion.

To proceed with the analysis of the asymptotic behavior near total collisions

at the origin, we need some stronger conditions on the potential U when the radial

variable r tends to 0. These additional conditions include quasi-homogeneous potential

and logarithmic ones, in the following analysis, however, we will separately treat the

two different cases.

4.1 Quasi-homogeneous potentials

In this section, we shall consider some stronger assumptions on the behavior of the

potential when r = |x| is small. The following conditions are trivially satisfied by α-

homogeneous potentials and mimic the behavior of combination of such homogeneous

potentials:

(U2)h There exist α ∈ (0, 2), γ > 0 and C2 ≥ 0 such that

∇U (t , x) · x + αU (t , x) ≥ −C2|x|γ U (t , x),

whenever |x| is small.

Remark 4.3. (U2)h implies (U2) (for small values of |x|); in fact, by taking any α̃ ∈ (α, 2),

one obtains

∇U (t , x) · x + α̃U (t , x)∇U (t , x) · x + αU (t , x) + (α̃ − α)U (t , x) ≥ −C2|x|γ U (t , x) + (α̃ − α)U (t , x),

and the last term remains bounded below as |x| → 0, since α̃ − α > 0. �
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Furthermore, we suppose the existence of a function Ũ defined and of class C1

on (a, b) × (E��) such that

inf
(a,b)×(E��)

Ũ (t , s) > 0 and lim
s→E∩�

Ũ (t , s) = +∞ uniformly in t. (4.2)

The potential U is then supposed to verify the following condition uniformly in the

variables s on E�� and in t on the compact subsets of (a, b):

(U3)h lim
r→0

rαU (t , x) = Ũ (t , s).

Remark 4.4. In (U2)h and (U3)h, the value of α must be the same. We shall refer to

potentials satisfying such assumptions as quasi-homogeneous (cf. [18]). �

We rewrite the (bounded) energy function using the polar coordinates as

h(t ) = 1
2 (ṙ2 + r2|ṡ|2) − U (t , rs). (4.3)

We shall be concerned with functions of type:

�α′ (t ) := rα′( 1
2r2|ṡ|2 − U (t , rs)

)
, α′ ∈ [α, 2).

When α′ = α and the potential is exactly homogenueous, the function �α differs from the

classical Sundman function of the quantity rαc2, where c2 is the squared norm of the

total angular momentum. Similar to the classical framework, a main tool in proving

the regularity of the motion will be a monotonicity formula for the family of functions

�α′ (t ). Replacing in equation (4.3), we have

�α′ (t ) = h(t )rα′ − 1
2 ṙ2rα′ ≤ h(t )rα′

;

since h is bounded (see Corollary 3.3, (iv)) and r tends to 0, we conclude that the function

�α′ is bounded above on the interval [t∗ − δ, t∗]. Moreover, it is easy to see that, as İ = 2rṙ

has bounded variation in [t∗ − δ, t∗], �α′ is of bounded variation locally in (t∗ − δ, t∗). Our

aim is to estimate its total variation in [t∗ − δ, t∗]. This will require several steps. At first,

by assumption (U2)h, since γ > 0 and r → 0 as t → t∗, we can always assume, by taking

a smaller δ if necessary, that

rγ ≤ α′ − α

2C2
, ∀t ∈ (t∗ − δ, t∗). (4.4)

With this we can prove our first a priori estimate.
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Proposition 4.5. Let x̄ be a locally minimizing solution, let t∗ ∈ (a, b] be a total collision

instant, and let δ be given in Theorem 4.2. Let α′ ∈ (α, 2), where α ∈ (0, 2) is the constant

fixed in assumption (U2)h, and assume that equation (4.4) holds. Then in the interval

(t∗ − δ, t∗) there holds, in the sense of distributions,

d

dt
�α′ (t ) ≥ −α′ − α

2
rα′ ṙ

r
U (t , rs) − C1rα′

(U (t , rs) + 1). (4.5)

�

Proof. To prove the assertion, we exploit the usual approximation procedure, by taking

an interval I0 = [t0 − δ0, t0 + δ0] ⊂ (t∗ − δ, t∗) as in Proposition 2.10 and the associated

sequence (xε)ε of global minimizers for the regularized functional Āε(·, I0) converging to

the locally minimal collision solution x̄. Let us define, for every ε,

rε := |xε| ∈ R and s := xε

|xε| ∈ E ,

and let us write the energy in equation (2.19) as

hε(t ) = 1
2

(
ṙ2
ε + r2

ε |ṡε|2
) − Uε(t , rεsε) + 1

2 |rs − rεsε|2.

The approximating action functional and the corresponding Euler–Lagrange equations

in the (r, s)-variables are, respectively,

Āε(rεsε, I0) :
∫

I0

1

2

(
ṙ2
ε + r2

ε |ṡε|2
) + Uε(t , rεsε) + 1

2
|rs − rεsε|2 dt

and

−r̈ε + rε|ṡε|2 + ∇Uε(t , rεsε) · sε − (rs − rεsε) · sε = 0 (4.6)

−2rεṙε ṡε − r2
ε s̈ε + rε∇TUε(t , rεsε) − rε(rs − rεsε) = µεsε, (4.7)

where µε = r2
ε |ṡε|2 − rε(rs − rεsε) · sε is the Lagrange multiplier due to the presence of the

constraint |sε|2 = 1 and the vector ∇TUε(t , rεsε) is the tangent components to the ellipsoid

E of the gradient ∇Uε(t , rεsε).

Next, we consider the corresponding functions (still bounded above) for the ap-

proximating problems

�α′,ε(t ) = rα′
ε

(
1
2r2

ε |ṡε|2 − Uε(t , rεsε) + 1
2 |rs − rεsε|2

)
= hε(t )rα′

ε − 1
2 ṙ2

ε rα′
ε ≤ hε(t )rα′

ε ,
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and we observe that the sequence (�α′,ε)ε converges almost everywhere and L1(I0) to �α′ ,

as ε → 0. We compute the derivative of �α′,ε(t ) with respect to time as

d

dt
�α′,ε(t ) = 2 + α′

2
r1+α′
ε ṙε|ṡε|2 + r2+α′

ε ṡε · s̈ε + α′rα′−1
ε ṙε

[
1

2
|rs − rεsε|2 − Uε(t , rεsε)

]

− rα′
ε

[
∂Uε

∂t
(t , rεsε) + ∇Uε(t , rεsε)(ṙεsε + rε ṡε)

]
+ rα′

ε (rs − rεsε)
d

dt
(rs − rεsε). (4.8)

Now we multiply the angular Euler–Lagrange equation (4.7) by ṡε to obtain (we recall that

∇TUε(t , rεsε) · ṡε = ∇Uε(t , rεsε) · ṡε, since sε and ṡε are orthogonal)

r2
ε s̈ε · ṡε = −2rεṙε|ṡε|2 + rε∇Uε(t , rεsε) · ṡε − rεrs · ṡε. (4.9)

Replacing equation (4.9) in equation (4.8), we have

d

dt
�α′,ε(t ) = −2 − α′

2
r1+α′

ṙε|ṡε|2 − α′rα′−1
ε ṙεUε(t , rεsε) − rα′

ε

∂Uε

∂t
(t , rεsε)

− rα′−1
ε ṙε∇Uε(t , rεsε) · (rεsε) − rα′+1

ε rs · ṡε

+ α′

2
rα′−1
ε ṙε|rs − rεsε|2 + rα′

ε (rs − rεsε)
d

dt
(rs − rεsε). (4.10)

We now combine assumptions (U1), (U2)h, and equation (2.11) to obtain the following

inequalities:

− rα′
ε

∂Uε

∂t
(t , rεsε) = −rα′

ε η̇ε(U (t , rεsε))
∂U

∂t
(t , rεsε)

≥ −C1rα′
ε η̇ε(U (t , rεsε))(Uε(t , rεsε) + 1)

≥ −C1rα′
ε (ηε(U (t , rεsε)) + 1)

≥ −C1rα′
ε (Uε(t , rεsε) + 1),

−rα′
ε

ṙε

rε

∇Uε(t , rεsε) · (rεsε) − rα′
ε

ṙε

rε

η̇ε(U (t , rεsε))∇U (t , rεsε) · (rεsε)

≥ −rα′
ε

ṙε

rε

η̇ε(U (t , rεsε))U (t , rεsε)
[−α − C2rγ

ε

]
≥ rα′

ε

ṙε

rε

Uε(t , rεsε)
[
α + C2rγ

ε

]
.

Finally, by replacing in equation (4.10), we obtain

d

dt
�α′,ε(t ) ≥ 
α′,ε(t ),



Singularities of Generalized Solutions 29

where


α′,ε(t ) = −2 − α′

2
r1+α′
ε ṙε|ṡε|2 − (α′ − α)rα′

ε

ṙε

rε

Uε(t , rεsε) − C1rα′
ε (Uε(t , rεsε) + 1)

+ C2rα′+γ
ε

ṙε

rε

Uε(t , rεsε) − rα′+1
ε rs · ṡε

+ α′

2
rα′−1
ε ṙε|rs − rεsε|2 + rα′

ε (rs − rεsε)
d

dt
(rs − rεsε).

Now, using equation (4.4), since rε → r uniformly in I0, for small ε > 0, we can find

positive λε → (α′ − α)/2 such that

C2rα′+γ
ε Uε(t , rεsε) ≤ λεr

α′
ε Uε(t , rεsε)

on I0; furthermore, since − 2−α′
2 r1+α′

ε ṙε|ṡε|2 is positive, we have


α′,ε(t ) ≥ −(α′ − α − λε)r
α′
ε

ṙε

rε

Uε(t , rεsε) − C1rα′
ε (Uε(t , rεsε) + 1)

− rα′+1
ε rs · ṡε + α′

2
rα′−1
ε ṙε|rs − rεsε|2 + rα′

ε (rs − rεsε)
d

dt
(rs − rεsε).

We can then conclude that, for every ε,

d

dt
�α′,ε ≥ −(α′ − α − λε)r

α′
ε

ṙε

rε

Uε(t , rεsε) − C1rα′
ε (Uε(t , rεsε) + 1)

− rα′+1
ε rs · ṡε + α′

2
rα′−1
ε ṙε|rs − rεsε| + rα′

ε (rs − rεsε)
d

dt
(rs − rεsε).

Now we remark that the right-hand side of the inequality converges strongly in L1(I0); this

follows from Proposition 2.10, taking into account that rε → r > 0, the ṙε’s are bounded

on I0, and λε → (α′ − α)/2. Therefore, by testing with any ϕ ∈ C∞
0 (I0) and passing to the

limit as ε → 0, we easily obtain that the inequality

d

dt
�α′ ≥ −α′ − α

2
rα′ ṙ

r
U (t , rs) − C1rα′

(U (t , rs) + 1)

holds in the sense of distributions. �

Proposition 4.6. Let x̄ be a locally minimal solution, let t∗ ∈ (a, b] be a total collision

instant, and let δ be given in Theorem 4.2 such that equation (4.4) holds. Then for every
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α′ ∈ (α, 2),

−α′ − α

2

∫ t∗

t∗−δ

rα′ ṙ

r
U (t , rs) ≤

∫ t∗

t∗−δ

C1rα′
(U (t , rs) + 1) dt − �α′ (t∗ − δ) < +∞,

where α ∈ (0, 2) is the constant fixed in assumption (U2)h. �

Proof. By integrating in Proposition 4.5, we obtain

− α′ − α

2

∫ t∗

t∗−δ

rα′ ṙ

r
U (t , rs) ≤

∫ t∗

t∗−δ

C1rα′
(U (t , rs) + 1) dt + �α′ (t∗) − �α′ (t∗ − δ)

≤
∫ t∗

t∗−δ

C1rα′
(U (t , rs) + 1) dt − �α′ (t∗ − δ);

this proves the assertion because of the L1 bound on the potential given in Corollary 2.19

if we chose t∗ − δ to be a point of boundedness for �α′ . �

Let us consider a sequence of locally minimizing solutions approximating a gen-

eralized solution; we can take advantage of the above inequality, together with the uni-

form bounds given by Corollary 3.4 and the uniform boundedness above of the approxi-

mating functions �α′ in order to obtain the following estimate.

