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Chapter 1

The Banach Fixed Point Theorem.

In this chapter we prove one version of the Banach fixed point theorem, and we
report some applications of this result to the solution of algebraic and differential
equations.

1.1 Contractions.

1. In this section we give the definition of contractions in metric spaces, and prove
a fixed point theorem for strict contractions.

Definition 1.1.1 1 ) A map ϕ from a metric space (M, d) into itself is said to be
Lipschitz continuous if there is L > 0 such that

d(ϕ(x), ϕ(y)) ≤ L d(x, y) (1.1.1)

for all x, y ∈M . We set

Lϕ := inf{L > 0 | (1.1.1) holds} , (1.1.2)

and call Lϕ the Lipschitz constant of the map.
2 ) A Lipschitz continuous map from a metric space into itself is a contraction if
Lϕ ∈ ]0, 1]; if Lϕ ∈ ]0, 1[, ϕ is called a strict contraction.
3 ) A point z ∈M is a fixed point of ϕ : M →M if

ϕ(z) = z . (1.1.3)
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6 CHAPTER 1. THE BANACH FIXED POINT THEOREM.

2. We wish to prove the following version of the Banach fixed point theorem.

Theorem 1.1.1 Let (M ; d) be a complete metric space, and ϕ : M →M be a strict
contraction. Then, ϕ admits a unique fixed point, which can be found as the limit
of the recursive sequence (xn)n≥0 defined by

xn+1 = ϕ(xn) , (1.1.4)

starting from an arbitrary point x0 ∈M . Moreover, each xn satisfies the estimates

d(xn, z) ≤ Ln

1−L d(x1, x0) , (1.1.5)

d(xn, z) ≤ L
1−L d(xn, xn−1) (n ≥ 1) . (1.1.6)

Proof. 1) Uniqueness. If ϕ has two fixed points a and b, then

d(a, b) = d(ϕ(a), ϕ(b)) ≤ L d(a, b) , (1.1.7)

from which
0 ≤ (1− L) d(a, b) ≤ 0 . (1.1.8)

Since L 6= 1, (1.1.8) implies that d(a, b) = 0, i.e. a = b.

2) Existence. By iteration, we find that for all n ≥ 0,

d(xn+1, xn) = d(ϕ(xn), ϕ(xn−1) ≤ L d(xn, xn−1) ≤ · · · ≤ Ln d(x1, x0) . (1.1.9)

Consequently, given any pair of indices m and n, with m > n,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · · + d(xn+1, xn)

≤
m−1∑
k=n

Lk d(x1, x0) ≤ d(x1, x0)Ln
m−1∑
k=0

Lk ≤ d(x1, x0)

1− L
Ln .

(1.1.10)

From this it follows that (xn)n≥0 is a Cauchy sequence in M . Since M is complete,
there is z ∈ M such that xn → z. Since ϕ is continuous, ϕ(xn) → ϕ(z). Thus, we
conclude from (1.1.4) that z = ϕ(z); that is, z is the desired fixed point of ϕ.

3) Estimate (1.1.5) follows from (1.1.10), keeping n fixed and lettingm→∞. Likewise,
(1.1.10) also implies that

d(xm, xn) ≤
m−n−1∑
k=0

d(xn+1+k, xn+k) ≤ L d(xn, xn−1)
m−n−k∑
k=0

Lk . (1.1.11)
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Letting m→∞, (1.1.6) follows. 2

Remarks. 1) In general, the fixed point z is not easy to determine exactly, so one
is content to consider, instead of z, any of its approximations xn; estimates (1.1.5)

and (1.1.6) give information on the accuracy of this approximation, and on the speed
of the convergence xn → z.

