
7 Entropy arguments

This section is slightly different from previous ones in that we shall need to develop a little
bit of theory, and only after that will the arguments be very short. However, the theory
consists of a few basic statements, and what really matters is not the proofs of those
statements, but how to use them. To put it another way, I recommend treating those
statements more like axioms than lemmas. To encourage this, I shall do so myself, but
just to give you something to hold on to, which makes some of the axioms more intuitive,
you should think of the entropy H[X] of a discrete random variable X as a real number
that measures the “information content” of X. Roughly speaking, this is how many bits
of information you gain, on average, if you find out the value of X, or equivalently, the
expected number of bits needed to specify X.

7.1 The Khinchin axioms for entropy and some simple conse-
quences

Entropy has the following properties, which are called the Khinchin (or Shannon-Khinchin)
axioms. (I got some of these from a set of lecture notes by Cosma Shalizi, which I recom-
mend for further discussion of the pros and cons of an axiomatic approach.)

0. Normalization. If X takes the values 0 and 1, each with probability 1/2, then
H[X] = 1.

1. Invariance. H[X] depends only on the probability distribution of X. That is, if Y =
f(X) for a function f that is bijective on the values taken by X, then H[Y ] = H[X].

2. Maximality. If X takes at most k distinct values, then H[X] is maximized when X
takes each value with equal probability 1/k.

3. Extensibility. If X is a random variable that takes values in a finite set A and Y is a
random variable that takes values in a set B with A ⊂ B, and if P[X = a] = P[Y = a]
for every a ∈ A (and hence P[Y = b] = 0 for every b ∈ B \ A), then H[Y ] = H[X].

4. Additivity. For any two random variables X and Y , H[X, Y ] = H[X] + H[Y |X],
where

H[Y |X] =
∑
x

P[X = x]H[Y |X = x].

5. Continuity. H[X] depends continuously on the probabilities P[X = x].

Axiom 0 is not really one of Khinchin’s axioms, but the remaining axioms determine H
only up to a multiplicative constant so it is there to fix that constant to a convenient value.
Axioms 1-3 and 5 are rather basic properties of a kind that one might expect, but axiom
4 needs more comment. The quantity H[X, Y ] is simply the entropy (whatever that will
turn out to mean) of the joint random variable (X, Y ). The quantity H[Y |X] is called the
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conditional entropy of Y given X: it is the average entropy of Y given the value of X.
Note that from its definition and the fact that H takes non-negative values (which implies
that H[Y |X = x] is non-negative for each x), it follows that H[Y |X] is non-negative.

We now prove a sequence of lemmas, most of them very simple.

Lemma 7.1. If X and Y are independent, then H[Y |X] = H[Y ] and H[X, Y ] = H[X] +
H[Y ].

Proof. For each x the distribution of Y given that X = x is the same as the distribution of
Y , so H[Y |X = x] = H[Y ] for every x, by the invariance axiom. (The reason that axiom
is needed is that strictly speaking the random variable Y |X = x takes values of the form
(x, y), where y is a value taken by Y .) It follows that

H[Y |X] =
∑
x

P[X = x]H[Y |X = x] =
∑
x

P[X = x]H[Y ] = H[Y ].

The second statement then follows from the additivity axiom.

Lemma 7.2. If X takes just one value, then H[X] = 0.

Proof. H[X,X] = H[X], by the invariance axiom. But X and (X,X) are independent, so
H[X,X] = 2H[X], by Lemma 7.1.

And another.

Lemma 7.3. Let A ⊂ B, let X be uniformly distributed on A, and let Y be uniformly
distributed on B. Then H[X] ≤ H[Y ], with equality if and only if A = B.

Proof. By extensibility, H[X] is not affected if we regard it as taking values in B. The
inequality then follows from the maximality axiom.

Suppose now that |A| = r, |B| = s, and r < s. If r = 1, then the result follows from
Lemma 7.2, the normalization axiom, and what we have just proved.

Otherwise, denote by Xn the An-valued random variable given by n independent copies
of X, and similarly for Y . Then for any n, Lemma 7.1 and induction imply that H[Xn] =
nH[X] and H[Y n] = nH[Y ].