Lemma 4.7. Let x̄ be a generalized solution, let t∗ ∈ (a, b] be a total collision instant,

and let δ be given in Theorem 4.2 such that equation (4.4) holds. Then for every α′ ∈ (α, 2),

we have

∫ t∗

t∗−δ

−rα′ ṙ

r
U (t , rs) dt < +∞,

where α ∈ (0, 2) is the constant fixed in assumption (U2)h. �

Remark 4.8. A word of caution must be entered at this point. Generally speaking, there

is no need that the approximating sequence presents a total collision. However, going

back to the proof of the results of this section, the assumption that t∗ is a total collision

instant is used only in order to ensure that lim inft→t∗ İ (t ) < +∞. On the other hand, one

can easily prove, by using tha Lagrange–Jacobi inequality, that this last condition also

holds for the approximating sequence. �
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Now we consider the limiting case α′ = α, corrseponding to the function

�α(t ) := rα
[

1
2r2|ṡ|2 − U (t , rs)

]
. (4.11)

Proposition 4.9 (Monotonicity formula). Let x̄ be a locally minimizing solution,

let t∗ ∈ (a, b] be a total collision instant, and let δ > 0 be the constant obtained in

Theorem 4.2. Then the function �α is of bounded variation on [t∗ − δ, t∗] and

d

dt
�α(t ) ≥ −2 − α

2
r1+αṙ|ṡ|2 − C1rα(U (t , rs) + 1) + C2rα+γ ṙ

r
U (t , rs), (4.12)

where t ∈ [t∗ − δ, t∗]. Moreover,

− 2 − α

2

∫ t∗

t∗−δ

r1+αṙ|ṡ|2 ≤
∫ t∗

t∗−δ

[
C1rα(U (t , rs) + 1) − C2rα+γ ṙ

r
U (t , rs)

]
dt − �α(t∗ − δ) < +∞.

(4.13)

�

Proof. Replacing in equation (4.3) the expression of the function �α, we have

�α(t ) = h(t )rα − ṙ2rα ≤ h(t )rα;

since h is bounded (see Corollary 3.3) and r tends to 0, we conclude that the function �α

is bounded above. Using the same approximation arguments described in Proposition

4.5, we obtain equation (4.12). From the application of Lemma 4.7 with α′ = α + γ , we

deduce the integrability of the negative function rα+γ ṙ
r U (t , rs). Hence, since − 2−α

2 r1+αṙ|ṡ|2
is positive and both rαU (t , rs) and rα+γ ṙ

r U (t , rs) are integrable (Lemma 4.7), the bound-

edness below of the function �α follows from equation (4.12). Inequality (4.13) follows

from the boundedness above of the function �α and inequality (4.12), since the terms

−C1
∫ t∗

t∗−δ
rα(U (t , rs) + 1)dt and C2

∫ t∗

t∗−δ
rα+γ ṙ

r U (t , rs) dt are negative. �

Lemma 4.10 (Monotonicity formula). Let x̄ be a generalized solution, let t∗ ∈ (a, b] be

a total collision instant, and let δ > 0 be the constant obtained in Theorem 4.2. Then the

function �α(t ) is bounded and has bounded variation on [t∗ − δ, t∗). In addition,

− 2 − α

2

∫ t∗

t∗−δ

r1+αṙ|ṡ|2 < +∞. (4.14)

�
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Proof. Replacing in equation (4.3) the expression of the function �α, we have

�α(t ) = h(t )rα − 1
2 ṙ2rα ≤ h(t )rα;

since h is bounded (see Corollary 3.3) and r tends to 0, we conclude that the function

�α is bounded above. aNow we take advantage of the usual sequence of approximating

locally minimal solutions and we obtain from equation (4.12) the uniform boundedness

of total variation of the sequence. From this, the boundedness of the total variation of

the uniform limit easily follows. In order to prove equation (4.14), we simply pass to the

limit in equation (4.13). �

As a straightfoward consequence, we have the existence of the following limits.

Corollary 4.11. There exists b ≥ 0 such that

lim
t→(t∗)−

�α(t ) = −b and lim
t→(t∗)−

ṙ2rα = 2b.

�

Proof. Since �α has bounded variation, it admits a limit when t tends to t∗ from the

right. We call this limit −b ∈ R. Furthermore, since �α(r, s) = h(t )rα − 1
2 ṙ2rα, the energy h

is bounded and r tends to 0 as t → t∗, we conclude that ṙ2rα converges to 2b. �

The next step consists in proving that the limit b is non-zero.

Lemma 4.12. Let ϕ(t ) := −ṙ(t )rα/2(t ), t ∈ [t∗ − δ, t∗]. Then there exist two constants de-

pending on α, c1,α ≤ c2,α, such that for all t ∈ [t∗ − δ, t∗],

c1,α ≤ ϕ(t ) ≤ c2,α.

�

Proof. We write

1
2ϕ2(t ) = rαh(t ) − �α(t ).

Since the energy function h is bounded (see Corollary 3.3, (iv)) and we assume that r

tends to 0 as t tends to t∗, the function rαh(t ) is also bounded. Moreover, by Lemma 4.10

also �α(t ) is bounded. �
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Remark 4.13. The same inequality proved in Lemma 4.12 holds when we replace the

function ϕ with ϕn(t ) = −ṙn(t )rα/2
n (t ), and xn = rnsn is an approximating sequence of locally

minimal solutions for the generalized solution x̄. �

Corollary 4.14. In the same setting of Lemma 4.10, we have limt→t∗
∫ t

t∗−δ
1

rα/2+1 = +∞. �

Proof. We can write the boundedness above of the function ϕ (proved in Lemma 4.12)

as

− ṙ

r
≤ c2,α

rα/2+1
, t ∈ [t∗ − δ, t∗]. (4.15)

Integrating inequality (4.15) on the interval [t∗ − δ, t ] when t → t∗, we obtain

lim
t→t∗ c2,α

∫ t

t∗−δ

dξ

rα/2+1
≥ lim

t→t∗

∫ t

t∗−δ

− ṙ

r
dξ = log r(t∗ − δ) − lim

t→t∗ log r(t ) = +∞,

since r tends to 0 as t → t∗. �

Lemma 4.15. The lower bound c1,α of the function ϕ defined in Lemma 4.12 can be

chosen strictly positive, that is, c1,α > 0. �

Proof. We start proving an estimate of the derivative of the function ϕ, in the case of

locally minimal solutions. With this purpose we consider, as usual, the approximating

sequence (ϕε)ε, where

ϕε(t ) = −ṙε(t )rα/2
ε (t )

in the interval I0 and, for every ε > 0, we compute the first derivative of the smooth

function ϕε and we use the Euler–Lagrange equation (4.6) for the approximating problem

to obtain

ϕ̇ε(t ) = −α

2
rα/2−1
ε ṙ2

ε − rα/2
ε r̈ε

= −α

2
rα/2−1
ε ṙ2

ε − rα/2+1
ε |ṡε|2 − rα/2−1

ε ∇Uε(t , rεsε) · (rεsε) + rα/2
ε (rs − rεsε) · sε.
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Similar to the proof of Proposition 4.5, we use assumption (U2)h and equation (2.11) to

deduce

ϕ̇ε(t ) ≤ rα/2−1
ε

[
−α

2
ṙ2
ε − r2

ε |ṡε|2 + (α + C2rγ
ε )Uε(t , rεsε) + (rs − rεsε) · (rεsε)

]

= 1

rα/2+1
ε

[
2 − α

2
ϕ2

ε (t ) − 2rα
ε hε(t ) − (2 − α)rα

ε Uε(t , rεsε)

+ C2rα+γ
ε Uε(t , rεsε) + rα

ε (rs − rεsε) · (rs)
]
.

As ε → 0, from Proposition 2.10 and Remark 4.13 we obtain the validity of the inequality,

in the sense of distributions,

ϕ̇(t ) ≤ 1

rα/2+1

[
2 − α

2
ϕ2(t ) − 2rαh(t ) − (2 − α)rαU (t , rs) + C2rα+γ U (t , rs)

]
.

We can use equation (4.4) to estimate

ϕ̇(t ) ≤ 1

rα/2+1

[
2 − α

2
ϕ2(t ) − 2rαh(t ) − 2 − α

2
rαU (t , rs)

]
.

The last inequality holds also for generalized solutions: indeed, using an approximating

sequence of locally minimizing solutions, one can pass to the limit using Fatou’s lemma,

finding, for almost every t∗ − δ < t0 < t < t∗,

ϕ(t ) − ϕ(t0) ≤
∫ t

t0

1

rα/2+1

[
2 − α

2
ϕ2(ξ ) − 2rαh(ξ ) − 2 − α

2
rαU (ξ , rs)

]
dξ.

Now, since |2rαh(t )| converges uniformly to zero as t → t∗ on [t∗ − δ, t∗], by condition

(U3)h we obtain that, denoting by Ũ0 the minimal value assumed by Ũ on the ellipsoid E ,

there exist two positive constants k1, k2 > 0 such that

ϕ(t ) ≤ ϕ(t0) +
∫ t

t0

k1

rα/2+1
(ϕ2(ξ ) − k2Ũ0)dξ

whenever t∗ − t0 is sufficiently small. We will conclude showing that necessarily ϕ2(t ) ≥
k2Ũ0 and then choosing c1,α :=

√
k2Ũ0 > 0.
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For the sake of contradiction, we suppose the existence of t̂ such that ϕ2(t̂ ) < k2Ũ0;

then ϕ2 − k2Ũ0 < 0 in a neighborhood of t̂ and

ϕ(t ) ≤ ϕ(t̂ ) +
∫ t

t̂

k1

rα/2+1
(ϕ2(ξ ) − k2Ũ0)dξ < ϕ(t̂ )

for every t ∈ (t̂ , t∗). We deduce the existence of a strictly positive constant k̂ such that,

for every t ∈ (t̂ , t∗),

ϕ(t ) − ϕ(t̂ ) ≤ −k̂
∫ t

t̂

dξ

rα/2+1
.

Since the right-hand side tends to −∞ as t approaches t∗ (see Corollary 4.14), the last

inequality contradicts the boundedness of the function ϕ. �

Corollary 4.16. There exist two strictly positive constants 0 < k1,α ≤ k2,α such that

k1,α(t∗ − t )
2

α+2 ≤ r(t ) ≤ k2,α(t∗ − t )
2

α+2

whenever t ∈ [t∗ − δ, t∗]. �

Proof. The statement follows from Lemmata 4.12 and 4.15 with ki,α := ( α+2
2 ci,α)

2
α+2 ,

i = 1, 2. �

Joining this with Corollary (4.11), we easily obtain the next result.

Corollary 4.17. There exists b > 0 such that

lim
t→(t∗)−

�α(t ) = −b and lim
t→(t∗)−

ṙ2rα = 2b.

�

Theorem 4.18. Let x̄ be a generalized solution for the dynamical system (2.2), let

t∗ ∈ (a, b) (if b < +∞ t∗ can coincide with b) be a total collision instant, and let δ > 0 be the

constant obtained in Theorem 4.2. Let r, s be the new variables defined in equation (2.1);

if the potential U satisfies assumptions (U0), (U1), (U2)h, (U3)h, then the following asser-

tions hold:

(a) lim
t→(t∗)−

rαU (t , rs) = b, where b is the strictly positive constant introduced in

Corollary 4.17;
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(b) there is a positive constant K such that, as t tends to t∗,

r(t ) ∼ [K(t∗ − t )]
2

2+α

ṙ(t ) ∼ − 2K

2 + α
[K(t∗ − t )]

−α
2+α ;

(c) lim
t→(t∗)−

|ṡ(t )|(t∗ − t ) = 0;

(d) for every real positive sequence (λn)n such that λn → 0 as n → +∞, we have

lim
n→+∞ |s(t∗ − λn) − s(t∗ − λnt )| = 0, ∀t > 0.

