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Computation of de Rham Cohomology

With the tools developed so far, we can compute the cohomology of many manifolds.
This chapter is a compendium of some examples.

27.1 Cohomology Vector Space of a Torus

Cover a torus M with two open subsets U and V as shown in Figure 27.1.

A B

M U � V
U ∩ V

∼ S1 � S1

Fig. 27.1. An open cover {U,V } of a torus.

Both U and V are diffeomorphic to a cylinder and therefore have the homotopy
type of a circle (Problem 26.4). Similarly, the intersectionU ∩V is the disjoint union
of two cylindersA andB and has the homotopy type of a disjoint union of two circles.
Our knowledge of the cohomology of a circle allows us to fill in many terms in the
Mayer–Vietoris sequence:
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M U � V U ∩ V
H 2

d∗1−→ H 2(M) −→ 0

H 1
d∗0−→ H 1(M)

γ−→ R⊕ R
β−→ R⊕ R

H 0 0 −→ R −→ R⊕ R
α−→ R⊕ R

(27.1)

Let jU : U ∩ V −→ U and jV : U ∩ V −→ V be the inclusion maps. If a is the
constant function with value a on U , then j∗Ua is the constant function with the value
a on each component of U ∩ V , that is,

j∗Ua = (a, a).

Therefore, for (a, b) ∈ H 0(U)⊕H 0(V ),

α(a, b) = j∗V b − j∗Ua
= (b, b)− (a, a)
= (b − a, b − a).

Similarly, let us now describe the map

β : H 1(U)⊕H 1(V ) −→ H 1(U ∩ V ) = H 1(A)⊕H 1(B).

Since A is a deformation retract of U , the restriction H ∗(U) −→ H ∗(A) is an iso-
morphism. If ωU generates H 1(U), then j∗UωU is a generator of H 1 on A and on B.
IdentifyingH 1(U ∩V ) with R⊕R, we write j∗UωU = (1, 1). Let ωV be a generator
of H 1(V ). The pair of real numbers

(a, b) ∈ H 1(U)⊕H 1(V ) � R⊕ R

stands for (aωU , bωV ). Then,

β(a, b) = j∗V (bωV )− j∗U(aωU)
= (b, b)− (a, a)
= (b − a, b − a).

By the exactness of the Mayer–Vietoris sequence,

H 2(M) = im d∗1 (because H 2(U)⊕H 2(V ) = 0)

� H 1(U ∩ V )/ ker d∗1 (by the first isomorphism theorem)

� (R⊕ R)/ im β

� (R⊕ R)/R � R.

Applying Problem 25.2 to the Mayer–Vietoris sequence (27.1), we get

1 − 2 + 2 − dimH 1(M)+ 2 − 2 + dimH 2(M) = 0.
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Since dimH 2(M) = 1, this gives dimH 1(M) = 2.
As a check, we can also computeH 1(M) from the Mayer–Vietoris sequence using

our knowledge of the maps α and β:

H 1(M) � ker γ ⊕ im γ (by the first isomorphism theorem)

� im d∗0 ⊕ ker β (exactness of the M–V sequence)

� (H 0(U ∩ V )/ ker d∗0 )⊕ ker β (first isomorphism theorem for d∗0 )
� ((R⊕ R)/ im α)⊕ R

� R⊕ R.

27.2 The Cohomology Ring of a Torus

A torus is diffeomorphic to the quotient of R2 by the integer lattice � = Z2. The
quotient map

π : R2 −→ R2/�

induces a pullback map on differential forms,

π∗ : �∗(R2/�) −→ �∗(R2).

Since π : R2 −→ R2/� is a local diffeomorphism, it is a submersion at each point.
By Problem 18.7, π∗ : �∗(R2/�) −→ �∗(R2) is an inclusion.

For λ ∈ �, define 
λ : R2 −→ R2 to be translation by λ,


λ(p) = p + λ, p ∈ R2.

A differential form ω̄ on R2 is said to be invariant under translation by λ ∈ � if

∗λω̄ = ω̄.

Proposition 27.1. The image of the inclusion map π∗ : �∗(R2/�) −→ �∗(R2) is the
subspace of differential forms on R2 invariant under translations by elements of �.

Proof. For all p ∈ R2,

(π ◦ 
λ)(p) = π(p + λ) = π(p).

Hence, π ◦ 
λ = π . By the functoriality of the pullback,

π∗ = 
∗λ ◦ π∗.