2) Theorem 1.1.1 gives sufficient conditions for the existence and uniqueness of the
fixed point of a strict contraction. Yet, a map ϕ : M →M may have a fixed point,
possibly not unique, even without being a contraction (see remark (3) below). For
example, consider the equations

x = x , x = 1− x (1.1.12)

in [0, 1] 1. Equations (1.1.12) are of the form (1.1.3), with ϕ : [0, 1] → [0, 1] defined
by, respectively, ϕ(x) = x and ϕ(x) = 1− x. In both cases, ϕ is a contraction, with
Lϕ = 1, but not a strict contraction. For the first equation, all numbers in [0, 1]
are fixed points, while the second equation has the unique fixed point x = 1

2
. Note,

however, that this fixed point cannot be determined as the limit of the recursive
sequence (1.1.4) (unless, of course, one starts from the fixed point itself; that is, if
x0 = 1

2
, in which case xn = 1

2
for all n). Indeed, in this case the sequence (1.1.4)

is the union of the two subsequences (x2n)n≥0 and (x2n+1)n≥0, which are constant
(more precisely, x2n = x0 and x2n+1 = x1 = 1 − x0 for each n ∈ IN ; note that
x2n = x2n+1 = 1

2
if x0 = 1

2
).

3) The existence (but not necessarily the uniqueness) of solutions to equation (1.1.3)

in an interval [a, b], with ϕ continuous and ϕ([a, b]) ⊆ [a, b] (i.e., with ϕ mapping
[a, b] into itself) is a consequence of the mean value theorem of continuous functions.
Indeed, the assumption that ϕ maps [a, b] into itself translates into the inequalities

a ≤ min{ϕ(a), ϕ(b)} ≤ max{ϕ(a), ϕ(b)} ≤ b ; (1.1.13)

letting f(x) := x− ϕ(x), it follows that

f(a) = a− ϕ(a) ≤ 0 , f(b) = b− ϕ(b) ≥ 0 . (1.1.14)

Consequently, there is at least one z ∈ [a, b] such that f(z) = 0, which is equivalent
to (1.1.3). For example, consider ϕ(x) = x2 in [0, 1]: ϕ is not a contraction (take

1We consider intervals [a, b] ⊆ IR as metric spaces with the distance induced by the standard
euclidean distance of IR.
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x = 1 − ε and y = 1 − 2ε, with ε ≤ 1
3
), but equation (1.1.3) has the two solutions

x = 0 and x = 1. Likewise, consider the case ϕ(x) = 4x (1 − x) in [0, 1]. Then, ϕ
maps [0, 1] into [0, 1], but is not a strict contraction on [0, 1]. Still, the corresponding
equation (1.1.3) has the solutions x = 0, x = 3

4
, and x = 1. �

1.2 Algebraic Equations

1. The Banach fixed point theorem can be used to solve equations of the form (1.1.3),
i.e.

x = g(x) , (1.2.1)

as well as equations of the more general form

f(x) = 0 ; (1.2.2)

indeed, the latter can be reduced to the format (1.2.1), by setting

x = x− α f(x) =: gα(x) , (1.2.3)

where 0 6= α ∈ IR is chosen so that gα is a strict contraction on an interval [a, b]
in which one knows, e.g. by graphical methods, that (1.2.2) has a unique solution z
of (1.2.2). We assume g and f to be of class C1; then, the confirmation that [a, b]
contains a unique solution of (1.2.2) follows in two steps, usually consisting in first
verifying the condition f(a) f(b) < 0, which, by the intermediate value theorem for
continuous functions, yields the existence of a solution in [a, b], and then invoking
the monotonicity of f in [a, b] to ensure that there are no other solutions of (1.2.2)

in [a, b]. At this point, theorem 1.1.1 yields that the solution can be approximated
by means of a sequence like (1.1.4).

2. We illustrate this procedure with a few examples; in practice, the challenge is to
find suitable values for a, b, and α; the constant L of (1.1.1) will in general depend
on these quantities.