�

Remark 4.19. Condition (a) of Theorem 4.18, together with assumptions (U3)h on U and

equation (4.2) on Ũ imply that, if x̄ is a generalized solution with a total collision at the

origin at time t = t∗, then there exists δ > 0 such that, for every t ∈ (t∗ − δ, t∗) x̄(t ) /∈ �,

i.e. in a (left) neighborhood of the total collision instant, no other collision is allowed:

neither total nor partial. As a consequence, in such a neighborhood, the generalized

solution x̄ satisfies the dynamical system (2.2) and the corresponding variables (r, s)

verify the Euler–Lagrange equations (2.6). �

Proof (Proof of Theorem 4.18). We begin by proving statement (a). At first we recall that,

as rαU is continuous an extended valued function, it makes sense to compute its upper

and lower limits as t → (t∗)−. We already know from equation (4.11) the integrability of

the function −rα+1ṙ|ṡ|2 on the interval [t∗ − δ, t∗]. Furthermore, since the integral of −ṙ/r

on the same interval diverges to +∞, we conclude that

lim inf
t→(t∗)−

rα+2|ṡ|2 = 0

and from the definition of �α in equation (4.11) together with Corollary 4.17, we infer

that

lim inf
t→(t∗)−

rαU (t , rs) = b. (4.16)

It remains to prove that also lim supt→(t∗)− rαU (t , rs)b. Suppose, for the sake of contradic-

tion, the existence of a strictly positive ε such that

lim sup
t→(t∗)−

rαU (t , rs) ≥ b + 3ε. (4.17)
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Using assumption (U3)h, we have that equations (4.16) and (4.17) are, respectively, equiv-

alent to

lim inf
t→(t∗)−

Ũ (t , s) = b and lim sup
t→(t∗)−

Ũ (t , s) ≥ b + 3ε,

and Corollary 4.17 implies the existence of tε such that �α(t ) ≥ −b − ε/2 whenever t ∈
(tε, t∗]. We can then define the set

U := {t ∈ (tε, t∗) : Ũ (t , s(t )) ≥ b + ε}.

We define two nonempty subsets of the ellipsoid E as

A :=
{

s : Ũ (t∗, s) ≤ b + 5ε

4

}
and B :=

{
s : Ũ (t∗, s) ≥ b + 7ε

4

}
;

since ε > 0, the quantity

d := dist(A, B) = inf
s1∈A,s2∈B

|s1 − s2|

is strictly positive and there exists a sequence (tn)n≥0 ⊂ [t∗ − δ, t∗], such that

tn → t∗ as n → +∞
s(t2k) ∈ ∂ A and s(t2k+1) ∈ ∂ B, for every k ∈ N

b + ε ≤ Ũ (t , s(t )) ≤ b + 2ε, for every t ∈ (t2k, t2k+1) and k ∈ N.

Hence (t2k, t2k+1) ⊂ U , for every k, and from the definition of the function �α in

equation (4.11), we have that

rα+2|ṡ|2 ≥ ε in the intervals (t2k, t2k+1). (4.18)

We now estimate the integral on (t2k, t2k+1) of the integrable (on [t∗ − δ, t∗]) function

rα+1ṙ|ṡ|2 using equation (4.18) and Corollary 4.16,

∫ t2k+1

t2k

− ṙ

r
rα+2|ṡ|2dt ≥ ε

∫ t2k+1

t2k

− ṙ

r
dt = ε log

r(t2k)

r(t2k+1)

≥ 2ε

2 + α
log

c1,α(t∗ − t2k)

c2,α(t∗ − t2k+1)
. (4.19)
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On the other hand, using Hölder inequality we have

d2 ≤ |s(t2k+1) − s(t2k)| ≤
(∫ t2k+1

t2k

|ṡ|dt
)2

≤
∫ t2k+1

t2k

−rα+2 ṙ

r
|ṡ|2dt

∫ t2k+1

t2k

dt

−rα+1ṙ
(4.20)

and from Lemma 4.12 and Corollary 4.16, we obtain

∫ t2k+1

t2k

dt

−rα+1ṙ

∫ t2k+1

t2k

1

−rα/2ṙ

1

rα/2+1
dt ≤ 2

2 + α

1

c2
1,α

∫ t2k+1

t2k

dt

t∗ − t
= 2

2 + α

1

c2
1,α

log
t∗ − t2k

t∗ − t2k+1
.

(4.21)

Combining equations (4.20) and (4.21) we obtain

∫ t2k+1

t2k

−rα+2 ṙ

r
|ṡ|2dt ≥ 2 + α

2
d2c2

1,α

[
log

t∗ − t2k

t∗ − t2k+1

]−1

. (4.22)

From estimates (4.19) and (4.22), we deduce

∫ t2k+1

t2k

−rα+2 ṙ

r
|ṡ|2dt ≥ ε

2 + α
log

c1,α(t∗ − t2k)

c2,α(t∗ − t2k+1)
+ 2 + α

4
d2c2

1,α

[
log

t∗ − t2k

t∗ − t2k+1

]−1

.

Summing on the index k and recalling that the positive function −ṙrα+1|ṡ|2 has a finite

integral on [t∗ − δ, t∗] (equation (4.14)), we have

+∞ >

∫ t∗

t∗−δ

−ṙrα+1|ṡ|2dt >
∑
k≥0

∫ t2k+1

t2k

−ṙrα+1|ṡ|2dt

≥ ε

2 + α

∑
k≥0

log
c1,α(t∗ − t2k)

c2,α(t∗ − t2k+1)
+ 2 + α

4
d2c2

1,α

∑
k≥0

[
log

t∗ − t2k

t∗ − t2k+1

]−1

. (4.23)

Since c2,α/c1,α is bounded (see Lemma 4.15), for the last term in equation (4.23) to be finite

it is necessary that

lim
k→+∞

t∗ − t2k

t∗ − t2k+1
= c2,α

c1,α
and lim

k→+∞
t∗ − t2k

t∗ − t2k+1
= +∞. (4.24)

This is a contradiction, hence we conclude that

lim sup
t→t∗

rαU (t , rs) = b
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and, after replacing the value in equation (4.11),

lim
t→t∗ rα+2|ṡ|2 = 0. (4.25)

To prove (b), from Corollary 4.17 we obtain

lim
t→(t∗)−

r(t )α/2+1

(α/2 + 1)(t∗ − t )
lim

t→(t∗)−
−r(t )α/2ṙ(t ) =

√
2b;

we then conclude by defining K := 2 + α

2

√
2b. The second estimate follows directly.

Part (c) directly follows from equation (4.25) and (b).

We conclude by proving statement (d). If t = 1, there is nothing to prove. Suppose

t > 0, t �= 1, and consider a sequence (λn)n, λn → 0; let N be such that λn < δ/ max(1, t ),

∀n ≥ N. Whenever t > 1, for every n ≥ N, we have

t∗ − δ < t∗ − λnt < t∗ − λn < t∗

and

|s(t∗ − λn) − s(t∗ − λnt )| ≤
∫ t∗−λn

t∗−λnt
|ṡ|du

≤
(∫ t∗−λn

t∗−λnt
r1+α/2|ṡ|2du

)1/2 (∫ t∗−λn

t∗−λnt

du

r1+α/2

)1/2

.

It is not restrictive to suppose t > 1: indeed, when t ∈ (0, 1), we obtain an equivalent

estimate by permuting the integration bounds. From equation (4.14) and Lemmata 4.12

and 4.15, we obtain

+∞ >

∫ t∗

t∗−δ

r1+αṙ|ṡ|2du ≥
∫ t∗

t∗−δ

c1,αr1+α/2|ṡ|2du.

Then, since the constant c1,α is strictly positive, we have

lim
n→+∞

∫ t∗−λn

t∗−λnt
r1+α/2|ṡ|2du = 0.

Moreover, as n tends to +∞, the second integral
∫ t∗−λn

t∗−λnt r−(1+α/2) < +∞; indeed, both

integration bounds tend to t∗ and the asymptotic estimate proved in (b) holds. Hence
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as λn → 0,

lim
n→+∞

∫ t∗−λn

t∗−λnt

du

r1+α/2
lim

n→+∞

[∫ t∗−λn

t∗−λnt
C

du

(t∗ − u)
+ o(1)

]
= C lim

n→+∞[log(λn) − log(λnt ) + o(1)] = −C log t ,

that is bounded, since t is fixed and C = [
√

2b(α+2)
2 ]−(α+2)/2. �

Theorem 4.20. In the same setting of Theorem 4.18, assume that the potential U verifies

further the assumption uniformly on compact subsets of (a, b) × (E \ �),

(U4)h lim
r→0

rα+1∇TU (t , x) = ∇TŨ (t , s).

Then

lim
t→t∗ dist(Cb, s(t )) lim

t→t∗ inf
s̄∈Cb

|s(t ) − s̄| = 0,

where Cb is the set of central configurations for Ũ at level b, namely the subset of critical

points of the restriction of Ũ to the ellipsoid E ,

Cb := {s : Ũ (t∗, s) = b, ∇TŨ (t∗, s) = 0}. (4.26)

�

Remark 4.21. When U is homogeneous, as in the classical Keplerian potential, then Ũ

is simply the restriction of U on E and Theorem 4.20 asserts that the angular component

s of the motion tends to a set of central configurations. �

Proof. Since in (a) of Theorem 4.18 we have already proved that limt→t∗ Ũ (t , s(t )) = b, it

remains to show that

lim
t→(t∗)−

|∇TŨ (t , s(t ))| = 0,

that, using condition (U4)h, is equivalent to

lim
t→(t∗)−

rα+1|∇TU (t , rs)| = 0.
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We now consider the Euler–Lagrange equation (2.6)2 multiplied by rα,

−2rα+1ṙṡ − rα+2s̈ + rα+1∇TU (t , rs) = rα+2|ṡ|2s;

since rα+1ṙṡ = rα/2+1ṙrα/2ṡ is the product of a bounded term with an infinitesimal one (see

equation (4.25) and Lemma 4.12), while |rα+2|ṡ|2s| = rα+2|ṡ|2 tends to 0 for equation (4.25),

we claim that

lim
t→(t∗)−

rα+2s̈ = 0. (4.27)

We perform the time rescaling (cf. McGehee’s change of coordinates in 7.1)

τ =
∫ t

t∗−δ

dξ

rα/2+1
, (4.28)

which maps the interval [t∗ − δ, t∗) into [0, +∞) (see Corollary 4.14). If the prime ′ denotes

the derivative with respect to the new variable τ , then equation (4.27) is equivalent to

lim
τ→+∞ s′′(τ ) = 0 (4.29)

and the limit (4.25) reads simply

lim
τ→+∞ |s′(τ )|2 = 0. (4.30)

Suppose now, for the sake of contradiction, that there exists a sequence (τn)n such that

τn → +∞ as n → +∞, and

lim
n→+∞ ∇TŨ (τn, s(τn)) = lim

n→+∞ s′′(τn) = σ

for some σ �= 0. Since the ellipsoid E is compact, up to subsequences, (s(τn))n converges

to some s̄. Furthermore, from Theorem 4.18 we know that Ũ (τn, s(τn)) tends to the finite

limit b as n → +∞, hence (t∗, s̄) is a regular point both for Ũ and for ∇TŨ . We moreover

remark that, since the limit (4.30) holds, for every fixed positive constant h > 0, there

holds

s(τ ) → s̄, uniformly on [τn, τn + h], for every n
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and also

sup
τ∈[τn,τn+h]

|∇TŨ (τ , s(τ )) − σ | → 0 as n → +∞.

We can then compute

s′(τn + h) − s′(τn) =
∫ τn+h

τn

s′′(τ )dτ

=
∫ τn+h

τn

∇TŨ (τ , s(τ ))dτ + o(1)

= hσ + o(1) as n → +∞.

We obtain the contradiction

0 = lim
n→+∞ |s′(τn + h) − s′(τn)| = h|σ | �= 0.

�

4.2 Logarithmic potentials

The aim of this section is to extend the asymptotic estimates of Theorem 4.18 to potentials

with logarithmic singularities. We follow the same scheme and we still work in a left

neighborhood of a total collision instant t∗, (t∗ − δ, t∗). The main differences concern the

monotonicity formulæ (Lemmata 4.24 and 4.25).

In this setting, we suppose the existence of a continuous function

M: (a, b) → [M1, M2] ⊂ (0, +∞) such that Ṁ(t ) is bounded on (t∗ − δ, t∗) (4.31)

and we replace conditions (U2)h and (U3)h with the following.

(U2)l There exist γ > 0 and C2 ≥ 0 such that

∇U (t , x) · x + M(t ) ≥ −C2|x|γ U (t , x),

whenever |x| is small.

(U3)l lim
|x|→0

[U (t , x) + M(t ) log |x|] = Ũ (t , s), uniformly for s ∈ E \ � and for t in compact sub-

sets of (a, b),

where Ũ , as in the quasi-homogeneous case, is of class C1 on (a, b) × (E��) and verifies

equation (4.2).

Remark 4.22. (U2)l implies (U2) (for small value of |x|) for every α̃ ∈ (0, 2). �
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Remark 4.23. From Corollary 3.3 and assumption (U3)l, it follows that the positive

function −M(t ) log |x| + Ũ (t , s) is integrable in a neighborhood of a total collision at the

origin. Furthermore, thanks to the positivity of Ũ (cf. equation (4.2)), we have that also

log |x| is integrable in such a neighborhood. �

We now prove the analogue of Lemmata 4.7 and 4.10 in the setting of logarithmic-

type potentials.