Thus, for any ω ∈ �k(R2/�), π∗ω = 
∗λπ∗ω. This proves that π∗ω is invariant
under translations 
λ for all λ ∈ �.

Conversely, suppose ω̄ ∈ �k(R2) is invariant under translations 
λ for all λ ∈ �.
For p ∈ R2/� and v1, . . . , vk ∈ Tp(R2/�), define

ωp(v1, . . . , vk) = ω̄p̄(v̄1, . . . , v̄k) (27.2)
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for any p̄ ∈ π−1({p}) and v̄1, . . . , v̄k ∈ Tp̄R2 such that π∗v̄i = vi . Any other point
in π−1({p}) may be written as p̄ + λ for some λ ∈ �. By invariance,

ω̄p̄ = (
∗λω̄)p̄ = 
∗λ(ω̄p̄+λ).

So

ω̄p̄(v̄1, . . . , v̄k) = 
∗λ(ω̄p̄+λ)(v̄1, . . . , v̄k)

= ω̄p̄+λ(
λ∗v̄1, . . . , 
λ∗v̄k),

which shows that ωp is well defined, independent of the choice of p̄. Thus, ω ∈
�k(R2/�). Moreover, by (27.2), for any p̄ ∈ R2 and v̄1, . . . , v̄k ∈ Tp̄(R2),

ω̄p̄(v̄1, . . . , v̄k) = ωπ(p̄)(π∗v̄1, . . . , π∗v̄k)
= (π∗ω)p̄(v̄1, . . . , v̄k).

Hence, ω̄ = π∗ω. �	
Let (x, y) be the coordinates on R2. Since for any λ ∈ �,


∗λ(dx) = d(
∗λx) = d(x + λ) = dx,

by Proposition 27.1 the 1-form dx on R2 is π∗ of a 1-form on the torus R2/�.
Similarly, dy is also π∗ of a 1-form on the torus. We denote these 1-forms on the
torus by the same symbols dx and dy.

Proposition 27.2. Let M be the torus R2/Z2. A basis for the cohomology vector
space H ∗(M) is 1, dx, dy, dx ∧ dy.

Proof. Since
∫
M
dx ∧ dy = 1, the closed 2-form dx ∧ dy defines a nonzero coho-

mology class. By the computation of Section 27.1, H 2(M) = R. So dx ∧ dy is a
basis for H 2(M).

It remains to show that the set of closed 1-forms dx, dy on M is a basis for
H 1(M). Define two closed curves C1, C2 in M = R2/Z2 as the images of the maps

ci : [0, 1] −→ M,

c1(t) = [(t, 0)], c2(t) = [(0, t)],
(see Figure 27.2). Denote by p the point [(0, 0)] in M . Since removing a point does
not change the value of an integral and c1 is a diffeomorphism of the open interval
(0, 1) onto C1 − {p},∫

C1

dx =
∫
C1−{p}

dx =
∫
(0,1)

c∗1 dx =
∫ 1

0
dt = 1.

In the same way, because c∗1dy = 0,∫
C1

dy =
∫
C1−{p}

dy =
∫ 1

0
c∗1 dy = 0.
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C1

C2 C1

C2

Fig. 27.2. Two closed curves on a torus.

Similarly, ∫
C2

dx = 0,
∫
C2

dy = 1.

As x is not a function on the torus M , dx is not necessarily exact on M . In fact,
if dx = df for some C∞ function f on M , then∫

C1

dx =
∫
C1

df =
∫
∂C1

f = 0

by Stokes’ theorem and the fact that ∂C1 = ∅. This contradicts the fact that
∫
C1
dx =

1. Thus, dx is not exact on M . By the same reasoning, dy is also not exact on M .
Furthermore, the cohomology classes [dx] and [dy] are linearly independent, since if
[dx] were a multiple of [dy], then

∫
C1
dx would have to be a multiple of

∫
C1
dy = 0.

By Section 27.1, H 1(M) is two dimensional. Hence, dx, dy is a basis for H 1(M).
�	

The ring structure ofH ∗(M) is transparent from this proposition. Abstractly it is
the algebra∧

(a, b) := R[a, b]/(a2, b2, ab + ba), deg a = 1, deg b = 1,

called the exterior algebra on two generators a and b of degree 1.

