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follow that O is the envelope of holomorphy of some domain {,CQ? Of
course, this problem is nontrivial only when m> 1.

A final question concerns the bound given in the Main Theorem for the
multiplicity of the map ®. Clearly, we could improve this bound somewhat by
paying closer attention to the geometric details of our constructions, but it is
not clear that any striking improvement is possible. Conceivably the bound
could be lowered to Cm, with C a constant independent of the dimension of the
manifold.
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A MINIMIZING PROPERTY OF KEPLERIAN ORBITS.

By WiLLiam B. Gorpon.

Abstract. It is shown that the periodic elliptical solutions to the Kepler
problem minimize the action integral. Generalizations of this theorem are
obtained for other types of conservative dynamical systems involving potentials
which have infinitely deep wells.
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I. Introduction.

1A. Statement of the Main Result. In this paper it will be shown that the
periodic elliptical solutions to the Kepler problem actually minimize the action
integral of Hamilton. More specifically, we shall prove the following theorem.

Tueorem 1.1. Let P be a fixed but arbitrary positive number, and let
2(P) be the set of all P-periodic “cycles” x=x(t) in the plane E? which are
absolutely continuous, have L* derivatives defined almost everywhere, and
which wind around but do not intersect the origin. (See Section 2B for more
details.) Let @ be the action integral

= ’ 1(:/4\12 1
@(x)—fo {2"‘(”' +Ix(t)l} d (1.1)
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962 WILLIAM B. GORDON.

corresponding to the potential V(x)= —1 /|x|. Then @|Z(P) actually attains its
minimum value at those elliptical P-periodic solutions to the Keplerian equa-

tions of motion,
. =1 x
o)
|| %[

for which P is the minimum period.

(1.2)

Remark. Let x be a periodic orbit with minimum period P, and let y be
an orbit whose minimum period in P/n (n an integer). Then the P-periodic
orbit obtained by repeating y n times has its action integral equal to n@(y),
and as a consequence of Eq. (2.2) below it turns out that n@(y)=n?*>Q(x).
Hence the action_integral is. minimized. at .only..those .P-periodic. solutions. for
which P is the minimum-peried.

1B. Strong vs. Weak Force Systems. In a previous paper {2] we have
considered the problem of minimizing action integrals of the type

@(x)=fop{élx(t)|2— vix(6)])ds,

where V=V (x) is a “potential” corresponding to the conservative dynamical

(1.3)

system

[i==VV(x). (1.4)

It was shown that action integrals of the type (1.3) (and others) satisfy
Cpnditiqn C of Palais and Smale, and hence attain minimum,yalue‘gét squtiohs
to v(l.4),4prou<ided that the potential V satisfies a certain “strong force” (SF)
condition; viz., it was assumed that the potential V has singularities at points S
at which V has infinitely deep wells [V (x)—— oo as x—8], and also that there
exists a function U with infinitely deep wells at S, such that

—V(x)>|VU(x)* ina neighborhood of 8. (SF)

For action integrals of the particular type (L.3) it is also required that V be
“bounded abave. The dimension of the configuration space may be higher than
2, but it is required that any homotopy class of cycles on which € is to be
minimized.must be-"tied”.t0.5 in the sense that no cycle in the class can be
‘continuously moved off to infinity without either crossing S or having its arc
length become infinite. (Similar results are also obtained concerning the prob-
lem of minimizing @ on a class of paths joining two fixed points with a given

time of transit.)

e s e s o | v e i e e e | A i i e o - K e
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The SF condition arises in the following way: Let 6—x°, 0< o <00, be|

{

+

continuous family of cycles which is constructed in such a manner thatpn (5F)

@(x°)}inf @, the infimum being taken over the set of cycles which are homo-
topic to the initial cycle x° (in the configuration space with the set of
singularities of V removed). The SF condition guarantees that the family x° is
bounded away from the set of singularities S. The functional @ also dominates
arc length, so that if 2% is “tied” to S, the family x° will remain in some compact

subset of the domain on which V is regular. Hence by passing to the limit as
0

6—>00, one could expect to obtain a minimizing cycle x® homotopic to x°.