Now choose n such that rn ≤ sn−1. Then |An| ≤ |Bn−1|, so

nH[X] = H[Xn] ≤ H[Y n−1] = (n− 1)H[Y ],

where the inequality follows from what we have just proved (together with the invariance
axiom). Since H[X] ≥ 1 (again by what we proved above), it follows that H[X] < H[Y ].

And another.

Lemma 7.4. Let X be a random variable and let Y = f(X) for some function f . Then
H[Y ] ≤ H[X].
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Proof. By the invariance axiom, H[X] = H[X, Y ], since there is a bijection between values
x taken by X and values (x, f(x)) taken by (X, Y ). Therefore, by the additivity axiom,
H[X] = H[Y ] +H[X|Y ].

In an earlier version of these notes, I assumed that H was non-negative, having failed
to see a proof of non-negativity from the axioms. However, Sean Eberhard (a postdoc at
Cambridge) pointed out to me the following argument.

Lemma 7.5. H[X] ≥ 0 for every discrete random variable X that takes values in a finite
set A.

Proof. First let us suppose that there exists n such that pa = P[X = a] is a multiple of
n−1 for every a ∈ A. Let Y be uniformly distributed on [n], let (Ea : a ∈ A) be a partition
of [n] such that |Ea| = pan for each a ∈ A, and let Z be the random variable where Z = a
if Y ∈ Ea. Then Z and X are identically distributed, so H[Z] = H[X], by invariance.

Now H[Y, Z] = H[Z] + H[Y |Z], by additivity. Also, H[Y, Z] = H[Y ] by Lemma 7.4,
since (Y, Z) depends only on Y . And finally, for each a ∈ A, H[Y |Z = a] is uniformly
distributed on a set of size at most n, so by Lemma 7.3 it follows that H[Y |Z = a] ≤ H[Y ].
This implies that H[Y |Z] ≤ H[Y, Z], and therefore that H[X] = H[Z] ≥ 0.

In the general case, since we can approximate the probabilities pa arbitrarily closely by
multiples of n−1 for a suitably large n, we can apply the continuity axiom to obtain the
same conclusion.

Here is a slightly less simple lemma.

Lemma 7.6. Let X be a random variable that takes at least two values with non-zero
probability. Then H[X] > 0.

Proof. Let A be the set of values taken by X, let α = maxa∈A P[X = a], and for each n
denote by Xn the An-valued random variable that is given by n independent copies of X.
Then the maximum probability of any value taken by Xn is αn. Since α < 1, for any ε > 0
there exists n such that αn < ε. It follows that we can partition An into two sets E and
F , each of which has probability between 1/2 − ε and 1/2 + ε. Now let Y be a random
variable that takes the value 0 if Xn ∈ E and 1 if Xn ∈ F . Then H[Xn] = nH[X], by
Lemma 7.1 (and induction), and also H[Xn] = H[Y ]+H[Xn|Y ] ≥ H[Y ]. But H[Y ] > 0 for
sufficiently small ε, by the normalization axiom and continuity. It follows that H[Xn] > 0
and therefore that H[X] > 0.

We end this sequence of lemmas with a result that is often useful. It is sometimes
known as the chain rule for entropy.

Lemma 7.7. Let X1, . . . , Xk be random variables taking values in a set A. Then

H[X1, . . . , Xk] = H[X1] +H[X2|X1] +H[X3|X1, X2] + · · ·+H[Xk|X1, . . . , Xk−1].

Proof. By additivity,

H[X1, . . . , Xk] = H[X1, . . . , Xk−1] +H[Xk|X1, . . . , Xk−1].

The result therefore follows by induction, with the additivity axiom as the base case.
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7.2 The number of paths of length 3 in a bipartite graph

Let us now consider the following problem. Suppose that G is a bipartite graph with
finite vertex sets A and B and density α. (The density is defined to be the number of
edges divided by |A||B|.) A labelled P3 is a quadruple (x1, y1, x2, y2) such that x1, x2 ∈ A,
y1, y2 ∈ B, and x1y1, y1x2, and x2y2 are all edges of G. In other words, it is a path of length
3 in the graph, but we allow degeneracies such as x1 = x2.