27.3 The Cohomology of a Surface of Genus g

Using the Mayer–Vietoris sequence to compute the cohomology of a manifold often
leads to ambiguities, because there may be several unknown terms in the sequence.
We can resolve these ambiguities if we can describe explicitly the maps occurring in
the Mayer–Vietoris sequence. Here is an example of how this might be done.

Lemma 27.3. Suppose p is a point in a compact oriented surfaceM without bound-
ary, and i : C −→ M − {p} is the inclusion of a small circle around the puncture
(Figure 27.3). Then the restriction map

i∗ : H 1(M − {p}) −→ H 1(C)

is the zero map.
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p

C

M

Fig. 27.3. Punctured surface.

Proof. An element [ω] ∈ H 1(M − {p}) is represented by a closed 1-form ω on
M − {p}. Because the linear isomorphism H 1(C) � H 1(S1) � R is given by
integration over C, to identify i∗[ω] in H 1(C), it suffices to compute the integral∫
C
i∗ω.
If D is the open disk in M bounded by the curve C, then M − D is a compact

oriented surface with boundary C. By Stokes’ theorem,∫
C

i∗ω =
∫
∂(M−D)

i∗ω =
∫
M−D

dω = 0

because dω = 0. Hence, i∗ : H 1(M − {p}) −→ H 1(C) is the zero map. �	
Proposition 27.4. Let M be a torus, p a point in M , and A the punctured torus
M − {p}. The cohomology of A is

Hk(A) =

⎧⎪⎨⎪⎩
R for k = 0,

R2 for k = 1,

0 for k > 1.

Proof. Cover M with two open sets, A and a disk U containing p. Since A, U ,
and A ∩ U are all connected, we may start the Mayer–Vietoris sequence with the
H 1(M) term (Proposition 25.3(ii)). With H ∗(M) known from Section 27.1, the
Mayer–Vietoris sequence becomes

M U � A U ∩ A ∼ S1

H 2
d∗1−→ R −→ H 2(A) −→ 0

H 1 0 −→ R⊕ R
β−→ H 1(A)

α−→ H 1(S1)

Because H 1(U) = 0, the map α : H 1(A) −→ H 1(S1) is simply the restriction
map i∗. By Lemma 27.3, α = i∗ = 0. Hence,

H 1(A) = ker α = im β � H 1(M) � R⊕ R

and there is an exact sequence of linear maps

0 −→ H 1(S1)
d∗1−→ R −→ H 2(A) −→ 0.

Since H 1(S1) � R, it follows that H 2(A) = 0. �	
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Proposition 27.5. The cohomology of a compact orientable surface �2 of genus 2 is

Hk(�2) =

⎧⎪⎨⎪⎩
R for k = 0, 2,

R4 for k = 1,

0 for k > 2.

�2 U � V
U ∩ V
∼ S1

Fig. 27.4. An open cover {U,V } of a surface of genus 2.

Proof. Cover�2 with two open sets U and V as in Figure 27.4. The Mayer–Vietoris
sequence gives

M U � V U ∩ V ∼ S1

H 2 −→ H 2(�2) −→ 0

H 1 0 −→ H 1(�2) −→ R2 ⊕ R2 α−→ R

The map α : H 1(U)⊕H 1(V ) −→ H 1(S1) is the difference map

α(ωU , ωV ) = j∗V ωV − j∗UωU,
where jU and jV are inclusions of an S1 in U ∩ V into U and V , respectively. By
Lemma 27.3, j∗U = j∗V = 0, so α = 0. It then follows from the exactness of the
Mayer–Vietoris sequence that

H 1(�2) � H 1(U)⊕H 1(V ) � R4

and
H 2(�2) � H 1(S1) � R. �	

A genus 2 surface�2 can be obtained as the quotient space of an octagon with its
edges identified following the scheme of Figure 27.5.

To see this, first cut �2 along the circle e as in Figure 27.6. Then the two halves
A and B are each a torus minus an open disk (Figure 27.7), so that each half can be
represented as a pentagon (Figure 27.8).

When A and B are glued together along e, we obtain the octagon in Figure 27.5.
By Lemma 27.3, if p ∈ �2 and i : C −→ �2 − {p} is a small circle around p in

�2, then the restriction map
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Fig. 27.5. A surface of genus 2 as a quotient space of an octagon.
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Fig. 27.6. A surface of genus 2 cut along a curve e.

d b

c a

d b

c a
e e

Fig. 27.7. Two halves of a surface of genus 2.
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Fig. 27.8. Two halves of a surface of genus 2.
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