Lemma 4.24. Let x̄ be a generalized solution, let t∗ ∈ (a, b] be a total collision instant,

and let δ be given in Theorem 4.2. Let γ be the positive exponent appearing in (U2)l, then

∫ t∗

t∗−δ

−rγ ṙ

r
U (t , rs)dt < +∞. (4.32)

�

Proof. We define the functions

�log(r, s) := 1
2r2|ṡ|2 − [U (t , rs) + M(t ) log r] (4.33)

and

�̃log(r, s) := rγ �log; (4.34)

since

�̃log(r, s) = rγ
[
h(t ) − 1

2 ṙ2 − M(t ) log r
] ≤ rγ h(t ) − rγ M(t ) log r,

then �̃log is bounded above, indeed h is bounded, M is continuous and, since γ > 0,

limr→0 rγ log r = 0. We now proceed exactly as in the proof of Lemma 4.7: we omit here

the approximation arguments and we formally compute the time derivative of �̃log,

d

dt
�̃log(r, s) = γ rγ−1ṙ�log(r, s) + rγ d

dt
�log(r, s).

Using the Euler–Lagrange equation (2.6)2, we obtain

d

dt
�log(r, s) = −rṙ|ṡ|2 − ∂U

∂t
(t , rs) − ṙ

r
∇U (t , rs) · (rs) − Ṁ(t ) log r − M(t )

ṙ

r
.
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From assumptions (U1) and (U2)l, we deduce that

d

dt
�log(r, s) ≥ −rṙ|ṡ|2 − C1(U (t , rs) + 1) + C2rγ ṙ

r
U (t , rs) − Ṁ(t ) log r, (4.35)

and then

d

dt
�̃log(r, s) ≥ −2 − γ

2
rγ+1ṙ|ṡ|2 − γ rγ ṙ

r
U (t , rs) − γ rγ ṙ

r
M(t ) log r

− C1rγ U (t , rs) − C1rγ + C2r2γ ṙ

r
U (t , rs) − Ṁ(t )rγ log r. (4.36)

The first term in equation (4.36) is positive, since equation (4.1) holds; moreover, since r

tends to 0 as t approaches t∗, there exist ε ∈ (0, γ ) and δ0 ∈ (0, δ] such that

−γ rγ ṙ

r
U (t , rs) + C2r2γ ṙ

r
U (t , rs) ≥ −(γ − ε)rγ ṙ

r
U (t , rs) ≥ 0 (4.37)

on (t∗ − δ0, t∗). The remaining terms in equation (4.36) are integrable functions, indeed

the last term Ṁ(t )rγ log r is bounded as r tends to 0 (see equation (4.31)), rγ U ≤ U , and U

is integrable and we have the following estimate:

−γ rγ ṙ

r
M(t ) log r ≥ −γ rγ−1ṙ log r max

t∈[t∗−δ,t∗]
M(t )

and

∫ t∗

t∗−δ

γ rγ−1ṙ log rdt = −rγ

0 log r0 +
∫ t∗

t∗−δ

rγ−1ṙdt = rγ

0

(
− log r0 + 1

γ

)
< +∞,

where r0 = r(t∗ − δ). Hence, the right-hand side of equation (4.36) is the sum of an

integrable function with a positive one; since the �̃log(r, s) is bounded above from

equation (4.37), we have the estimate in equation (4.32). �

Lemma 4.25 (Monotonicity formula). The function �log defined in equation (4.33) is

bounded on [t∗ − δ, t∗]. �

Proof. We consider the expression of the derivative of �log with respect to the time

variable computed in equation (4.35). Using Lemma 4.24, the integrability of the function

U , and Remark 4.23 we deduce the boundedness below (in a left neighborhood of t∗) of the
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function �log being the right-hand side of equation (4.35) the sum of a positive function

with an integrable one.

To prove the boundedness above of �log we cannot use the boundedness of the

energy function, indeed in this case we can just estimate �log(r, s) + M(t ) log r = h(t ) − 1
2 ṙ2.

For the sake of contradiction, suppose that �log diverges to +∞ as t tends to t∗; since

U (t , rs) + M(t ) log r converges uniformly to Ũ (t , s) as t tends to t∗ and Ũ (t , s) is a positive

function, if �log diverges to +∞,

∃t1 ∈ (t∗ − δ, t∗) such that ∀ t ∈ (t1, t∗), r2|ṡ|2 > max
t∈[t∗−δ,t∗]

M(t ). (4.38)

From assumption (4.38) we have

∫ t∗

t∗−δ

− ṙ

r
(r2|ṡ|2 − M(t ))dt

∫ t1

t∗−δ

− ṙ

r
(r2|ṡ|2 − M(t ))dt +

∫ t∗

t1

− ṙ

r
(r2|ṡ|2 − M(t ))dt

≥ constant − lim
t→t∗ log r(t ) = +∞. (4.39)

We now define the function

�log(r, s) := �log(r, s) + M(t ) log r = h(t ) − 1
2 ṙ2

that is bounded above. When we compute its derivative with respect to the time variable,

we obtain the sum of a positive function with an integrable one (we use equation (4.38)

and Lemma 4.24), indeed, as Ṁ is bounded and, asymptotically, U (t , rs) ≥ −M(t ) log r, we

have

d

dt
�log(r, s) = d

dt
�log(r, s) + Ṁ(t ) log r + M(t )

ṙ

r

≥ − ṙ

r
[r2|ṡ|2 − M(t )] − C1(U (t , rs) + 1) + C2rγ ṙ

r
U (t , rs).

We can then conclude the boundedness of �log on the interval [t∗ − δ, t∗] and from the

estimate on its derivative, we have

∫ t∗

t∗−δ

− ṙ

r
(r2|ṡ|2 − M(t ))dt < +∞

that contradicts equation (4.39). We conclude that the function �log is also bounded

above. �
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Corollary 4.26. As t tends to t∗, the limit of the function �log exists finite and

lim
t→(t∗)+

− ṙ2

2 log r
= M0,

where M0 := M(t∗). �

Proof. We argue as in the proof of Corollary 4.17 to show that the function �log has a

finite limit as t tends to t∗. Since �log = h(t ) − 1
2 ṙ2 − M(t ) log r, we conclude dividing by

log r using the boundedness of the function h. �

Theorem 4.27. Let x̄ be a generalized solution for the dynamical system (2.2) and let

t∗ ∈ (a, b) (in the case b < +∞, t∗ can coincide with b) be a total collision instant. Let r, s

be the new variables defined in equation (2.1); if the potential U satisfies assumptions

(U0), (U1), (U2)l, (U3)l, then the following assertions hold:

(a) lim
t→t∗−

[U (t , rs) + M(t ) log r] = − lim
t→t∗−

�log(r, s) = b;

(b) as t tends to t∗,

r(t ) ∼ (t∗ − t )
√

−2M0 log(t∗ − t )

ṙ(t ) ∼ −
√

−2M0 log(t∗ − t );

(c) lim
t→t∗−

|ṡ(t )|(t∗ − t )
√

−2M0 log(t∗ − t ) = 0;

(d) for every real positive sequence (λ)n, such that λn → 0 as n → +∞, we have

lim
n→+∞ |s(t∗ − λn) − s(t∗ − λnt )| = 0, ∀t > 0.

�

Proof. (b) From Corollary 4.26 we deduce that

ṙ(t ) ∼ −
√

−2M0 log r(t ) as t tends to t∗.

We define R(t ) := (t∗ − t )
√−2M0 log(t∗ − t ) and we remark that, as t tends to t∗,

− log R(t ) = − log(t∗ − t ) − log(
√

−2M0 log(t∗ − t )) ∼ − log(t∗ − t )
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and

Ṙ(t ) = −
√

−2M0 log(t∗ − t ) + M0√−2M0 log(t∗ − t )
∼ −

√
−2M0 log R(t ).

Our aim is then to prove that the function r(t ) is asymptotic to R(t ) as t tends to t∗. We

define the following functions:

f (ξ ) := −
√

−2M0 log ξ and �(ξ ) :=
∫ ξ

0

dη

f (η)
, ξ ∈ (0, 1],

and we remark that �(0) = 0 and � is a strictly decreasing function on [0, 1]. Moreover,

ṙ(t ) ∼ f (r(t )), Ṙ(t ) ∼ f (R(t )) as t tends to t∗,

or equivalently,

lim
t→t∗

d

dt
�(r(t )) = lim

t→t∗

d

dt
�(R(t )) = 1.

Since the function �(ξ ) decreases in ξ and r(t ), R(t ) decrease in t (for small t ’s), we have

that the compositions �(r(t )) and �(R(t )) are negative on (t∗ − δ0, t∗), vanishes at t∗ (since

r(t∗) = R(t∗) = 0) and increasing in the variable t . Furthermore, fixed t̄ < t∗, the following

property holds:

d

dt
�(r(t )) ≤ 1 ≤ d

dt
�(R(t )), ∀t ∈ (t̄ , t∗) ⇒ �(r(t )) ≥ �(R(t )), ∀t ∈ (t̄ , t∗)

⇒ r(t ) ≤ R(t ), ∀t ∈ (t̄ , t∗). (4.40)

For every ε > 0, we consider the functions

R+
ε (t ) := (1 + ε)R(t ),

R−
ε (t ) := (1 − ε)R(t ).

Since Ṙ(t ) ∼ f (R(t )), we deduce that in a left neighborhood of t∗,

Ṙ+
ε (t ) = (1 + ε)Ṙ(t ) ≤

(
1 + ε

2

)
f (R(t )) ≤

(
1 + ε

2

)
f (R+

ε (t )),

Ṙ−
ε (t ) = (1 − ε)Ṙ(t ) ≥

(
1 − ε

2

)
f (R(t )) ≥

(
1 − ε

2

)
f (R−

ε (t )), (4.41)
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indeed

f (R(t )) = −
√

−2M0 log(R(t )) ≤ −
√

−2M0 log(1 + ε) − 2M0 log(R(t )) = f (R+
ε (t )),

and similarly,

f (R(t )) ≥ −
√

−2M0 log(1 − ε) − 2M0 log(R(t )) = f (R−
ε (t )).

From equation (4.41) we then obtain

d

dt
�(R+

ε (t )) ≥ 1 + ε

2
and

d

dt
�(R−

ε (t )) ≤ 1 − ε

2
. (4.42)

Moreover, since ṙ(t ) ∼ f (r(t )), again in a left neighborhood of t∗ we have that

(
1 + ε

2

)
f (r(t )) ≤ ṙ(t ) ≤

(
1 − ε

2

)
f (r(t )) (4.43)

and dividing equation (4.43) by the negative function f (r(t )) and comparing the resulting

inequalities with equation (4.42), we have

d

dt
�(R−

ε (t )) ≤ d

dt
�(r(t )) ≤ d

dt
�(R+

ε (t )).

From equation (4.40) we deduce that, in a neighborhood of the collision instant t∗, the

following chain of inequalities holds:

(1 − ε) ≤ r(t )

R(t )
≤ (1 + ε).

The second estimate follows directly.

(a) Having proved (b), the proof of (a) is essentially the same that the one in Theo-

rem 4.18. Indeed, going back to that proof, we notice that equation (4.19) still holds,

since −ṙ/r ∼ (t∗ − t )−1. Moreover, since −rṙ ∼ −2M0(t∗ − t ) log(t∗ − t ) ≥ (t∗ − t ), also

equation (4.21) is still available.

(c) From the result proved in (a) we have that limt→t∗ r|ṡ| = 0; we conclude using (b).

(d) As in the proof of Theorem 4.18, if t = 1 there is nothing to prove. We then chose

t > 0, t �= 1, a sequence (λn)n, λn → 0 and N, sufficiently large such that λn < δ/ max(1, t ),
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∀n ≥ N. We then obtain

|s(t∗ − λn) − s(t∗ − λnt )| ≤
∫ t∗−λn

t∗−λnt
|ṡ(u)|du

≤
(∫ t∗−λn

t∗−λnt
−r(u)ṙ(u)|ṡ(u)|2du

) 1
2
(∫ t∗−λn

t∗−λnt
− du

r(u)ṙ(u)

) 1
2

.

