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One important use of the preceding theorem is as a tool for verifying that a map is
a homeomorphism:

Theorem 26.6. Let f : X → Y be a bijective continuous function. If X is compact
and Y is Hausdorff, then f is a homeomorphism.

Proof. We shall prove that images of closed sets of X under f are closed in Y ; this
will prove continuity of the map f −1. If A is closed in X , then A is compact, by
Theorem 26.2. Therefore, by the theorem just proved, f (A) is compact. Since Y is
Hausdorff, f (A) is closed in Y , by Theorem 26.3. �

Theorem 26.7. The product of finitely many compact spaces is compact.

Proof. We shall prove that the product of two compact spaces is compact; the theo-
rem follows by induction for any finite product.

Step 1. Suppose that we are given spaces X and Y , with Y compact. Suppose that
x0 is a point of X , and N is an open set of X × Y containing the “slice” x0 × Y of
X × Y . We prove the following:

There is a neighborhood W of x0 in X such that N contains the entire set
W × Y .

The set W × Y is often called a tube about x0 × Y .
First let us cover x0 × Y by basis elements U × V (for the topology of X × Y )

lying in N . The space x0 × Y is compact, being homeomorphic to Y . Therefore, we
can cover x0 × Y by finitely many such basis elements

U1 × V1, . . . , Un × Vn.

(We assume that each of the basis elements Ui × Vi actually intersects x0 × Y , since
otherwise that basis element would be superfluous; we could discard it from the finite
collection and still have a covering of x0 × Y .) Define

W = U1 ∩ · · · ∩Un.

The set W is open, and it contains x0 because each set Ui × Vi intersects x0 × Y .
We assert that the sets Ui × Vi , which were chosen to cover the slice x0 × Y ,

actually cover the tube W × Y . Let x × y be a point of W × Y . Consider the point
x0 × y of the slice x0 × Y having the same y-coordinate as this point. Now x0 × y
belongs to Ui×Vi for some i , so that y ∈ Vi . But x ∈ U j for every j (because x ∈ W ).
Therefore, we have x × y ∈ Ui × Vi , as desired.

Since all the sets Ui × Vi lie in N , and since they cover W × Y , the tube W × Y
lies in N also. See Figure 26.2.

Step 2. Now we prove the theorem. Let X and Y be compact spaces. Let A

be an open covering of X × Y . Given x0 ∈ X , the slice x0 × Y is compact and
may therefore be covered by finitely many elements A1, . . . , Am of A. Their union
N = A1∪· · ·∪Am is an open set containing x0×Y ; by Step 1, the open set N contains
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Figure 26.2

a tube W ×Y about x0×Y , where W is open in X . Then W ×Y is covered by finitely
many elements A1, . . . , Am of A.

Thus, for each x in X , we can choose a neighborhood Wx of x such that the tube
Wx × Y can be covered by finitely many elements of A. The collection of all the
neighborhoods Wx is an open covering of X ; therefore by compactness of X , there
exists a finite subcollection

{W1, . . . , Wk}
covering X . The union of the tubes

W1 × Y, . . . , Wk × Y

is all of X × Y ; since each may be covered by finitely many elements of A, so may
X × Y be covered. �

The statement proved in Step 1 of the preceding proof will be useful to us later, so
we repeat it here as a lemma, for reference purposes:

Lemma 26.8 (The tube lemma). Consider the product space X × Y , where Y is
compact. If N is an open set of X × Y containing the slice x0 × Y of X × Y , then N
contains some tube W × Y about x0 × Y , where W is a neighborhood of x0 in X .

EXAMPLE 7. The tube lemma is certainly not true if Y is not compact. For example, let
Y be the y-axis in R2, and let

N = {x × y; |x | < 1/(y2 + 1)}.
Then N is an open set containing the set 0 × R, but it contains no tube about 0 × R. It is
illustrated in Figure 26.3.
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