Example 1. We know that the equation

x = cosx (1.2.4)

admits a unique solution z ∈
[
0, π

2

]
(the reader is encouraged to compare the graphs

of the functions x 7→ cosx and x 7→ x for x ∈
[
0, π

2

]
). Equation (1.2.4) is already
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in the form (1.2.1), with g(x) = cosx. This g is a contraction on
[
0, π

2

]
, albeit not

necessarily a strict contraction. Indeed, by the mean value theorem for differentiable
functions, given x, y ∈

[
0, π

2

]
, there is θ ∈

[
0, π

2

]
such that

cosx− cos y = (− sin θ) (x− y) ; (1.2.5)

but since we do not know the value of θ, the best estimate we can derive from (1.2.5)

is
| cosx− cos y| ≤ | sin θ| |x− y| ≤ 1 |x− y| , (1.2.6)

which is (1.1.1) with L = 1 (for completeness sake, we prove explicitly that g is not

a strict contraction on
[
0, π

2

]
at the end of this section). To overcome this difficulty,

we realize that, since neither x = 0 nor x = π
2

are solutions of (1.2.4), we can restrict
our attention to a smaller interval [α, β], with 0 < α = cos β < 1 < β < π

2
(so that g

maps [α, β] into itself). Then, if x, y ∈ [α, β], also θ ∈ [α, β] (because θ lies between
x and y); thus,

| sin θ| ≤ sin β =: L < 1 . (1.2.7)

In other words, g is a strict contraction on [α, β]; thus, z can be determined as the
limit of the sequence (1.1.4), which here reads

xn+1 = cosxn , (1.2.8)

starting from an arbitrary x0 ∈ [α, β]. For example, taking β = π
3
∈

]
1, π

2

[
, and

starting from x0 = π
4
, we compute that:

x1 = cos
(
π
4

)
= 1√

2
; L = sin

(
π
3

)
=
√

3
2

;

1
1−L = 2(2 +

√
3) ; d(x0, x1) = | 1√

2
− π

4
| ;

(1.2.9)

thus, if we want to find an approximate solution of (1.2.4) with an error not exceeding,
e.g., ε = 10−5, by (1.1.5) it is sufficient to consider xn with n such that(√

3
2

)n
2(2 +

√
3)
∣∣∣ 1√

2
− π

4

∣∣∣︸ ︷︷ ︸
=: a

≤ 10−5 ; (1.2.10)

that is,

n ≥ ln(a 105)

ln(2/
√

3)
. (1.2.11)

To prove that g(x) = cosx is not a strict contraction on
[
0π

2

]
, we proceed by

contradiction. Thus, we assume that there is L ∈ ]0, 1[ such that

| cosx− cos y| ≤ L |x− y| (1.2.12)
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for all x, y ∈
[
0, π

2

]
. For small ε > 0, we choose x = π

2
− ε and y = π

2
− 2ε. Then,

(1.2.12) yields

2 cos
(

3ε
2

)
sin

(
ε
2

)
= | sin(ε)− sin(2ε)|

=
∣∣∣cos

(
π
2
− ε

)
− cos

(
π
2
− 2ε

)∣∣∣ ≤ Lε ,
(1.2.13)

from which

cos
(

3ε
2

) sin( ε2)
ε
2
≤ L . (1.2.14)

Letting then ε→ 0 we obtain the contradiction

1 ≤ L < 1 . (1.2.15)

This confirms that g, while being a contraction on
[
0, π

2

]
, is not a strict one. 2

Example 2. Consider the equation

f(x) = x2 − e−x = 0 (1.2.16)

in the interval [0, 1]. Since f(0) = −1 < 0 and f(1) = 1 − 1
e
> 0, there is at least

one z ∈ ]0, 1[ such that f(z) = 0; since f ′(x) = 2x + e−x > 0, such solution of
(1.2.16) is unique. We also note that f ′′(x) = 2− e−x ≥ 2− 1 > 0 in [0, 1]; thus, f ′

is monotone increasing in [0, 1], with

f ′(0) = 1
e
≤ f ′(t) ≤ f ′(1) = 2 + 1

e
(1.2.17)

for all t ∈ [0, 1]. For α > 0, set

gα(x) := x− α f(x) = x− α (x2 − e−x) , (1.2.18)

in accord with (1.2.3). Then,

gα(0) = α > 0 , gα(1) = 1− α
(
1− 1

e

)
< 1 , (1.2.19)

and, by (1.2.17),

g′α(x) = 1− α f ′(x) > 0 if α ≤ 1
3
. (1.2.20)