How many labelled P3s must a bipartite graph with density α contain? If G is bi-
regular, meaning that every vertex in A has degree α|B| and every vertex in B has degree
α|A|, then there are α3|A|2|B|2, since we can choose x1 in |A| ways, then y1 in α|B| ways,
then x2 in α|A| ways, and finally y2 in α|B| ways. We shall now show that this is the
smallest number of labelled P3s that there can be. The proof will assume that entropy
exists – that is, that there is some H that satisfies the Khinchin axioms. Later we shall
see that this assumption is valid, and that will put in the final piece of the jigsaw.

Before you read the proof, I strongly recommend you try to prove the result for yourself
by elementary means, since it looks as though it ought to be possible (given that the result
is true), but turns out to be surprisingly tricky, and if you haven’t experienced the difficulty,
then you won’t appreciate the power of the entropy approach.

How does one use entropy to prove results in combinatorics? Part of the answer lies in
axiom 2. Suppose that X is uniformly distributed on a set of size k, and Y is a random
variable with H[Y ] ≥ H[X]. then axiom 2 implies that Y takes at least k different values.
Therefore, if we want to prove that a set A has size at least k, one way of doing it is to
find a random variable that takes values in A and has entropy at least H[X].

At first this may seem a very strange approach, since by axiom 2 we know that if there
is such a random variable, then a random variable that is uniformly distributed on A will
also work. If we define f(n) to be the entropy of a random variable that is uniformly
distributed on a set of size n, then all we seem to be doing is replacing the cardinality of
a set by f of that cardinality, which doesn’t look as though it will achieve anything.

However, there is a flaw in that criticism, which is that it might in principle be easier
to obtain a lower bound for the entropy of a carefully chosen distribution on a set A (given
certain assumptions about A) than it is to find a lower bound on the cardinality of A. And
indeed, this turns out to be the case in many interesting situations, including the one at
hand.

We wish to obtain a lower bound for the number of labelled P3s in a bipartite graph G
of density α, and to do so we shall obtain a lower bound for the entropy of the following
distribution on the set of labelled P3s, which is not uniform (except when the graph is
regular). We choose an edge x1y1 (with x ∈ A and y ∈ B uniformly at random, then a
vertex x2 uniformly from the neighbours of y1, and then a vertex y2 uniformly from the
neighbours of x2.

Let X1, Y1, X2, and Y2 be the distributions of x1, y1, x2, and y2, respectively. We now
wish to say something about the entropy H[X1, Y1, X2, Y2]. The chain rule (Lemma 7.7)
tells us that it is equal to

H[X1, Y1] +H[X2|X1, Y1] +H[Y2|X1, Y1, X2].
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Now
H[X2|X1, Y1] =

∑
a∈A

∑
b∈B

P[X1 = a, Y1 = b]H[X2|X1 = a, Y1 = b].

But for each fixed b, the distributions of X1 and X2 given that Y1 = b are independent:
the way we choose x2 once we have chosen y1 depends entirely on y1 and not on how y1
was obtained. Therefore, this simplifies to∑

a∈A

∑
b∈B

P[X1 = a, Y1 = b]H[X2|Y1 = b] =
∑
b∈B

P[Y1 = b]H[X2|Y1 = b]

= H[X2|Y1].

In a similar way, if we know the value of X2, then the distribution of Y2 is independent of
the values of X1 and Y1, so

H[Y2|X1, Y1, X2] = H[Y2|X2].

So we are interested in finding a lower bound for

H[X1, Y1] +H[X2|Y1] +H[Y2|X2].

By the additivity axiom, we can write this as

H[X1, Y1] +H[Y1, X2] +H[X2, Y2]−H[Y1]−H[X2].

Notice that the first three terms are the entropies of the distributions of the three edges of
the random labelled P3. We now make an important observation.

Lemma 7.8. Given a random labelled P3 from the distribution defined above, the three
edges are all uniformly distributed over all edges.