It is easily shown that the SF._condition excludes the gravitational case
V(x)=—|x|~L (Cf. [2, Section 1A]. A function U satisfying (SF) can behave no
worse than |x|!/2 in a neighborhood of the origin, contradicting the requirement
that U (x)—c0 as x —8.) And for-gravitational and other weak force systems one
cannot expect a minimizing family x° to bekbourédéd!aw#}\}; from 8. Hence in
i)assmgtothe limit one might obtain a solution x® which iyp{t_grg)ect_s; S. We shall
call such solutions continued solutions, to distinguish them from the regular

ST ARG R R

solutions which lie in the domain on which V is regular. (This terminology has
nothing to do with “regularizing variables.”)

In general, if V is any negative potential with infinitely deep wells S, then
any P-periodic cycle x"=1x°(t)_tied to S can be continuously deformed into a
minimizing cycle x™ which satisfies (1.4) almost everywhere, but Hwhich,may" be
a 26nﬂnued :sﬁolution of (1.4) if the system is of the weak force type. If x™ is a

_continued solution, @ (x>) exists as a. Lebesgue. iniégtal“évén thoug‘l;'t;hé‘ kmetlc

and potential energies become infinite when x®(¢) crosses S. This proposition
will be formalized in Theorem 4.1 of Part IV, where generalizations of Theorem
1.1 will be discussed. ‘ '

For the Kepler problem the set of all P-periodic continued solutions can be
classified according to a simple scheme, and their action integrals are easily
‘computed, The action integrals of the regular solutions are also known, and it is
easily shown that the action integral of each P-periodic continued solution is
equal to or greater than those of the P-periodic regular solutions. Hence, using
this special property of the Kepler problem, to establish the existence of
minimizing regular orbits one only has to establish the existence of minimizing
orbits which are possibly continued. S

Pihuiehyet 2ottt

2A. The Action Integral for Continued Solutions. It is well known that a
regular solution to (1.2) is periodic if and only if it has negative total energy H
(=1|#2—[1/|x[]), and that the energy H, period P and action @ are function-
ally related. (For generalizations see [1].) In fact, for solutions with minimum

U»htx
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964 WILLIAM B. GORDON.

period P we have
P=(2"%). (= H)™%?, (2.1)
@ =(3m)(27)"/* P13, (2.2)

(These relations are easily obtained by integrating the equations for circular
motion.)

FIGURE 1

FIGURE 2
L

We now wish to describe the continued periodic solutions to (1.2) and
compute their action integrals. The simplest type of continued periodic solution
is the straight line solution indicated in Figure 1. Here a particle initially at rest
at the point Q falls towards the origin, reaching it in time ¢ = P/2. The particle
then reverses course and moves up the line OQ until it reaches the point Q
where it again has zero velocity. We shall call such a solution a leg of period Pi
It has a total energy H= —(0Q)~", and by a straightforward integration of the
equation ;7*—(1/r)=H (=constant) one can easily show that the relations
between H, P and @ are again given by (2.1) and (2.2).

Figure 2 shows a continued solution which consists of two legs of periods
P, and P, the total period of the entire trajectory being P= P, + P, Starting at
rest' at point @), the particle falls towards the origin, where it emerges at an
arbitrary angle as it moves up to Q,, where it attains zero velocity. At Q, the
course is reversed, and the trajectory is terminated at Q,. ’

More generally, a continued P-periodic solution may consist of a finite or a
countably infinite number of legs of period P, the only requirement on the P,
being that P=2P, < 0. ‘
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Lemma 2.1.  Among all the continued solutions of period P, those which
consist of a single leg have the least action &.

Proof. In a P-periodic trajectory consisting of legs with periods P;, each
leg of period P; has an action integral equal to CP/3, where C is the same
constant as occurs in (2.2). Hence, since P=ZXP,, we have

@ = CZP/3= CPY3(P,/P)/* > CPVP5(P,/P)= CP'/.

Since the action @ and period P are related in the same way for regular
orbits and for continued orbits consisting of a single leg, Lemma 2.1 has the
following consequence.

Lemma 22. In order to prove Theorem 1.1 it is sufficient to show that
there exists a possibly continued P-periodic solution x0 with the property that

@ (x°) < @(x) for every x in Z(P).

9B. Function Theoretic Preliminaries. In this section we shall assemble
some well-known facts about Sobolev spaces which are to be used in our proofs.
For references see [5, 6, 7, 9].