The boundedness of the �log and the estimate on its derivative in equation (4.35) imply

the boundedness of the integral
∫ t∗

0 rṙ|ṡ|2 and then

lim
n→+∞

∫ t∗−λn

t∗−λnt
−r(u)ṙ(u)|ṡ(u)|2du = 0,

Moreover, as n tends to +∞, from (b) and (c) we have r(u)ṙ(u) ∼ −2M0(t∗ − u) log(t∗ − u),

hence

lim
n→+∞

∫ t∗−λn

t∗−λnt

du

r(u)ṙ(u)
= 1

M0
lim

n→+∞ log
log λnt

log λn
= 0.

The proof is now complete. �

The behavior of the angular part is conserved also for logarithmic potential and

the following result can be proved in analogy with Theorem 4.20.

Theorem 4.28. In the same setting of Theorem 4.27, assuming furthermore that the

potential U verifies

(U4)l lim
r→0

r∇TU (t , x) = ∇TŨ (t , s),

then there holds

lim
t→t∗ dist(Cb, s(t )) lim

t→t∗ inf
s̄∈Cb

|s(t ) − s̄| = 0,

where Cb is the central configuration subset defined in equation (4.26). �

Proof. We follow the proof of Theorem 4.20, setting α = 0 and we find that

−2rṙṡ − r2s̈ + r∇TU (t , rs) = r2|ṡ|2s.
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We already know that the right-hand side converges to zero. We claim that

lim
t→(t∗)−

d

dt
(r2ṡ) = 0. (4.44)

Again, we perform the time rescaling

τ =
∫ t

t∗−δ

dξ

r
, (4.45)

which maps the interval [t∗ − δ, t∗) into [0, +∞). If the prime ′ denotes the derivative

with respect to the new variable τ , then equation (4.44) is equivalent to

lim
τ→+∞

1

r
(rs′)′(τ ) = 0 (4.46)

and we know that

lim
τ→+∞ |s′(τ )|2 = 0. (4.47)

Arguing as in the proof of Theorem 4.20, suppose now, for the sake of contradiction, that

there exists a sequence (τn)n such that τn → +∞ as n → +∞ and

lim
n→+∞ ∇TŨ (τn, s(τn)) = lim

n→+∞
1

r
(rs′)′(τn) = σ

for some σ �= 0. We have that, up to subsequences, (s(τn))n converges to some s̄. Further-

more, from Theorem 4.27 we know that Ũ (τn, s(τn)) tends to the finite limit b as n → +∞,

hence (t∗, s̄) is a regular point both for Ũ and for ∇TŨ . We moreover remark that, since

the limit (4.47) holds, for every fixed positive constant h > 0, there holds

s(τ ) → s̄, uniformly on [τn, τn + h], for every n

and also

sup
τ∈[τn,τn+h]

|∇TŨ (τ , s(τ )) − σ | → 0 as n → +∞.
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We can then integrate by parts, obtaining a contradiction

s′(τn + h) − s′(τn) =
∫ τn+h

τn

1

r
(rs′)′(τ )dτ −

∫ τn+h

τn

r′

r
s′(τ )dτ

=
∫ τn+h

τn

∇TŨ (τ , s(τ ))dτ + o(1)

= hσ + o(1) as n → +∞.

Indeed, we have

0 = lim
n→+∞

∫ τn+h

τn

r′

r
s′(τ )dτ = lim

n→+∞

∫ t (τn+h)

t (τn)
rṙṡdt ,

since this last integral converges. �

5 Partial Collisions

This section is devoted to the study of the singularities that are not total collisions at the

origin. At first we shall prove the existence of a limiting configuration for bounded tra-

jectories, that is, the Von Zeipel’s theorem (stated before). This fact allows the reduction

from partial to total collisions through a change of coordinates. To carry on the analy-

sis, we shall extend the clustering argument proposed by McGehee in [36] to prove the

Von Zeipel’s theorem. Before starting, let us remark that, thanks to the energy estimate

of Corollary 3.3, one can easily extend Painlevé’s theorem to the wider class of locally

minimal, or even generalized solutions, using the standard arguments.

Lemma 5.1. Let x̄ be a generalized solution for the dynamical system (2.2) on the

bounded interval (a, b). Suppose that the potential U satisfies assumptions (U0), (U1),

and (U2). Then

lim sup
t→t∗

U (t , x̄(t )) = +∞ ⇒ lim inf
t→t∗ U (t , x̄(t )) = +∞.

�

In order to proceed, we need to introduce some further assumptions on the

potential U and its singular set �. More precisely, we suppose that

� =
⋃

µ∈M
Vµ, (5.1)
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where the Vµ’s are distinct linear subspaces of Rk and M is a finite set; observe that the

set � is a cone, as required before. We endow the family of the Vµ’s with the inclusion

partial ordering and we assume the family to be closed with respect to intersection (thus,

we are assuming that M is a semilattice of linear subspaces of R
k: it is the intersection

semilattice generated by the arrangement of maximal subspaces Vµ’s). With each ξ ∈ �,

we associate

µ(ξ ) = min{µ : ξ ∈ Vµ} i.e. Vµ(ξ ) =
⋂
ξ∈Vµ

Vµ.

Fixed µ ∈ M, we define the set of collision configurations satisfying

�µ = {ξ ∈ � : µ(ξ ) = µ}

and we observe that this is an open subset of Vµ and its closure �µ is Vµ. We also notice

that the map ξ → dim(Vµ(ξ )) is lower semicontinuous.

We denote by pµ the orthogonal projection onto Vµ and we write

x = pµ(x) + wµ(x),

where, of course, wµ = I − pµ.

We assume that near the collision set the potential depends, roughly, only on the

projection orthogonal to the collision set: more precisely, we assume the following.

(U5) For every ξ ∈ �, there is ε > 0 such that

U (t , x) − U (t , ξ + wµ(ξ )(x)) = W(t , x) ∈ C1((a, b) × Bε(ξ ))∩ ∈ W1,∞((a, b) × Bε(ξ )),

where Bε(ξ ) = {x : |x − ξ | < ε}.

Theorem 5.2. Let x̄ be a generalized solution for the dynamical system (2.2) on the

bounded interval (a, b). Suppose that the potential U satisfies assumptions (U0), (U1),

(U5), and (U2)h, (U3)h, (U4)h (or (U2)l, (U3)l, (U4)l).

If x̄ is bounded on the whole interval (a, b), then

(a) x̄ has a finite number of singularities which are collisions (the Von Zeipel’s

theorem holds).
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(b) Furthermore, if t∗ ∈ x̄−1(�) is a collision instant, x∗ the limit configuration of

x̄ as t tends to t∗, and µ∗ = µ(x∗) ∈ M, then rµ∗ = |wµ∗ (x̄)|, sµ∗ = wµ∗ (x̄)/rµ∗ , and

Uµ∗U (t , wµ∗ (x̄)) satisfy the asymptotic estimates given in Theorems 4.18 and

4.20 (or Theorems 4.27 and 4.28 when (U2)l, (U3)l, and (U4)l hold). �

Proof. Let x̄ be a generalized solution with a singularity at t = t∗ (see Definition 2.7)

and �∗ its ω-limit set, that is,

�∗ = {x∗ : ∃(tn)n such that tn → t∗ and x̄(tn) → x∗}.

It is well known that the ω-limit of a bounded trajectory is a compact and connected set.

From the Painlevé’s theorem, we have the inclusion

�∗ ⊂ �.

Von Zeipel’s theorem asserts that whenever x̄ remains bounded as t approaches t∗, then

the ω-limit set of x̄ contains just one element, that is, �∗ = {x∗}.
In view of Corollary 3.3, where we proved the theorem in the case lim inft→t∗ İ (x̄(t ))

< +∞, we are left with the case when

lim
t→t∗ İ (x̄(t )) = +∞.

From this and our assumptions it follows that I (x̄(t )) is a definitely increasing and

bounded function. Hence it admits a limit

lim
t→t∗ I (x̄(t )) = I ∗. (5.2)

We perform the proof of Von Zeipel’s theorem in two steps.

Step 1. We suppose that µ(�∗) = {µ∗} for some µ∗ ∈ M and we show that �∗ = {x∗}.

As �∗ is a compact and connected subset of Vµ∗ , we have the following

inclusions:

�∗ ⊂ �µ∗ ⊂ Vµ∗ .

We consider the orthogonal projections

p(t ) = pµ∗ (x̄(t )), w(t ) = wµ∗ (x̄(t )).
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Since we have assumed that µ(�∗) = {µ∗}, then

lim
t→t∗ w(t ) = 0, (5.3)

our aim is now to prove that

lim
t→t∗ p(t ) = x∗.

Projecting on Vµ∗ the equations of motion, from (U5) we obtain that the following

differential equation holds (in the sense of distributions):

p̈ = pµ∗ (∇U (t , x̄(t ))) = pµ∗ (∇W(t , x̄(t ))), (5.4)

where ∇W is globally bounded as t → t∗. Indeed, fixed ε > 0, there exists δ > 0 such that

x̄(t ) ∈ Bε(�∗) whenever t ∈ (t∗ − δ, t∗), and from assumption (U5) and the compactness of

�∗ ⊂ �µ∗ , we deduce the boundedness of the right-hand side of equation (5.4). From

this fact we easily deduce the existence of a limit for p(t ) as t tends to t∗. A word of

caution must be entered at this point. As x̄ is a generalized solution to equation (2.2), the

equations of motions are not available, because of the possible occurence of collisions,

and therefore they cannot be projected on Vµ∗ . Nevertheless, exploiting the regularization

method exposed in Section 2 and projecting the regularized equations, one can easily

obtain the validity of equation (5.4) after passing to the limit almost everywhere.

Step 2. There always exists µ∗ ∈ M such that µ(�∗) = {µ∗}.

Let µ∗ be the element of µ(�∗) associated with the subspace Vµ∗ having minimal

dimension. Since the function ξ → dim(Vµ(ξ )) is lower semicontinuous, the minimality of

the dimension has as a main implication that �µ∗ ∩ �∗ is compact. Hence, the function

∇W appearing in (U5) can be thought to be globally bounded in a neighborhood of

�µ∗ ∩ �∗. In other words, when considering the orthogonal projections p(t ) = pµ∗ (x̄(t ))

and w(t ) = wµ∗ (x̄(t )), as a major consequence of the minimality of the dimension µ∗, we

find the following implication:

∃M > 0, ∃ε > 0 : |w(t )|2 < ε ⇒ |pµ∗ (∇W(t , x̄))| ≤ M. (5.5)

We now compute the second derivative (with respect to the time t ) of the function |p(t )|2,

d2

dt2
|p(t )|2 = 2 p̈(t ) · p(t ) + 2 ṗ(t ) · ṗ(t ) ≥ 2pµ∗ (∇W(t , x̄(t ))) · p(t ).
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Thus, from the projected motion equation (5.4) and from equation (5.5) we infer

∃K > 0, ∃ε > 0 : |w(t )|2 < ε ⇒ d2

dt2
|p(t )|2 ≥ −K. (5.6)

We now argue by contradiction, supposing that µ(�∗) �= {µ∗}. Then

0 = lim inf
t→t∗ |w(t )|2 < lim sup

t→t∗
|w(t )|2. (5.7)

Since, obviously, the total moment of inertia splits as

I (x̄(t )) = |p(t )|2 + |w(t )|2,

from equations (5.7) and (5.2) we deduce that

I ∗ = lim sup
t→t∗

|p(t )|2 > lim inf
t→t∗ |p(t )|2 (5.8)

and from equation (5.8), together with equation (5.6) we have

∃K > 0, ∃ε > 0 : |p(t )|2 ≥ I ∗ − ε ⇒ d2

dt2
|p(t )|2 ≥ −K.

Let (t0
n)n and (t∗

n)n be two sequences such that, fixed ε > 0,

t∗
n < t0

n < t∗
n+1 ∀n

t0
n → t∗ t∗

n → t∗ as n → +∞
|p(t∗

n)|2 → I ∗ as n → +∞ and
d

dt
(|p(t )|2)|t=t∗

n
= 0, ∀n

t0
n = inf{t > t∗

n : |p(t )|2 ≤ I ∗ − ε}, ∀n.