Proof. The first edge is uniformly distributed by the definition of the distribution. Now
the number of edges is α|A||B| and the number of edges x1y1 with y1 = b is d(b) (the degree
of b), so the probability that Y1 = b is d(b)/α|A||B|, and the probability that X2 = a given
that Y1 = b is 0 if ab is not an edge and d(b)−1 if ab is an edge. So the probability that
(X2, Y1) = (a, b) is 1/α|A||B| whenever ab is an edge, which is another way of saying that
X2Y1 is uniformly distributed over all edges. And once we know that, then the same proof
shows that X2Y2 is uniformly distributed.

We also know that H[Y1] and H[X2] are at most as big as they would be if Y1 and X2

were uniformly distributed. So if we let X be uniformly distributed over A, Y be uniformly
distributed over B, and E be uniformly distributed over all edges, then a lower bound for
the entropy of (X1, Y1, X2, Y2) is

3H[E]−H[X]−H[Y ].
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Consider now the random variable (X1, Y1, X2, Y2, X, Y ), where (X1, Y1, X2, Y2) is as
before, X is a random element of A, and Y is a random element of B, with X and Y
independent of each other and of (X1, Y1, X2, Y2). By the above bound and Lemma 7.1
this random variable has entropy at least 3H[E], which is the entropy of the uniform
distribution over all triples of edges (by Lemma 7.1). From this and Lemma 7.3, it follows
that |A||B| times the number of labelled P3s is at least the cube of the number of edges,
which is α3|A|3|B|3, and from this we get that the number of labelled P3s is at least
α3|A|2|B|2, as required.

The statement just proved is a special case of the following famous conjecture of
Sidorenko.

Conjecture 7.9. Let G be a bipartite graph with finite vertex sets X and Y and density α.
Let H be another bipartite graph with vertex sets A and B and let φ be a random function
that takes A to X and B to Y . Then the probability that φ(a)φ(b) is an edge of G for every
edge ab of H is at least α|E(H)|.

In rough terms, this can be thought of as saying that if you want to minimize the number
of copies of H in a bipartite graph of density α, then you cannot do better than to pick the
edges of the bipartite graph independently at random with probability α. The conjecture
has been proved for several classes of bipartite graphs, some by entropy methods, but in
general it remains stubbornly open.

7.3 The formula for entropy

I once wrote a blog post about the above proof, in which I did things differently. There
I defined entropy in a more usual way – by writing down a formula for it – and then I
calculated entropies, or gave bounds in the form of specific numbers. When I started this
section, I decided to try to do it axiomatically, but I wasn’t sure how successful I would be.
Having completed the exercise, I am now completely convinced that it is the right thing to
do, as it makes it much clearer that the proof is comparing the entropy of one distribution
with the entropy of another, rather than merely obtaining a numerical lower bound that
gives the desired answer. Also, the proof in the blog post used Jensen’s inequality, whereas
this proof used the simpler maximality axiom.

So when I now give the formula, I recommend that you resist the temptation to latch
on to it and use it the whole time. It should be a last resort – your proofs will be clearer if
you can avoid it. It’s a little like helping a much younger mathematician to get out of the
habit of replacing

√
2 by 1.414.... At a certain age, one feels the need to experience the

square root of 2 as a number with a decimal expansion, but with experience one comes to
realize that what really matters is the “axioms for

√
2” which are

1.
√

2 > 0.

2. (
√

2)2 = 2.
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Of course, sometimes we use facts such as that
√

2 > 1, but those can be deduced from
the above properties and the ordered-field axioms that the reals satisfy.

With those remarks out of the way, here’s the formula. If X is a discrete random
variable taking values in a set A, then, writing pa for P[X = a], we have

H[X] =
∑
a∈A

pa log(1/pa),

where the logarithm is to base 2. People often write this as −
∑

a∈A pa log(pa), a practice I
don’t like because it has a kind of clever-clever “You thought I was negative but I’m not!”
aspect to it.