This implies that

0 < gα(0) ≤ gα(x) ≤ gα(1) < 1 , (1.2.21)
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which means that gα maps the interval [0, 1] into itself. Next, let 0 ≤ x < y ≤ 1.
By the mean value theorem for differentiable functions, there is θ ∈ [x, y] such that

gα(x)− gα(y) = (x− y)− α (f(x)− f(y)) = (x− y)(1− α f ′(θ)) . (1.2.22)

By (1.2.17), it follows that, if e.g. α ≤ 1
3
,

1− α f ′(θ) ≤ 1− α
e

=: L < 1 ,

1− α f ′(θ) ≥ 1− 1
3

(
2 + 1

e

)
> 0 .

(1.2.23)

In conclusion, we have found that, if α ≤ 1
3

and L is as in (1.2.23), if 0 ≤ x ≤ y ≤ 1
(if y ≤ x, we just invert the roles of x and y),

|gα(x)− gα(y)| = gα(x)− gα(y) = (x− y)(1− α f ′(θ)) ≤ L(x− y) . (1.2.24)

Hence, gα is a strict contraction on [0, 1], and the solution z of (1.2.16) can be found
as the limit of the iterative sequence

xn+1 = gα(xn) = xn − α(x2
n − e−xn) . (1.2.25)

Note that letting n→∞ in (1.2.25) yields the identity

z = z − α(z2 − e−z) , (1.2.26)

so that, indeed, z2 = e−z, as desired in (1.2.16). 2

Example 3. We apply the procedure outlined in section (3) above to the second
equation in (1.1.12), i.e.

x = 1− x , (1.2.27)

written as
f(x) := 1− 2x = 0 . (1.2.28)

Choosing (e.g.) α = − 1
4
, (1.2.3) reads

x = x+ 1
4

(1− 2x) = 1
2
x+ 1

4
=: g(x) , (1.2.29)

in which g maps [0, 1] into [0, 1], and is a strict contraction, with L = 1
2
. As expected,

g
(

1
2

)
= 1

2
; that is, 1

2
is the fixed point of g. 2

Example 4. We consider the equation

x2 − 5x+ 6 = 0 , (1.2.30)
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and find its solutions without using the quadratic formula. Admittedly, this is
overkill; but we do this in order to further illustrate the use of the fixed point
method. We write (1.2.30) in the form (1.2.2), as

x = 1
5

(x2 + 6) =: g(x) . (1.2.31)

This g maps the interval
[

6
5
, 12

5

]
into itself, because

6
5
< g

(
6
5

)
= 186

155
< g

(
12
5

)
= 294

125
< 12

5
, (1.2.32)

and is a strict contraction on this interval, because

0 < 2
5

6
5
< g ′(x) = 2

5
x ≤ 2

5
12
5

= 24
25
< 1 . (1.2.33)

Thus, there is a unique solution z ∈
[

6
5
, 12

5

]
of equation (1.2.31), which can be ob-

tained, e.g., as the limit of the sequence

x0 = 6
5
, xn+1 = g(xn) = 1

5
(x2

n + 6) . (1.2.34)

we now show, by induction on n, that, for all n ≥ 0,

x0 < xn < xn+1 < 2 ; (1.2.35)

that is, the sequence (xn)n≥0 is strictly increasing, and bounded above. Indeed, for
n = 0,

x0 = 6
5
< 2 , x1 = g

(
6
5

)
> 6

5
= x0 , (1.2.36)

having recalled the first inequality of (1.2.32). Since g is strictly increasing in
[

6
5
, 12

5

]
,

xn < xn+1 ⇐⇒ g(xn−1) < g(xn)⇐⇒ xn−1 < xn , (1.2.37)

which confirms the monotonicity of the sequence. Finally, if xn < 2, from (1.2.34) we
deduce that also

xn+1 = 1
5

(x2
n + 6) < 1

5
(4 + 6) = 2 . (1.2.38)

Since the sequence is bounded above by 2, it converges to its upper limit z, with
z ≤ 2. In fact, we see that z = 2; for, if z < 2, we would deduce the contradiction

0 < g(z) < g(2) = 0 (1.2.39)

(recall that g is increasing in
[

6
5
, 12

5

]
). Thus, z = 2, which is a solution of (1.2.30),

and the only solution in
[

6
5
, 12

5

]
. We leave it as an exercise to show that the same
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conclusion holds if the first term of the sequence (xn)n≥0 is chosen in the interval]
6
5
, 2
[

(the argument is the same), or in the interval
]
2, 12

5

]
(in this case, the sequence

(xn)n≥0 is decreasing).