For C* P-periodic maps t—x(t) of R into E?,

let ||-]lo || - Il be the corresponding norms, and let H 9 and H! be the comple-
tions of C*([O,P],E?® with respect to H © and H?, respectively. Then H 0is
merely the ordinary space of L? maps, and H' is the Sobolev space of all
absolutely continuous maps t—>x(t) for which [ Pli(t)]?dt <co. It is well known
that the weak topology in the Hilbert space H 1js stronger than the C° topology
(so that the weak H! convergence of maps implies their uniform convergence).

For any functional & on H 1 and for every real number c, let 3°={x€
H'|%(x) < ¢}. Recall that § is lower semi-continuous in some topology if F° is
closed in that topology for every ¢, in which case % is bounded below and
attains its infimum on every subset which is compact with respect to that
topology. Hence,

Lemma 2.3. Let § be a functional which is defined on a subspace X of
H', and suppose that for every real number ¢, ¥ N X is a weakly compact
subset of H'. Then ¥ is bounded below and attains its infimum on X.
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Proof. Since the weak H' topology is Hausdorff, ¥° N X is closed in the
weak H' topology for every c. Hence 3¢ N X is closed in the (relative) weak
topology of X; i.e., ¥|X is lower semi-continuous on X. Fix a real number ¢
such that %° N X is not empty. Then ¥ attains its infimum on %° N X, since
¥ ¢N X is compact in the weak H' topology. But the infimum of F on ¥ °n X
is the infimum of ¥ on X.

III. Proof of Theorem 1.1,

1 3A'. Let 2*=2*(P) be the space of all P-periodic cycles x=x(t) of class
H* which wind around or intersect the origin, and for which @(x) exists as a
Lebesgue integral. We wish to show that @|S* attains its infimum. According
to Lemma 2.3 it suffices to show that @ N X=* is a weakly compact subset of H!
for every real c; i.e., we have to show that for every real ¢,

(i) @ NZ*is bounded in H! norm,
(i) @ NZ*is closed in the weak topology of H.

Proof of (i). From the Cauchy-Schwarz inequality, we have
P

P| |&(t)|%dt

[t

Hence, referring to (1.1), we see that the elements of @ are uniformly bounded
in arc length. And since all the elements of £* wind around or are attached to
the origin, it follows that @ N Z* is bounded in C° norm. But @ also dominates
the second term on the right hand side of the relation [cf. (2.3), (2.4)]

1/2

P
arclength(x) =f [%(t)|dt <
0

eIy = lllg + N1 €15,

and the C° norm (squared) dominates the first term. Hence @ N Z* is bounded
in H! norm.

Proof of (ii). Let {x,} be a sequence in @ N Z* which converges weakly
to some x in H'. Then x= x(t) winds around or intersects the origin, since weak
H' convergence implies C° convergence. We now have to show that @ (x) exists
and that €(x)<c. :

For each n let f, (t)=|x,(t) ™', and let f(t)=|x(#)| . Each f, is of class L',
since @(x,)<oo. This implies that the set of all ¢ for which x,(¢£)=0 has zero
measure. Hence f,(t)—f(t) almost everywhere. Also, [¢f,(t)dt<@(x,)<c.
Hence, from Fatou’s lemma [3, p. 113] it follows that f is of class L' an?l that

fopf(t)dt=fnp[ummff,, (t)]dt<liminffopf"(t)dt. (3.1)
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Now, the weak convergence of the x, to x in the Hilbert space H ! implies
that [|x]|, <limsup||x,|};. Hence

i+ [1£l12 <limsup [|x, 3+ 1,13}
so that the C° convergence of x, to x implies that
12112 <limsup{ | %,/13}- (3.2)
Combining (3.1) and (3.2) we get
@(x) < limsup &(x,) < c.
This completes the proof of (ii).

3B. Let x* be an element of =* at which @|=* attains its infimum. If x*
belongs to == Z(P) (defined in the statement of the theorem), i.e., if x* =x*(f)
never intersects the origin, then the standard calculus of variations argument
shows that x* is a solution to (1.2), which are the Euler-Lagrange equations for
the functional @.

Suppose now that x*=x*(f) intersects the origin at certain times f.
According to Lemma 2.2, to complete the proof in this case it suffices to show
that a* = x*(#) is a continued solution to (1.2).