Hence |p(t0
n)|2 − |p(t∗

n)|2 = d
dt2 |p(ξ )|2(t0

n − t∗
n)2/2 ≥ −K(t0

n − t∗
n)2/2, and then

− ε

2
≥ −K

2

(
t0

n − t∗
n

)2
or

(
t0

n − t∗
n

)2 ≥ ε

K

in contradiction with the assumptions that both sequences (t0
n)n and (t∗

n)n tend to the finite

limit t∗. This concludes the proof of the Von Zeipel’s theorem. Next we prove isolatedness

of collision instants.
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To this aim, let us select a collision instant t∗ such that the dimension of Vµ(x̄(t∗))

is minimal among all dimensions of collision configurations Vµ(x̄(t )) in (t∗ − δ, t∗ + δ) for

some δ > 0. As before, let us split the components of the trajectory x̄(t ) = p(t ) + w(t ) on

Vµ∗ and its orthogonal complement.

Since µ∗ is minimal (see equation (5.5)), we already know from the previous

discussion that the equations of motion projected on the subspace Vµ∗ (equation (5.4))

are not singular; on the other hand, by (U5), the trajectories in the orthogonal coordinates

w are generalized solutions to a dynamical system of the form

−ẅ = ∇U (t , w) + ∇W(t , p(t ) + w). (5.9)

Now, since w(t ) has total collisions at the origin at t∗, we can apply the results of

Section 4. More precisely, at first we deduce from Theorem 4.2 that t∗ is isolated in the

set of collisions �µ∗ ; furthermore, from Corollary 3.3 we deduce the boundedness of the

action and the energy. Finally, we conclude applying Theorems 4.18, 4.20 (or Theorems

4.27, 4.28 when (U2)l, (U3)l, and (U4)l hold) to the projection w. In particular, from (a)

in Theorem 4.18 (or Theorem 4.27) we obtain that every collision is isolated and hence,

whenever the interval (a, b) is finite, the existence of a finite number of collisions. �

6 Absence of Collisions for Locally Minimal Path

As a matter of fact, solutions to the Newtonian n-body problem which are minimizers

for the action are, very likely, free of any collision. This was discovered in [47] for a

class of periodic three-body problems and, since then, widely exploited in the literature

concerning the variational approach to the periodic n-body problem. In general, the

proof goes for the sake of the contradiction and involves the construction of a suitable

variation that lowers the action in presence of a collision. A recent breakthrough in

this direction comes from the averaging method introduced by C. Marchal in [33]. The

method of averaged variations for Newtonian potentials has been exposed in [9], and

then fully proved and extended to α-homogeneous potentials and various constrained

minimization problems in [26]. This argument can be used in most of the known cases to

prove that minimizing trajectories are collisionless. In this section, we prove the absence

of collisions for locally minimal solutions when the potentials have quasi-homogeneous

or logarithmic singularities.

We consider separately the quasi-homogeneous and the logarithmic cases; in-

deed, in the first case one can exploit the blow-up technique as developed in Section 7 of
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[26]; in Section 6.1 we will just recall the main steps of this argument. On the other hand,

when dealing with logarithmic potentials, the blow-up technique is no longer available

and we conclude proving directly some averaging estimates that can be used to show the

nonminimality of large classes of colliding motions.

6.1 Quasi-homogeneous potentials

Let Ũ be the C1 function defined on (a, b) × (E��) introduced previously; we extend its

definition on the whole (a, b) × (Rk
��) in the following way:

Ũ (t , x) = |x|−αŨ (t , x/|x|).

Fixed t∗ (in this section we will consider a locally minimal trajectory x̄ with a collision

at t∗) in this section, with an abuse of notation, we denote

Ũ (x) = Ũ (t∗, x). (6.1)

Of course, the function Ũ is homogeneous of degree −α on Rk��.

Theorem 6.1. In addition to (U0), (U1), (U2)h, (U3)h, (U4)h, (U5), assume that for a given

ξ ∈ �

(U6), there is a 2-dimensional linear subspace of V⊥
µ(ξ ), say W, where Ũ is rotationally

invariant;

(U7)h for every x ∈ R
k and δ ∈ W there holds

Ũ (x + δ) ≤ Ũ

((
Ũ (πW(x))

Ũ (x)

)1/α

πW(x) +
(

Ũ (x)

Ũ (πW(x))

)1/α

δ

)
,

where πW denotes the orthogonal projection onto W; this is the property depicted in

Figure 1;

(U8)h for every y ∈ W⊥ and δ ∈ W \ {0} there holds

Ũ (y + δ) < Ũ (y).

Then generalized solutions do not have collisions at the configuration ξ at the

time t∗. �
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x + δ

x

W

πW (x)

λπW (x) + λ−1δ

λπW (x)

Ũ(x)

Ũ(λπW (x) + λ−1δ)

δ

λ−1δ

Fig. 1. Potential levels, with λ = ( Ũ (πW (x))
Ũ (x)

)1/α > 1

Remark 6.2. Some comments on assumptions (U6),, (U7)h, and (U8)h are in order. Of

course, as our potential Ũ is homogeneous of degree −α, the function

ϕ(x) = Ũ−1/α(x)

is a non-negative, homogeneous of degree 1 function, having now � as a zero set. In

most of our applications, ϕ will be indeed a quadratic form. Assume that ϕ2 splits in the

following way

ϕ2(x) = K|πW(x)|2 + ϕ2(πW⊥ (x))

for some positive constant K. Then (U6),, (U7)h, and (U8)h are satisfied. Indeed, denoting

w = πW(x) and z = x − w we have, for every δ ∈ W,

ϕ2(x + δ) = K|w + δ|2 + ϕ2(z)

= K

∣∣∣∣ ϕ(x)

ϕ(w)
w + ϕ(w)

ϕ(x)
δ

∣∣∣∣
2

+ K
ϕ2(z)

ϕ2(x)
|δ|2

≥ K

∣∣∣∣ ϕ(x)

ϕ(w)
w + ϕ(w)

ϕ(x)
δ

∣∣∣∣
2

= ϕ2

(
ϕ(x)

ϕ(w)
w + ϕ(w)

ϕ(x)
δ

)
,

which is obviously equivalent to (U7)h. Therefore, we have the following proposition. �
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Proposition 6.3. Assume Ũ (x) = Q−α/2(x) for some non-negative quadratic form Q(x) =
〈Ax, x〉. Then assumptions (U6),, (U7)h, and (U8)h are satisfied whenever W is included in

an eigenspace of A associated with a multiple eigenvalue. �

Remark 6.4. Given two potentials satisfying (U6),, (U7)h, and (U8)h for a common sub-

space W, their sum enjoys the same properties. On the other hand, if they do not admit

a common subspace W, their sum does not satisfy (U6),, (U7)h, and (U8)h. �

Proof (Proof or Theorem 6.1). Let x̄(t ) be a generalized solution with a collision at the

time t∗, i.e. x̄(t∗) = ξ ∈ �; up to time translation, we assume that the collision instant is

t∗ = 0. Furthermore, using the same arguments needed in the proof of the Von Zeipel’s

theorem in Section 5, we can suppose that ξ = 0. We consider the case of a boundary

collision (interior collisions can be treated in a similar way). Then Theorem 4.18 ensures

the existence of δ0 > 0 such that no other collision occurs in some interval [0, δ0].

We consider the family of rescaled generalized solutions

x̄λn (t ) := λ
− 2

2+α
n x̄(λnt ), t ∈ [0, δ0/λn],

where λn → 0 as n → +∞. From the asymptotic estimates of Theorem 4.20 we know that

the angular part (s(λn))n converges, up to subsequences, to some central configuration s̄,

in particular s̄ is in the ω-limit of s(t ).

For any s̄ in the ω-limit of s(t ), a (right) blowup of x̄ in t = 0 is a path defined, for

t ∈ [0, +∞), as

q̄(t ) := ζ t
2

2+α , ζ = Ks̄, (6.2)

where the constant K > 0 is determined by part (b) of Theorem 4.18. We note that the

blowup is a homothetic solution to the dynamical system associated with the homoge-

neous potential Ũ and that it has zero energy (the blowup is parabolic). If s(λn) → s̄ as

n → +∞, from Theorem 4.18, we obtain straightforwardly the pointwise convergence

of x̄λn to the blowup q̄ and the H1-boundedness of x̄λn implies its uniform conver-

gence on compact subsets of [0, +∞). Furthermore, the convergence holds locally in

the H1([0, +∞))-topology. Finally, also the sequence ˙̄x
λn converges uniformly on every

interval [ε, T ], with arbitrary 0 < ε < T .

The following fact has been proven in [26, Proposition 7.9].
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Lemma 6.5. Let x̄ be a locally minimizing trajectory with a total collision at t = 0 and

let q̄ be its blowup in t = 0. Then q̄ is a locally minimizing trajectory for the dynamical

system associated with the homogeneous potential Ũ introduced in equation (6.1). �

We will conclude the proof showing that q̄ cannot be a locally minimizing tra-

jectory for the dynamical system associated with Ũ . Following [26], we now introduce a

class of suitable variations as follows.

Definition 6.6. The standard variation associated with δ ∈ R
k
�{0} is defined as

vδ(t ) =

⎧⎪⎪⎨
⎪⎪⎩

δ if 0 ≤ |t | ≤ T − |δ|
(T − t ) δ

|δ| if T − |δ| ≤ |t | ≤ T

0 if |t | ≥ T ,

for some positive T . �

We wish to estimate the action differential corresponding to a standard variation.

To this aim, we give the next definition.

Definition 6.7. The displacement potential differential associated with δ ∈ R
k is defined

as

S(ζ , δ) =
∫ +∞

0
(Ũ (ζ t2/(2+α) + δ) − Ũ (ζ t2/(2+α)))dt ,

where q̄(t ) = ζ t2/(2+α) is a blowup of x̄ in t = 0. �

The quantity S(ζ , δ) represents the potential differential needed for displacing

the colliding trajectory originarily traveling along the ζ -direction to the point δ. It has

been proven in [26, proposition 9.2], that the function S represents the limiting behavior,

as δ → 0, of the whole action differential

�Aδ :=
∫ +∞

−∞
[K( ˙̄q + v̇δ) + Ũ (q̄ + vδ) − K( ˙̄q) − Ũ (q̄)]dt.

Indeed, the fundamental estimate holds.
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Lemma 6.8. Let q̄ = ζ t2/(2+α) be a blowup trajectory and vδ any standard variation. Then

as δ → 0,

�Aδ = |δ|1−α/2S
(

ζ ,
δ

|δ|
)

+ O(|δ|).
�

We observe that, from the homogeneity of Ũ it follows that

S(λξ , µδ) = |λ|−1−α/2|µ|1−α/2S(ξ , δ) (6.3)

(see [26, (8.2)]) and hence, if Ũ is invariant under rotations, the sign of S depends only on

the angle between ξ and δ. To deal with the isotropic case (which is not the case here),

the following function was introduced in [26]:

�α(ϑ ) =
∫ +∞

0

1(
t

4
α+2 − 2 cos ϑt

2
α+2 + 1

)α/2 − 1

t
2α

α+2

dt.

The value of �α(ϑ ) ranges from positive to negative values, depending on ϑ and α. Never-

theless, it is always negative, when averaged on a circle. Indeed, the following inequality

was obtained in [26, Theorem 8.4].

Lemma 6.9. For any α ∈ (0, 2) there holds

1

2π

∫ 2π

0
�α(ϑ )dϑ < 0.

�

This inequality will be a key tool in proving the following averaged estimate.

Lemma 6.10. Assume (U6),, (U7)h, and (U8)h, then, if S is the unitary circle of W, for any

ζ ∈ R
k
�{0} the following inequality holds:

∫
S

S(ζ , δ)dδ < 0.

As a consequence,

∀ζ ∈ R
k
�{0} ∃δ = δ(ζ ) ∈ S : S(ζ , δ(ζ )) < 0.

�
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Proof. As a first obvious application of Lemma 6.9, we obtain the assertion for any

ζ ∈ W�{0}. Indeed, by equation (6.3) and (U6), we easily obtain

ζ ∈ W�{0} =⇒ S(ζ , δ) = K|ζ |−1−α/2�α(ϑ ),

where K is a positive constant and ϑ denotes the angle between ζ and δ.

Now we prove the assertion for any ζ �= 0 in the configuration space. When

πW(ζ ) = 0, the assertion obviously follows from (U8)h. It follows from the homogeneity of

Ũ that, if πW(ζ ) �= 0,

Ũ

((
Ũ (πW(ζ ))

Ũ (ζ )

)1/α

πW(ζ )

)
= Ũ (ζ ).

Hence (U7)h implies, for every δ ∈ S,

S(ζ , δ) ≤ S

((
Ũ (πW(ζ ))

Ũ (ζ )

)1/α

πW(ζ ),
(

Ũ (ζ )

Ũ (πW(ζ ))

)1/α

δ

)
.

