map. If U is open and closed in Y then $f^{-1}(U)$ is open and closed in X which means that $f^{-1}(U) = \emptyset$ or X and $U = \emptyset$ or Y. Thus Y is connected.

9.5 Corollary

If X and Y are homeomorphic topological spaces then X is connected if and only if Y is connected.

From Theorem 9.4 we deduce that the circle S^1 is connected since there is a continuous surjective map f: $[0,1] \rightarrow S^1$ given by $f(t) = (\cos(2\pi t), \sin(2\pi t)) \in S^1 \subseteq \mathbb{R}^2$.

To prove that intervals in \mathbb{R} of the form [a,b), (a,b] and (a,b) are connected we make use of the next result.

9.6 Theorem

Suppose that $\{ Y_j; j \in J \}$ is a collection of connected subsets of a space X. If $\bigcap Y_j \neq \emptyset$ then $Y = \bigcup Y_j$ is connected. $j \in J$ $j \in J$

Proof Suppose that U is a non-empty open and closed subset of Y. Then $U \cap Y_i \neq \emptyset$ for some $i \in J$ and $U \cap Y_i$ is both open and closed in Y_i . But Y_i is connected so $U \cap Y_i = Y_i$ and hence $Y_i \subseteq U$. The set Y_i intersects every other Y_j , $j \in J$ and so U also intersects every Y_j , $j \in J$. By repeating the argument we deduce that $Y_i \subseteq U$ for all $j \in J$ and hence U = Y.

That the subsets [a,b), (a,b] and (a,b) of \mathbb{R} are connected follows from Theorem 9.3, Corollary 9.5 and the fact that

$$[a,b) = \bigcup_{n\geq 1} [a,b-(b-a)/2^n]$$

etc. Similarly it follows that R itself and intervals of the form $[a,\infty)$, $(-\infty,b]$, $(-\infty,b)$, (a,∞) are connected.

The final result that we shall prove concerns products of connected spaces.

9.7 Theorem

Let X and Y be topological spaces. Then X and Y are connected if and only if $X \times Y$ is connected.

Proof Suppose that X and Y are connected. Since $X \cong X \times \{y\}$ and $Y \cong \{x\} \times Y$ for all $x \in X$, $y \in Y$ we see that $X \times \{y\}$ and $\{x\} \times Y$ are connected. Now $(X \times \{y\}) \cap (\{x\} \times Y) = \{(x,y)\} \neq \emptyset$ and so $(X \times \{y\}) \cup (\{x\} \times Y)$ is connected by Theorem 9.6. We may write $X \times Y$ as

$$X \times Y = \bigcup_{x \in X} ((X \times \{y\}) \cup (\{x\} \times Y))$$

for some fixed $y \in Y$. Since $\cap ((X \times \{y\}) \cup (\{x\} \times Y)) \neq \emptyset$ we deduce $x \in X$

that $X \times Y$ is connected.

Conversely, suppose that $X \times Y$ is connected. That X and Y are connected follows from Theorem 9.4 and the fact that $\pi_X \colon X \times Y \to X$ and $\pi_Y \colon X \times Y \to Y$ are continuous surjective maps.

From the above results we see that \mathbb{R}^n is connected. In the exercises we shall see that \mathbb{S}^n is connected for $n \ge 1$ and also that $\mathbb{R}\mathbb{P}^n$ is connected.

9.8 Exercises

- (a) Prove that the set of rational numbers $Q \subseteq R$ is not a connected set. What are the connected subsets of Q?
- (b) Prove that a subset of \mathbb{R} is connected if and only if it is an interval or a single point. (A subset of \mathbb{R} is called an *interval* if A contains at least two distinct points, and if $a, b \in A$ with a < b and a < x < b then $x \in A$.)
- (c) Let X be a set with at least two elements. Prove
 (i) If X is given the discrete topology then the only connected subsets of X are single point subsets.
 (ii) If X is given the concrete topology then every subset of X is connected.
- (d) Which of the following subsets of \mathbb{R}^2 are connected?

{ x; ||x|| < 1 }, { x; ||x|| > 1 }, { x; $||x|| \neq 1$ }.

Which of the following subsets of \mathbb{R}^3 are connected?

{ $x; x_1^2 + x_2^2 - x_3^2 = 1$ }, { $x; x_1^2 + x_2^2 + x_3^2 = -1$ }, { $x; x_1 \neq 1$ }.

- (e) Prove that a topological space X is connected if and only if each continuous mapping of X into a discrete space (with at least two points) is a constant mapping.
- (f) A is a connected subspace of X and $A \subseteq Y \subseteq \overline{A}$. Prove that Y is connected.
- (g) Suppose that Y_0 and $\{Y_j; j \in J\}$ are connected subsets of a space X. Prove that if $Y_0 \cap Y_j \neq \emptyset$ for all $j \in J$ then $Y = Y_0 \cup (\cup Y_j)$ $i \in J$

is connected.

(h) Prove that \mathbb{R}^{n+1} { 0 } is connected if $n \ge 1$. Deduce that S^n and