The set of all ¢ for which x*(¢)5=0 is open. Let [a,b] be any closed interval
in this open set. [This interval is made to be closed so that x*(a)#0 and
x*(b)#0.] Let t—uv(t) be a smooth vector valued map from [a,b] into E? with
v(a)=v(b)=0. Now from the minimizing properties of x* it follows that the
arc y: {x*=x*(t), a< t< b} must minimize the action @ on the space of all
paths y=y(t) of class H I which join x*(a) to x*(b) with time of transit
T=b—a, and which can be continuously deformed into the arc y without
crossing the origin. Hence

___d_ * =
% @(x*+ ev) 0,

e=0

and the usual calculus of variations argument indicates that x*=x*(t) satisfies
the Euler-Lagrange equations (1.2) on the open interval (a,b). (Actually, by
operating in the category of H ! spaces we introduce certain complications into
this classical argument. Namely, the minimizing paths have to be shown to be
sufficiently regular before one can establish that they satisfy the Euler-Lagrange
equations. See [2, Section 7] for a discussion of this point.) Therefore, x* = x*(t)
is a continued solution to (1.2) and the proof is complete.
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IV. Generalizations

4A. Statement of Results. In this section we shall discuss generalizations
to Theorem 1.1 which hold when (i) the configuration space E? is replaced with
a Euclidean space EV of arbitrarily high dimension, (ii) the gravitational
potential is replaced with an arbitrary potential which is bounded above and
has infinitely deep wells, (iii) the problem of minimizing @ on a class of
P-periodic cycles is replaced with the problem of minimizing @ on a class of
paths which join two given points with a given time of transit,

Throughout the remainder of this section it will always be assumed that:

(1) Vs a real valued function which is of class C? everywhere on EY
except on a closed non-empty set of points S where V has infinitely
deep wells; ie., V(x)— — o0 as x—8.

(2) 'V is bounded above. Since the behavior of a conservative dynamical
system is not affected by the addition of an arbitrary constant to its
potential, we might just as well assume that

V<0 on EN—S§, (4.1)

Two P-periodic cycles in EY—$ will be said to be homotopic if they are
homotopic in EN~S§, i.e., if one of them can be continuously deformed into the
other without crossing S. (Similarly, two paths joining two fixed points in EN —§
will be said to be homotopic if they are homotopic in EN—8.) Recall that a
P-periodic cycle v is said to be tied to § if y cannot be continuously moved off
to infinity without either crossing S or having its arc length become infinite.
[See Section 4B(ii) below for examples.] Strictly speaking, this means that for
every ¢ >0 there exists a (possibly empty) compact set K, which contains every
cycle which is homotopic to ¥ and has arc length <.

The proofs of the theorems given below will be sketched in Section 4B.

THEOREM 4.1.  Let P be a fixed positive number, and let Z be a homotopy
class of P-periodic cycles in EN — S which are of class H and which are tied to
S. Let Z* be the intersection of the weak H' closure of = with the set of cycles
x of class H' for which @ (x) exists (as a Lebesgue integral). Then

(4.1a) There exists a cycle x* in =* such that
@(x*)=inf{ @(x)|xeZ*} =inf{@(x)|x€Z}.

(4.1b) x* is a (possibly continued) solution of (1.4). :

(4.1c) If the system (1.4) is SF, then £*=3. Hence there are no con-
tinued solutions to (1.4), and @|Z attains its infimum at some
(regular) P-periodic solution to (1.4).
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Remark. The weak and strong closures of £ in H ! are the same. If the
system is of the weak force type, then =* contains cycles which are attached to

S at one or more points.

Trueorem 42. Let T be a fixed positive number, and let Gy, qy be two (m’)t
necessarily distinct) points in EN—S. Let Q be a homotopy Cl{?SS of paths S;r:
EN —S which are of class H* and join q, to g, with time of t:an.?tt T, and let
be the intersection of the weak (= strong) closure of & in H with the set of all
paths x for which @(x) exists. Then:

(4.2a) There exists a path x* in Q* such that
@ (x*) =inf{ @(x)|x EQ*} =inf{ @(x)|xEL}.

i i i i 1.4).
4.2b) «x* is a (possibly continued) solution of ( o .
E4.2c) If the system (1.4) is SF, then Q* =Q, and the minimizing paths x*
are regular solutions to (1.4).

Turorem 4.3. Let S* and Q* be as above. Then the functionals @|Z*
and @|Q* satisfy Condition C of Palais and Smale.

4B. Discussion and Examples.