Hence equation (6.3) implies

S(ζ , δ) ≤
(

Ũ (ζ )

Ũ (πW(ζ ))

)2/α

S(πW(ζ ), δ),

and thus

∫
S

S(ζ , δ) dδ ≤
(

Ũ (ζ )

Ũ (πW(ζ ))

)2/α ∫
S

S(πW(ζ , δ)) dδ < 0.

�

End of the Proof of Theorem 6.1. To conclude the proof, according to Lemma 6.10

we chose δ = δ(ζ ) ∈ W�{0} with the property that S(ζ , δ(ζ )/|δ(ζ )|) < 0. As a consequence

of Lemma 6.8, we can lower the value of the action of q̄ by performing the stan-

dard variation vδ(ζ ), provided the norm of |δ(ζ )| is sufficiently small (in order to apply

Lemma 6.8). Hence q̄ cannot be locally minimizing for the action. �

As we have already noticed, the class of potentials satisfying (U6), and (U7)h

is not stable with respect to the sum of potentials. In order to deal with a class of

potentials which is closed with respect to the sum, we introduce the following variant of

Theorem 6.1.
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Theorem 6.11. In addition to (U0), (U1), (U2)h, (U3)h, (U4)h, (U5), assume that Ũ has the

form

Ũ (x) =
N∑

ν=1

Kν

(dist(x, Vν ))α
,

where Kν are positive constants and Vν is a family of linear subspaces, with codim(Vν ) ≥ 2,

for every ν = 1, . . . , N. Then locally minimizing trajectories do not have collisions at the

time t∗. �

Proof. Following the arguments of the proof of Theorem 6.1, the assertion will be proved

once we show, as in Lemma 6.10, that for every index ν there holds

∫
Sk−1

Sν (ζ , δ) dδ < 0,

where, of course, we denote

Sν (ζ , δ) =
∫ +∞

0

(
dist(ζ t2/(2+α) + δ, Vν )−α − dist(ζ t2/(2+α), Vν )−α

)
dt

and S
k−1 is the unit sphere of the configuration space R

k. This is an elementary conse-

quence of Lemma 6.10 and the fact that the function Sν (ζ , δ) only depends on the projection

of ζ orthogonal to Vµ and has rotational invariance on V⊥
ν . Thus, the integral of Sν over

the sphere is a positive multiple of its integral on any circle S orthogonal to Vν . �

6.2 Logarithmic-type potentials

In this section, we prove the equivalents to Theorems 6.1 and 6.11 suitable for

logarithmic-type potentials. Concerning the quasi-homogeneous case, we have seen that

a crucial role is played by the construction of a blow-up function which minimizes a

limiting problem. Before starting, let us highlight the reasons why, when dealing with

logarithmic potentials, a blow-up limit cannot exist. Indeed, the natural scaling should

be x̄λn (t ) := λ−1
n x̄(λnt ), which does not converge, since

lim
λn→0

x̄λn (t ) = lim
λn→0

r(λnt )s(λnt )

λnt
√−2M(0) log(λnt )

t
√

−2M(0) log(λnt ) = +∞
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for every t > 0. On the other hand looking at equation (6.2), the (right) blowup should be,

up to a change of time scale,

q̄(t ) := ts̄, i ∈ k, (6.4)

where s̄ is a central configuration for the system limit of a sequence s(λn), where (λn)n is

such that λn → 0. The blow-up function defined in equation (6.4) is the pointwise limit

of the normalized sequence

x̄λn (t ) := 1

λn

√−2M(0) log λn

x̄(λnt ).

Unfortunately, the path in equation (6.4) is not locally minimal for the limiting prob-

lem, indeed since, the sequence ( ¨̄x
λn )n converges to 0 as n tends to +∞, the blowup in

equation (6.4) minimizes only the kinetic part of the action functional.

We shall overcome this difficulty by proving the averaged estimate in a direct

way from the asymptotic estimates of Theorem 4.27 and assuming equation (6.6) on the

potential U . As we have done for the quasi-homogeneous case, we extend the function

Ũ , introduced in assumption (U3)l, to the whole (a, b) × R
k
�� in the natural way

Ũ (t , x) = Ũ (t , s) − M(t ) log |x|, (6.5)

where M has been introduced in equation (4.31).

Theorem 6.12. In addition to (U0), (U1), (U2)l, (U3)l, (U4)l, (U5), assume the potential U

to be of the form

U (t , x) = Ũ (t , x) + W(t , x), (6.6)

where Ũ satisfies equation (6.5) and W is a bounded C1 function on (a, b) × R
k. Further-

more, assume that, for a given ξ ∈ � , Ũ satisfies (U6), and

(U7)l for every x ∈ R
k and t ∈ (a, b) there holds

Ũ (t , x) = − 1
2 M(t ) log(|πWx|2 + ψ2(πW⊥ x)),
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where πW and πW⊥ denote the orthogonal projections onto W and W⊥, ψ is C1 and homo-

geneous of degree 1.

Then locally minimizing trajectories do not have collisions at the configuration ξ at the

time t∗. �

Proof. As in the proof of Theorem 6.1, we consider a generalized solution x̄ and we first

reduce to the case of an isolated total collision at the origin occurring at the time t = 0.

From Theorem 4.27 we deduce the existence of δ0 > 0 such that no other collision occurs

in [−δ0, δ0], hence we perform a local variation on the trajectory of x̄ that removes the

collision and makes the action decrease.

Consider now the standard variation vδ, defined previously, on the interval [0, δ0]

(i.e. in Definition 6.6 T is replaced by δ0). Let �δA denote the difference

�δA : A(x̄ + vδ, [0, δ0]) − A(x̄, [0, δ0]);

generally speaking, this difference can be positive or negative, depending on the choice

of δ. Our goal is to prove that, when averaging over a suitable set of standard variations,

the action lowers. Hence �δA must be negative for at least one choice of δ and the path

x̄ cannot be a local minimizer for the action.

We can write �δA as the sum of three terms

�δA =
∫ δ0

0
�δK(t ) dt +

∫ δ0

0
�δU (t ) dt +

∫ δ0

0
�δW(t ) dt , (6.7)

where �δK(t ), �δU (t ), and �δW(t ) are, respectively, the variations of the kinetic energy, of

the singular potential Ũ , and of the smooth part of the potential, W. More precisely, since

the first derivative of the function vδ vanishes everywhere on [0, δ0], except on [δ0 − |δ|, δ0],

we compute

�δK(t ) :

⎧⎨
⎩

0, if t ∈ [0, δ0 − |δ|],
1

2
(| ˙̄x − δ/|δ||2 − | ˙̄x|2) if t ∈ [δ0 − |δ|, δ0].

(6.8)

Similarly,

�δU (t ) := Ũ (t , x̄ + vδ) − Ũ (t , x̄) and �δW(t ) := W(t , x̄ + vδ) − W(t , x̄). �
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We now evaluate separately the mean values of the tree terms of �δA over the circle S|δ|

of radius |δ| in W.

Lemma 6.13. There holds

1

2π |δ|
∫

S|δ|

∫ δ0

0
(�δK + �δW) dt dδ = O(|δ|). (6.9)

�

Proof. From equation (6.8) we obtain

∫ δ0

0
�δK(t )dt

∫ δ0

δ0−|δ|

1

2
(| ˙̄x − δ/|δ||2 − | ˙̄x|2)dt = 1

2

(
|δ| − 2

∫ δ0

δ0−|δ|
˙̄x(t ) · δ

|δ|dt
)

,

hence

∣∣∣∣
∫ δ0

0
�δK(t )dt

∣∣∣∣ ≤ O(|δ|),

which does not depend on the circle S|δ| where δ varies. Concerning the variation of the

C1 function W, we have

∣∣∣∣
∫ δ0

0
�δW(t ) dt

∣∣∣∣
∣∣∣∣
∫ δ0−|δ|

0
�δW(t ) dt

∣∣∣∣ +
∣∣∣∣
∫ δ0

δ0−|δ|
�δW(t )

∣∣∣∣ dt ≤ W1|δ|(δ0 − |δ|) + 2W2|δ| = O(|δ|),

where W1 is a bound for | ∂W
∂x (t , x̄ + λvδ)|, with λ ∈ [0, 1] and t ∈ [0, δ0 − |δ|], while W2 is an

upper bound for |W(t , x)|. �

In order to estimate the variation of the potential part, �δU (t ), we prove the next

two technical lemmata. Let us start with recalling an equivalent version of the mean

value property for the fundamental solution of the planar Laplace equation.

Lemma 6.14. Fixed z > 0, for every y ∈ R such that y ≥ 2z, we have

1

2π

∫ 2π

0
log(y + 2z cos ϑ ) dϑ log

y +
√

y2 − 4z2

2
.

�
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Proof. Since y ≥ 2z, then
y+

√
y2−4z2

2 ≥ z. Let x ∈ R2 be such that |x| = y+
√

y2−4z2

2 , then

y = (|x|2 + z2)/|x| and for every δ ∈ Sz, where Sz is the circle of radius z, we have

|x + δ|2 = |x|2 + z2 + 2z|x| cos ϑ

= |x|
( |x|2 + z2

|x| + 2z cos ϑ

)
= |x|(y + 2z cos ϑ ).

We have, as the logarithm is the fundamental solution to the Laplace equation on the

plane,

1

2πz

∫
Sz

log |x + δ|2 dδ = max{log |x|2, log z2} =
{

log |x|2, if |x| > z

log z2, if |x| ≤ z.
(6.10)

Consequently, when computing

∫
Sz

log |x + δ|2dδ =
∫

Sz
log |x|dδ + z

∫ 2π

0
log(y + 2z cos ϑ )dϑ

= 2πz log |x| + z
∫ 2π

0
log(y + 2z cos ϑ )dϑ ,

we find

2πz log |x|2 = 2πz log |x| + z
∫ 2π

0
log(y + 2z cos ϑ )dϑ.

We conclude replacing |x| = y+
√

y2−4z2

2 . �

Now we consider the averages of the potential with respect to a circle in W (here

we assume implicitly that d ≥ 3).

Lemma 6.15. Fixed |δ| > 0, for every circle of radius |δ|, S|δ| ⊂ W, for every x ∈ Rd , and

every t ∈ [0, δ0], there holds

1

2π |δ|
∫

S|δ|
(Ũ (x + δ) − Ũ (x))dδ ≤

⎧⎪⎨
⎪⎩

0 (if |πWx|2 + ψ2(πW⊥ x) > |δ|2),

M(t )

2
log(|πWx|2 + ψ2(πW⊥ x)) − log(|δ|2) (otherwise).

�
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Proof. We consider the orthogonal decomposition of x, x = πWx + πW⊥ x, and we term

u := |πWx| and ε := ψ (πW⊥ x). Since whenever δ ∈ W, we have

|πW(x + δ)|2 + ψ2(πW⊥ x) = u2 + |δ|2 + 2u|δ| cos ϑ + ε2 ≥ 0,

when cos ϑ = −1, we have u2+|δ|2+ε2

u|δ| ≥ 2 and, using Lemma 6.14 and equation (6.10), we

compute

1

2π |δ|
∫

S|δ|
log(|πW(x + δ)|2 + ψ2(πW⊥ x)) dδ

= 1

2π

∫ 2π

0
log(u2 + ε2 + |δ|2 + 2u|δ| cos ϑ ) dϑ

= 1

2π

∫ 2π

0
log

(
u2 + ε2 + |δ|2

u|δ| + 2 cos ϑ

)
dϑ + log(u|δ|)

= log

(
u2 + ε2 + |δ|2 +

√
(u2 + ε2 + |δ|2)2 − 4u2|δ|2

2

)

≥ log

(
u2 + ε2 + |δ|2 +

√
(u2 + ε2 + |δ|2)2 − 4u2|δ|2 − 4ε2|δ|2

2

)

= log
(

u2 + ε2 + |δ|2 + |u2 + ε2 − |δ|2|
2

)
= max(log(|πWx|2 + ψ2(πW⊥ x), log(|δ|2)),

and the assertion easily follows. �

Lemma 6.16. Let S be the circle of radius |δ| on W; then as |δ| → 0,

1

2π |δ|
∫

S|δ|

∫ δ0

0
�δU dt dδ < −K|δ|

√
− log |δ|, K > 0. (6.11)

�

Proof. Let S|δ| be the circle of radius |δ| on W, we apply Fubini–Tonelli’s theorem and

we argue as in the proof of Lemma 6.15 to have

1

2π |δ|
∫

S|δ|

∫ δ0

0
�δU (t )dt dδ =

∫ δ0

0

1

2π |δ|
∫

S|δ|
Ũ (x̄ + vδ) − Ũ (x̄) dδdt

= M∗

2

∫ δ0

0
{−max[log(|πWx̄|2 + ψ2(πW⊥ x̄)), log |vδ|2]

+ log(|πWx̄|2 + ψ2(πW⊥ x̄))}dt ,
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where M∗ = maxt |M(t )|. We then straightforwardly deduce that, for every S|δ| ⊂ W,

1

2π |δ|
∫

S|δ|

∫ δ0

0
�δU (t )dt dδ < 0.