A quick example to help with orientation: if X is uniformly distributed over a set A
of size n, then the formula tells us that H[X] =

∑
a∈A n

−1 log n = log n. In particular,
if n = 2k, then the entropy is k, which reflects the intuitive idea that we need k bits of
information to specify an element of A.

It is not hard to prove that this function satisfies the axioms given earlier. Normaliza-
tion, invariance, extensibility and continuity are obvious. Maximality is a simple conse-
quence of Jensen’s inequality: the function log x is concave, so if A is any finite set, then
for any random variable X taking values in A, if we write pa for P[X = a], then the pa are
non-negative and sum to 1, so we have∑

a∈A

pa log(1/pa) ≤ log(
∑
a∈A

pa/pa) = log(|A|),

which is the entropy of a uniformly distributed random variable taking values in A.
As for the additivity axiom, let X take values in A and Y take values in B and let

pa, pb and pab have obvious meanings (in particular, pab = P[X = a, Y = b]). Then

H[X, Y ] =
∑
a∈A

∑
b∈B

pab log(1/pab).

Now pab = paP[Y = b|X = a], so the right-hand side equals∑
a∈A

∑
b∈B

(
pab(log(1/pa) + log(1/P[Y = b|X = a])

)
.

But ∑
a∈A

∑
b∈B

pab log(1/pa) =
∑
a∈A

pa log(1/pa) = H[X],

and∑
a∈A

∑
b∈B

pab log(1/P[Y = b|X = a]) =
∑
a∈A

pa
∑
b∈B

P[Y = b|X = a] log(1/P[Y = b|X = a])

=
∑
a∈A

paH[Y |X = a]

= Ea∈AH[Y |X = a]

= H[Y |X].
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Thus, H[X, Y ] = H[X] +H[Y |X].
This proves that there is a function that satisfies the entropy axioms, and that completes

the proof of the lower bound for the number of labelled P3s.

7.3.1 The axioms uniquely determine the formula.

It turns out that the formula we have given for entropy is the only one that satisfies
the entropy axioms. To show this, we begin by working out H[X] when X is uniformly
distributed. (Here H is any function that satisfies the axioms for entropy. Logarithms are
to base 2 throughout.)

Lemma 7.10. If X is uniformly distributed on a set of size 2k, then H[X] = k.

Proof. Let Y be uniformly distributed on a set of size 2. Then H[Y ] = 1 by the normal-
ization axiom, which implies that H[Y k] = k by Lemma 7.1 and induction. Since Y k is
uniformly distributed on a set of size 2k, H[X] = k as well, by invariance.

Lemma 7.11. If X is uniformly distributed on a set of size n, then H[X] = log n.

Proof. For each r, Xr is uniformly distributed on a set of size nr, and H[Xr] = rH[X].
Therefore, if 2k ≤ nr ≤ 2k+1, then k ≤ rH[X] ≤ k + 1, by Lemma 7.3. It follows that
k/r ≤ H[X] ≤ (k+1)/r whenever k/r ≤ log n ≤ (k+1)/r. This implies that H[X] = log n
as claimed.

Corollary 7.12. Let X take values in a finite set A, with pa = P[X = a]. Then H[X] =∑
a pa log

(
1
pa

)
.

Proof. First let us assume that there exists n such that pa is a multiple of n−1 for every
a ∈ A. As in the proof of Lemma 7.5 let Y be uniformly distributed on [n], let Y be
partitioned into sets Ea, one for each a ∈ A, with |Ea| = pan, and let us assume that
X = a if and only if Y ∈ Ea (which by the invariance axiom loses no generality).

Then by additivity, H[Y ] = H[X] +H[Y |X]. But by Lemma 7.11 H[Y ] = log n, and

H[Y |X] =
∑
a

paH[Y |X = a] =
∑
a

paH[Y |Y ∈ Ea] =
∑
a

pa log(pan),

where for the last equality we again applied Lemma 7.11. It follows that

H[X] = log n−
∑
a

pa(log pa + log n) =
∑
a

pa log

(
1

pa

)
.

As in the proof of of Lemma 7.5 we obtain the general case by applying the continuity
axiom.
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