(i) To review the main features of our proof of Theorem %.1: In Section 3A
the boundedness condition (4.1) on V ensures that # dominates arc k?ngth%
Hence, for planar systems, @ dominates the C® norm on .afly family o
P-periodic cycles which wind around or are attached to the origin. Moreov:}alr,
the kinetic energy occurs in the integrand of @, so that @ als.o dominates the
H! norm for such a family. Obviously, this property of @ apphe§ as well to ’ E
spaces 2* and ©*. The remainder of the argument in Section 3A, whic
establishes the existence of a minimizing cycle, merely uses ger'lerahtxes ab.o§t
Hilbert spaces and Fatou’s lemma. Hence this argument, with very slight
modifications, also establishes the truth of (4.1a) and (4.2a).

The proofs of (4.1b) and (4.2b) are pretty much stand:fxrd, except that, as
mentioned in Section 3B, the proof of (4.2b) requires certain regularity results
i iscussed in [2, Section 7]. .
Wth}';‘haéepf;ifs of (4.10[) and (4.2c) are given in [2], which is almost exclusively

stems.
devo?(()ir tShSFKZ)Ier problem we were able to assert the. exi.stence of regt(;la(;
minimizing P-periodic cycles because of Lemma 2.2, V\'fhl()h in turn deper'l o;j
on our being able to show that, in this case, the actlon. of every P-periodic
continued solution is equal to or greater than the action of some reguiar
solution. At present we do not know whether or not this property of the Kepler
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system (1.2) extends to weak force systems in general. In fact, even for the
Kepler system we do not know what conditions (if any) might be required on
two points q,,¢, to guarantee the existence of a regular minimizing path joining
these points.

(ii) We shall now give some examples of “cycles tied to §”, and show how
Theorem 4.2 applies to planar n-body gravitational systems. For further details
see [2].

Example 1. (a) For EN=E? and S= {origin}, a cycle in E*—S is tied to §
if and only if it winds around the origin. (b) For EY =E® and S=a straight line,
no cycle can be tied to S. (Any cycle which winds around the line can “slip up”
the line and move off to infinity without changing its arc length.) (c) Let
EV=E? and let S be two intersecting lines. Then a cycle is tied to S if and only
if it winds around both of the lines.

Example 2. Let EN=E and let S be three straight lines which intersect
at the origin. As in Example 1(c), a cycle is tied to S if and only if it winds
around at least two of the lines. Although this example may appear to have
little physical interest, it does provide a good pictorial representation for the
planar 3-body problem (Example 3 below).

Example 3. Consider a planar 3-body problem, i.e., a system of three
mutually attracting particles which are constrained to move in a plane E%. We
assume that V= — oo at collisions. The dimension of the configuration space
can be reduced from 6 to 4 by fixing the centroid of the system at the origin.
The set of singularities (collisions) S can then be identified with the union of
three 2-planes in E* any two of which intersect at precisely one point (the
origin). A cycle is tied to S if and only if it winds around at least two of these
planes. From the pictorial representation of this system provided by Example 2
it is easy to “see” that there is a countability infinite number of homotopy
classes of cycles tied to 8. Hence, if the forces are strong, Theorem 4.1(c)
guarantees the existence of an infinite number of regular P-periodic solutions-
—one for each such homotopy class. On the other hand, if the system is
gravitational or some other kind of weak force system, we must allow the
possibility that each minimizing cycle is continued, and in passing to the limit
2—2X* all the homotopy classes collapse to a single class of cycles which wind
around or are attached to S. In other words, for gravitational and other weak
force systems, Theorem 4.1 only guarantees the existence of one minimizing
P-periodic solution, possibly continued, for each P.

Similar remarks apply to the existence of minimizing periodic solutions to
other planar n-body systems. The condition that the system is planar is required
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to ensure that the collision hyperplanes have codimension 2, which is necessary
for the existence of cycles tied to S.

(iii) Theorem 4.3. Condition C of Palais and Smale permits the application
of the Morse and Lusternik-Schnirelman theories to infinite dimensional mani-
folds. Hence Theorem 4.3 is actually a stronger result than Theorems 4.1 and
4.2, since positive functionals satisfying Condition C are known to attain their
infima [6, 8]. A proof of Theorem 4.3, which will not be given here, can be
obtained by augmenting the arguments in [2] (which hold for SF systems) with
some of the results in Section 3A above.

Remark. As noted in [2], for gravitational systems € does not satisfy
Condition C on = and €, which in this case are open submanifolds of H'. On
the other hand, if the system is SF, then Z=X%* and Q=Q*,
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