We point out that writing (1.2.30) in the form (1.2.31) does not allow us to capture
the other solution z = 3, even though g(3) = 3. This is because there is no interval
J = [3 − α, 3 + β], with α and β > 0, such that g maps J into itself; that is, such
that

3− α ≤ g(3− α) < g(3 + β) ≤ 3 + β . (1.2.40)

Indeed, while the first inequality of (1.2.40) can be satisfied if α ≥ 1, the second is
equivalent to

(3 + β)2 + 6 ≤ 5 (3 + β) , (1.2.41)

which cannot be satisfied for if β > 0. To capture the solution z = 3 of (1.2.30), we
need to write it in the form (1.2.3); we leave this process as an exercise.

1.3 Applications to IVPs.

1. The Banach fixed point theorem can be successfully applied to determine local or
global solutions to the Cauchy problem for nonlinear first order ODEs, of the form y ′ = f(t, y) ,

y(t0) = y0 .
(1.3.1)

Here, we assume that f : [a, b] × IRN → IRN is a continuous function, satisfying a
Lipschitz condition in y, uniform with respect to t; namely, that there is C > 0 such
that, for all t ∈ [a, b], and all y, ỹ ∈ IRN ,

|f(t, y)− f(t, ỹ)| ≤ C |y − ỹ| (1.3.2)

(that is, the Lipschitz constant C is independent of t). In these conditions, we set
X1 := C1([a, b]→ IRN), and claim:

Theorem 1.3.1 [Picard - Lindelöf.] For all (t0, y0) ∈ [a, b] × IRN , there exists a
unique function y ∈ X1, solution of the initial-value problem (1.3.1).
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Proof. 1) By the fundamental theorem of integral calculus, finding solutions of (1.3.1)

in X1 is equivalent to finding solutions to the integral equation

y(t) = y0 +
∫ t

t0
f(θ, y(θ)) dθ (1.3.3)

in the space X0 := C([a, b] → IRN). We endow this space with the metric defined
by

d(g, h) := max
a≤t≤b

e−(C+1)|t−t0| |g(t)− h(t)| , (1.3.4)

leaving it to the reader to verify that (1.3.4) does define a distance in X0. Let
M = (X0, d). We note that the exponential factor e−(C+1)|t−t0| in (1.3.4) is bounded
from above and below, because the estimate |t− t0| ≤ b− a yields that

0 < e−(C+1)(b−a) ≤ e−(C+1)|t−t0| ≤ 1 . (1.3.5)

Hence, convergence of a sequence of functions in X0 with respect to the distance
(1.3.4) is equivalent to the uniform convergence of the sequence in X0 (the reader
should verify this explicitly). It follows that M is a complete metric space.

2) We define ϕ : X0 → X0 by

[ϕ(g)](t) := y0 +
∫ t

0
f(θ, g(θ)) dθ , t ∈ [a, b] , (1.3.6)

and proceed to verify that ϕ is a strict contraction in X0, with respect to the metric
(1.3.4). To see this, we show that

d(φ(g), φ(g̃)) ≤ C
C+1

d(g, g̃) (1.3.7)

for all g, g̃ ∈ M (that is, (1.1.1) holds, with L = C
C+1

< 1). Let first a < t0 < t ≤ b.
Then, |t− t0| = t− t0, so we compute and estimate

e−(C+1)(t−t0) |[φ(g)](t)− [φ(g̃)](t)|

≤ e−(C+1)(t−t0)
∫ t

t0
|f(θ, g(θ))− f(θ, g̃(θ))| dθ

≤ e−(C+1)(t−t0)
∫ t

t0
e(C+1)(s−t0) e−(C+1)(s−t0) C |g(θ)− g̃(θ)| dθ
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≤ C e−(C+1)(t−t0) max
a≤s≤b