In order to estimate more precisely this quantity, we observe that

∫ δ0

0

1

2π |vδ|
∫

S|vδ |
Ũ (x̄ + vδ) − Ũ (x̄) dδdt ≤

∫
A

log
|πWx̄|2 + ψ2(πW⊥ x̄)

|δ|2 dt , (6.12)

where

A := {t ∈ [0, δ0 − |δ|] : |πWx̄|2 + ψ2(πW⊥ x̄) < |δ|2}.

Furthermore, there exists a strictly positive constant C such that

Cr2 < |πWx|2 + ψ2(πW⊥ x) < C −1r2,

where, as usual, we denote r2 = |πWx|2 + |πW⊥ x|2 the radius of x. The left inequality

follows from Theorem 4.27. Indeed, the existence of a finite limit of Ũ (t , s(t )) prevents the

projection |πWx|2 and the function ψ2(πW⊥ x) to be both infinitesimal with r2. The right

inequality follows from the continuity of ψ . From equation (6.12) and the asymptotic

estimates of Theorem 4.27, we conclude that as |δ| → 0,

1

2π |δ|
∫

S|δ|

∫ δ0

0
�δU (t )dt dδ ≤

∫
t :r(t )<|δ|/√C

log
r2(t )

C |δ|2 dt

∼
∫ |δ|/√C

0
2

log(r/
√

C |δ|)
−√− log r

dr

< −2
∫ |δ|/√C

0

√
− log rdr < −K|δ|

√
− log |δ|

for some positive K, since −√− log r is an increasing function on the interval [0, |δ|]. �

End of the Proof of Theorem 6.1. Let S|δ| be a circle in W with radius |δ| and �δA the

variation of the action functional defined in equation (6.7), then from Lemmata 6.13 and

6.16, we conclude that as |δ| tends to 0,

1

2π |δ|
∫

S|δ|
�δAdδ ≤ O(|δ|) − K|δ|

√
− log |δ| < 0.

�

Of course, similar to Theorem 6.11, there holds the following theorem.
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Theorem 6.17. In addition to (U0), (U1), (U2)l, (U3)l, (U4)l, (U5), assume Ũ be of the form

Ũ (x) = −
N∑

ν=1

Kν log(dist(x, Vν )),

where Kν are positive constants and Vν is a family of linear subspaces, with codim(Vν ) ≥ 2,

for every ν = 1, . . . , N. Then locally minimizing trajectories do not have collisions at the

time t∗. �

6.3 Neumann boundary conditions and G-equivariant minimizers

As a final comment of this section, we remark that, in our framework, the analysis allows

to prove that minimizers to the fixed-ends (Bolza) problems are free of collisions: indeed,

all the variations of our class have compact support. However, other type of boundary

conditions (generalized Neumann) can be treated in the same way. Indeed, consider

a trajectory which is a (local) minimizer of the action among all paths satisfying the

boundary conditions

x(0) ∈ X0 x(T ) ∈ X1,

where X0 and X1 are two given linear subspaces of the configuration space. Consider

a (locally) minimizing path x̄: of course it does not have interior collisions. In order to

exclude boundary collisions, we have to be sure that the class of variations preserve the

boundary condition; this can be achieved by restricting to Xi the points δ appearing in the

standard variations. Hence, to complete the averaging argument, one needs assumptions

(U6), and (U7)h or (U7)l to be fulfiled also by the restriction of the potential to the boundary

subspaces Xi.

The analysis of boundary conditions was a key point in the paper [26], were sym-

metric periodic trajectories were constructed by reflections about given subspaces. By

Theorems 6.1 and 6.12 one can obtain the absence of collisions also for G-equivariant

(local) minimizers, provided the group G satisfies the Rotating Circle Property intro-

duced in [26] (see Example 7.6). Hence, existence of G-equivariant collisionless periodic

solutions can be proved for the wide class of symmetry groups described in [4, 25, 26],

for a much larger class of interacting potentials, including quasi-homogeneous and log-

arithmic ones. On the other hand, Theorems 6.11 and 6.17 can be applied to prove that

G-equivariant minimizers are collisionless for many relevant symmetry groups violating

the rotating circle property, such as the groups of rotations in [24]; indeed, the idea of
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averaging on spheres having maximal dimension has been borrowed from that paper (cf.

Example 7.7).

7 Examples and Further Remarks

We now discuss various examples of classes of potentials which fullfil our assumptions.

Example 7.1 (Homogeneous isotropic potentials). The simplest example of a function

satisfying all our assumptions (U0), (U1), (U2)h, (U3)h, (U4)h, (U5), (U6),, (U7)h, and (U8)h is

the α-homogeneous one-center problem

Uα(x) = 1

|x|α ,

and its associated n-body problem

Uα(x) =
n∑

i< j
i, j=1

mimj

|xi − xj|α .

Assumptions (U0) and (U1) are trivially satisfied, since U is positive, diverges to +∞
when x approaches � = {x ∈ Rnd : xi = xj for some i �= j}, and does not depend on time.

Furthermore, in both (U2) and (U2)h the equality is achieved with α̃ = α and C2 = 0.

Since U is homogeneous of degree −α, in (U3)h and (U4)h the function Ũ coincides

with U . (U5) and (U6), are trivially satisfied, while (U7)h and (U8)h hold by virtue of

Proposition 6.3. �

Example 7.2 (Logarithmic potentials). Our results also apply to logarithmic singular-

ities of type

Ulog(x) =
n∑

i< j
i, j=1

mimj log
1

|xi − xj| ;

indeed, (U2) is in this case satisfied for every value of α̃ and (U2)l, (U3)l, and (U4)l are

verified with C2 = 0.

Dynamical systems of type (2.2) with logarithmic interactions arise in the study

of vortex flows in fluid mechanics, and, precisely, in the analysis of systems of n

almost-parallel vortex filaments, under a linearized version of the LIA self-interaction

assumption (see [29, 30]). �
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Example 7.3 (Anisotropic n-body potentials). Consider the potentials having the form

U (t , x) =
n∑

i> j
i, j=1

Ui, j(t , xi − xj),

where the interaction potentials Ui, j have a singularity at zero, of homogeneous or loga-

rithmic type, but do depend on the angle. Typical examples are the Gutzwiller potentials

[28]. Notice that the total potential satisfies assumptions (U0), (U1), and (U2)h, (U3)h, (U4)h

(or (U2)l, (U3)l, (U4)l) provided each of the Ui, j’s does. It not difficult to see that also

equation (5.1) and (U5) hold (in the n-body case), while (U6),, (U7)h, and (U8)h or (U7)l do

not. Hence, we cannot exclude the presence of collisions for locally minimizing paths,

though the results about isolatedness and the asymptotic estimates are still available.

More generally, we can deal with potentials of the form

Uα(rs) = r−αŨ (s),

where Ũ : E \ � → R is positive and admits an arbitrary singular set on the ellipsoid

E = {I = 1}, provided

lim
s→�

Ũ (s) = +∞.

It is worthwhile noticing that as a consequence of Theorem 4.18, a total collision trajec-

tory will not interact, definitively, with the singularities of Ũ . �

The class of potentials satisfying our assumptions is clearly stable with respect

to the addition of arbitrary perturbations of class C1. Therefore, we are mainly interested

in the analysis of those perturbations that are singular themselves.

Example 7.4 (N-body potentials with time-varying masses). Although the potentials

in the previous examples do not depend on time, our assumptions allow an effective

time-dependence of the potentials. For instance, we can choose positive and bounded C1

functions mi(t ), i = 1, . . . , n.

Obviously, the simplest example is the class of α-homogeneous n-body problem

Uα(t , x) =
n∑

i> j
i, j=1

mi(t )mj(t )

|xi − xj|α , 0 < α < 2.
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Assumptions (U0) and (U1) are trivially satisfied, since U is positive, diverges to +∞
when x approaches � = {x ∈ R

nd : xi = xj for some i �= j}, and does not depend on time.

Furthermore, in both (U2) and (U2)h the equality is achieved with α̃ = α and C2 = 0. Since

U is homogeneous of degree −α, in (U3)h and (U4)h the function Ũ coincides with U . �

Example 7.5 (Quasi-homogeneous potentials). We can also handle homogeneous per-

turbations of degree −β of the potential Uα,

U (x) = Uα(x) + λUβ (x)0 < β < α < 2.

Indeed, when λ > 0 the condition (U2)h is verified (with the strict inequality) with γ =
C2 = 0, while, when λ < 0, then (U2) holds, when |x| is sufficiently small, with C2 = α − β

and 0 < γ < α − β.

As pointed out in [18] (where the case β = 1 and α > 1 was treated), quasi-

homogeneous potentials generalize classical potentials, such as Newton, Coulomb,

Birkhoff, Manev, and many others. Therefore, the range of physical applications of

quasi-homogeneous potentials spans from celestial mechanics and atomic physics to

chemistry and crystallography. It is worthwhile noticing that the collision problem for

quasi-homogeneous potentials exhibit an interesting and peculiar lack of regularity.

Indeed, a classical framework for the study of collisions is given by the McGehee coor-

dinates [35] (here and below we assume, for simplicity of notations, all the masses be

equal to 1),

r = |x| = I 1/2

s = x

r
v = rα/2(y · s)

u = rα/2(y − (y · s)s).

After a reparametrization of the time variable (see (4.28)),

dτ = r−1−α/2dt , (7.1)

the equations of motions become (here ′ denotes differentiation with respect to the new

time variable τ )

r′ = rv,

v′ = α

2
v2 + |u|2 − rα−βλUβ (s) − αUα(s),
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s′ = u,

u′ =
(α

2
− 1

)
vu − |u|2s + rα−βλ(Uβ (s)s − ∇Uβ (s)) + αUα(s)s + ∇Uα(s).

The field depends on r in a nonsmooth manner, unless α − β ≥ 1 (this last condition

was indeed assumed in [18]). Hence, the flow cannot be continuously extended to the

total collision manifold C = {(r, s, v, u) : r = 0, 1
2 (|u|2 + v2) − 2Uα = 0}. Another peculiar

feature of this system is that the monotonicity of the variable v cannot be ensured close

to the collision manifold. As a consequence, the usual analysis of collision and near

collision motions cannot be extended to this case. �

Example 7.6 (N-body potential reduced by a symmetry group satisfying the rotating

circle property). The paper [50] deals with minimal trajectories to the spatial 2N-body

problem under the hip-hop symmetry, where the configuration is constrained at all time

to form a regular antiprism. This problem has three degrees of freedom, and the reduced

potential of a configuration generated by the point of coordinates (u, ζ ) ∈ C × R � R
3

decomposes as

U (u, ζ ) = K(N)

|u|α + U0(u, ζ ),

where

K(N) =
N−1∑
k=1

1

sinα
(

kπ
N

) ,

U0(u, ζ ) =
N∑

k=1

1(
sin2

(
(2k−1)π

2N

)|u|2 + ζ 2
) α

2
.

The first term comes from the interaction among points of the same N-agon and is

singular at simultaneous partial collisions on the ζ -axis. The second term, U0(u, ζ ), comes

from the interaction between the the upper and lower N-agons and is singular only at

the origin. One easily verifies that all the assumptions are satisfied, including, again by

Proposition 6.3, (U6), (U7)h, and (U8)h. �

Example 7.7 (N-body potential reduced by a symmetry group not satisfying the

rotating circle property). Consider the symmetry groups generated by rotations in-

troduced in [24], such as the icosahedral group of order 60 of Example 7.1 in [24]: the

configuration is, at all time, an orbit of a group Y of rotations about given lines in the
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3-dimensional space. When Y is a finite group, the reduced potential takes the form

required in Theorem 6.11 and minimizers can be shown to be free of collision. �
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[16] Diacu, F. “Regularization of partial collisions in the N-body problem.” Differential Integral

Equations 5, no. 1 (1992): 103–36.
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