(2) Given an open cover $\{U_{\alpha}\}_{\alpha \in I}$ of M, there is a partition of unity $\{\rho_{\beta}\}_{\beta \in J}$ with compact support, but possibly with an index set J different from I, such that the support of ρ_{β} is contained in some U_{α} .

For a proof see Warner [1, p. 10] or de Rham [1, p. 3].

Note that in (1) the support of ρ_{α} is not assumed to be compact and the index set of $\{\rho_{\alpha}\}$ is the same as that of $\{U_{\alpha}\}$, while in (2) the reverse is true. We usually cannot demand simultaneously compact support and the same index set on a noncompact manifold M. For example, consider the open cover of \mathbb{R}^{1} consisting of precisely one open set, namely \mathbb{R}^{1} itself. This open cover clearly does not have a partition of unity with compact support subordinate to it.

The Mayer-Vietoris Sequence

The Mayer-Vietoris sequence allows one to compute the cohomology of the union of two open sets. Suppose $M = U \cup V$ with U, V open. Then there is a sequence of inclusions

$$M \leftarrow U \coprod V \stackrel{\delta_0}{\underset{\delta_1}{\longleftarrow}} U \cap V$$

where $U \coprod V$ is the disjoint union of U and V and ∂_0 and ∂_1 are the inclusions of $U \cap V$ in V and in U respectively. Applying the contravariant functor Ω^* , we get a sequence of restrictions of forms

$$\Omega^*(M) \longrightarrow \Omega^*(U) \oplus \Omega^*(V) \stackrel{\mathfrak{d}}{\rightrightarrows} \Omega^*(U \cap V),$$

where by the restriction of a form to a submanifold we mean its image under the pullback map induced by the inclusion. By taking the difference of the last two maps, we obtain the Mayer-Vietoris sequence

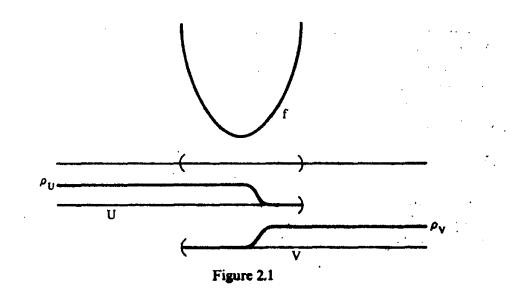
(2.2)
$$0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0$$
$$(\omega, \tau) \mapsto \tau - \omega$$

Proposition 2.3. The Mayer-Vietoris sequence is exact.

• PROOF. The exactness is clear except at the last step. We first consider the case of functions on $M = \mathbb{R}^1$. Let f be a C^∞ function on $U \cap V$ as shown in Figure 2.1. We must write f as the difference of a function on U and a function on V. Let $\{\rho_U, \rho_V\}$ be a partition of unity subordinate to the open cover $\{U, V\}$. Note that $\rho_V f$ is a function on U—to get a function on an open set we must multiply by the partition function of the other open set. Since

$$(\rho_{\mathcal{V}}f)-(-\rho_{\mathcal{V}}f)=f,$$

§2 The Mayer-Vietoris Sequence



1

23

we see that $\Omega^{0}(U) \oplus \Omega^{0}(V) \to \Omega^{0}(\mathbb{R}^{1}) \to 0$ is surjective. For a general manifold M, if $\omega \in \Omega^{q}(U \cap V)$, then $(-\rho_{V}\omega, \rho_{U}\omega)$ in $\Omega^{q}(U) \oplus \Omega^{q}(V)$ maps onto ω .

The Mayer-Vietoris sequence

 $0 \to \Omega^*(M) \to \Omega^*(U) \oplus \Omega^*(V) \to \Omega^*(U \cap V) \to 0$

induces a long exact sequence in cohomology, also called a Mayer-Vietoris sequence:

(2.4)
$$(2.4) \qquad \underbrace{\overset{H^{q+1}(M) \to H^{q+1}(U) \oplus H^{q+1}(V) \to H^{q+1}(U \cap V)}_{d^{*}} \to H^{q}(M) \to H^{q}(U) \oplus H^{q}(V) \to H^{q}(U \cap V)}$$

We recall again the definition of the coboundary operator d^* in this explicit instance. The short exact sequence gives rise to a diagram with exact rows