(
e−(C+1)|θ−t0| |g(θ)− g̃(θ)|

)

·
∫ t

t0
e(C+1)(θ−t0) dθ (1.3.8)

= C d(g, g̃) e−(C+1)(t−t0)
∫ t

t0
e(C+1)(θ−t0) dθ

≤ C
C+1

d(g, g̃) e−(C+1)(t−t0)
(
e(C+1)(t−t0) − 1

)

= C
C+1

d(g, g̃)
(
1− e−(C+1)(t−t0)

)
≤ C

C+1
d(g, g̃) .

We leave it to the reader to show that the same estimate holds if a ≤ t < t0 ≤ b. In
conclusion, we have found that

e−(C+1)(t−t0)
∣∣∣[ϕ(g)](t)− [ϕ(g̃)](t)

∣∣∣ ≤ C
C+1

d(g, g̃) (1.3.9)

for all t ∈ [a, b]. The right side of (1.3.9) is a number independent of t; hence, also

max
a≤t≤b

e−(C+1)(t−t0)
∣∣∣[ϕ(g)](t)− [ϕ(g̃)](t)

∣∣∣ ≤ C
C+1

d(g, g̃) , (1.3.10)

which means exactly that (1.3.7) holds. It follows that ϕ is a strict contraction on
M , as claimed.

3) By theorem 1.1.1, we conclude that there exists a unique y ∈ X0, which is a fixed
point of ϕ; that is, y is a solution of the integral equation (1.3.3). It follows that, in
fact, y ∈ X1, and is the desired solution of the initial-value problem (1.3.1). 2

2: An example. Let b > 0, and define f : [0, b] × IR → IR by f(t, x) = x. Then,
f is Lipschitz continuous on [0, b], uniformly in t, with Lipschitz constant C = 1.
Consider the initial value problem x ′ = x ,

x(0) = 1
(1.3.11)

(i.e., with t0 = 0 and x0 = 1). Thus, in this example,

[φ(g)](t) = 1 +
∫ t

0
g(θ) dθ , (1.3.12)
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φ being a strict contraction on X0 = C([0, b] → IR), with L = C
C+1

= 1
2
. In accord

with the Picard-Lindelöf theorem, the solution of the initial value problem (1.2.4) is
given by the limit of the iterative sequence

xn+1 = φ(xn) ; (1.3.13)

that is,

xn+1(t) = 1 +
∫ t

0
xn(θ) dθ . (1.3.14)

Starting with x0(t) ≡ 1 (consistently with the initial condition x(0) = 1), we com-
pute:

x1(t) = 1 +
∫ t

0
x0(θ) dθ = 1 +

∫ t

0
1 dθ = 1 + t ; (1.3.15)

x2(t) = 1 +
∫ t

0
x1(θ) dθ = 1 +

∫ t

0
(1 + θ) dθ = 1 + t+ 1

2
t2 ; (1.3.16)

x3(t) = 1 +
∫ t

0
x2(θ) dθ = 1 +

∫ t

0

(
1 + θ + 1

2
θ2
)

dθ = 1 + t+ 1
2
t2 + 1

6
t3 ;(1.3.17)

in general,

xn(t) = · · · = 1 + t+ 1
2
t2 + · · · + 1

n!
tn =

n∑
k=0

1
k!
tk . (1.3.18)

It is well-known that the sequence (xn)n≥0 converges, uniformly on [0, b], to the
function

x(t) =
∞∑
k=0

1
k!
tk = et , (1.3.19)

which is indeed the solution of the initial value problem (1.3.11). �



Chapter 2

Basic Distribution Theory.

In this chapter we present some basic results in the theory of distributions, and their
application to PDEs. The main ideas of the theory of distributions were investigated
and developed by Laurent Schwartz in the late 1940s; apparently, he introduced the
term “distribution” in analogy with the distribution of an electrical point charge in
a region of space. A particular class of distributions includes those distributions that
can be constructed from functions; this construction is based on considering integrals
of functions, rather than the functions themselves. This is one of the reasons for the
rather extensive study of the Lebesgue spaces Lp in Functional Analysis.