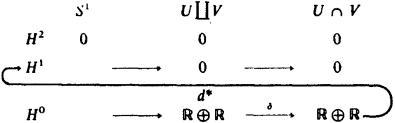
Let $\omega \in \Omega^q(U \cap V)$ be a closed form. By the exactness of the rows, there is a $\xi \in \Omega^q(U) \oplus \Omega^q(V)$ which maps to ω , namely, $\xi = (-\rho_V \omega, \rho_U \omega)$. By the

commutativity of the diagram and the fact that $d\omega = 0$, $d\xi$ goes to 0 in $\Omega^{q+1}(U \cap V)$, i.e., $-d(\rho_V \omega)$ and $d(\rho_U \omega)$ agree on the overlap $U \cap V$. Hence $d\xi$ is the image of an element in $\Omega^{q+1}(M)$. This element is easily seen to be closed and represents $d^*[\omega]$. As remarked earlier, it can be shown that $d^*[\omega]$ is independent of the choices in this construction. Explicitly we see that the coboundary operator is given by

(2.5)
$$d^{*}[\omega] = \begin{cases} [-d(\rho_{V} \omega)] & \text{on } U \\ [d(\rho_{V} \omega)] & \text{on } V \end{cases}$$

We define the support of a form ω on a manifold M to be the smallest closed set Z so that ω restricted to Z is not 0. Note that in the Mayer-Vietoris sequence $d^*\omega \in H^*(M)$ has support in $U \cap V$.

EXAMPLE 2.6 (The cohomology of the circle). Cover the circle with two open sets U and V as shown in Figure 2.2. The Mayer-Vietoris sequence gives



The difference map δ sends (ω, τ) to $(\tau - \omega, \tau - \omega)$, so im δ is 1-dimensional. It follows that ker δ is also 1-dimensional. Therefore,

 $H^{0}(S^{1}) = \ker \delta = \mathbb{R}$ $H^{1}(S^{1}) = \operatorname{coker} \delta = \mathbb{R}.$

We now find an explicit representative for the generator of $H^1(S^1)$. If $\alpha \in \Omega^0(U \cap V)$ is a closed 0-form which is not the image under δ of a closed form in $\Omega^0(U) \oplus \Omega^0(V)$, then $d^*\alpha$ will represent a generator of $H^1(S^1)$. As α we may take the function which is 1 on the upper piece of $U \cap V$ and 0 on

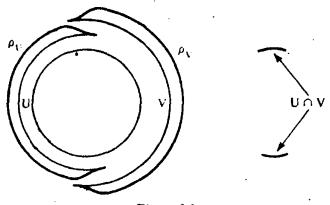
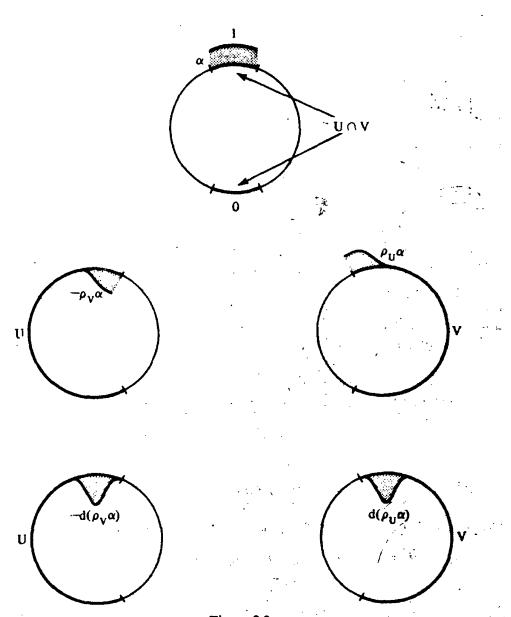


Figure 2.2

25

}



the lower piece (see Figure 2.3). Now α is the image of $(-\rho_V \alpha, \rho_U \alpha)$. Since $-d(\rho_V \alpha)$ and $d\rho_U \alpha$ agree on $U \cap V$, they represent a global form on S^1 ; this form is $d^*\alpha$. It is a bump 1-form with support in $U \cap V$.

The Functor Ω_c^* and the Mayer-Vietoris Sequence for Compact Supports

Again, before taking up the Mayer-Vietoris sequence for compactly supported cohomology, we need to discuss the functorial properties of $\Omega_c^{\bullet}(M)$, the algebra of forms with compact support on the manifold M. In general the pullback by a smooth map of a form with compact support need not