2.1 Motivations from PDEs.

Our goal in this section is to extend the meaning of solution to a PDE, introducing
a generalized notion of derivative of a function, and to explain how a function
having derivatives only in such generalized sense can be a solution to a PDE. The
argument we follow to introduce the definition of generalized derivatives is quite
standard, and consists in finding first some necessary conditions, expressed by means
of integrals, that a sufficiently smooth function will satisfy, and then investigating
if such conditions are also sufficient. When not, the conditions themselves will be
taken as the basis of the definition of the new type of derivative. This is the same
procedure we follow when introducing the definition of real numbers as equivalence
classes of Cauchy sequences of rational numbers: For a sequence of rational numbers

17
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to converge, it is necessary that it be a Cauchy sequence, but the latter is sufficient
only if the limit is a rational number. Otherwise, the Cauchy sequence itself is taken
as the definition of (a representative of) a type of number, called a real number.

1. We start with an example from PDEs. The simplest model of the so-called
transport equation is the linear equation

ut + ux = 0 , (2.1.1)

for u = u(t, x), (t, x) ∈ IR2. If u0 ∈ C1(IR), the function

u(t, x) := u0(x− t) (2.1.2)

is a solution of (2.1.1), with u ∈ C1(IR2). However, the definition (2.1.2) of u makes
sense even if u0 is only continuous, or even if u0 ∈ L1

loc(IR) only. In these cases, we
would still want to say that u is, in some sense we want to specify, a generalized
solution to (2.1.1).

To this end, we consider the following necessary conditions. Assume that (2.1.1) does
have a classical solution u ∈ C1(IR2). Then, using integration by parts, we find that
for all functions ϕ ∈ C1

0(IR2)

0 =
∫
IR2

(ut + ux)ϕ dA = −
∫
IR2
u (ϕt + ϕx) dA . (2.1.3)

That is, if (2.1.1) has a C1 solution, this solution must satisfy the infinite set of
identities ∫

IR2
u (ϕt + ϕx) dA = 0 , ϕ ∈ C1

0(IR2) . (2.1.4)

Conversely, this condition is also sufficient only if u ∈ C1(IR2); that is, if u ∈ C1(IR2)
is such that (2.1.4) holds, then, using the fact that ϕ is arbitrary, we can deduce that
u is a solution of (2.1.1). Note that the identities in (2.1.4) involve integrals, while
the identity in (2.1.1) involves derivatives.

The key point in our argument is now to realize that each identity (2.1.4) makes
sense even if u ∈ L1

loc(IR
2) only. This motivates the following

Definition 2.1.1 A function u ∈ L1
loc(IR

2) is a generalized solution of (2.1.1) if
(2.1.4) holds.
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Clearly, classical solutions of (2.1.1) are also generalized ones.

Proposition 2.1.1 Let u0 ∈ L1
loc(IR), and define u as in (2.1.2). Then, u is a

generalized solution of (2.1.1). (Note that, if we only know that u0 ∈ L1
loc(IR), then u

need not be a classical solution to (2.1.1)).

Proof. We first show that u ∈ L1
loc(IR

2). Let K ⊂ IR2 be compact, and R > 0 be
such that K ⊆ [−R,R]× [−R,R] =: KR. Then,∫

K
|u(t, x)| dA =

∫
K
|u0(x− t)| dA

≤
∫
KR
|u0(x− t)| dA

=
∫ R

−R

∫ R−t

−R−t
|u0(r)| dr dt (2.1.5)

≤
∫ R

−R

∫ 2R

−2R
|u0(r)| dr dt

= 2R
∫ 2R

−2R
|u0(r)| dr ≤ 2R |u0|1 .

This confirms that u ∈ L1
loc(IR

2). To show that u satisfies (2.1.4), fix an arbitrary
ϕ ∈ C1

0(IR2), let K = suppϕ, and, as above, let R > 0 be such that K ⊆ [−R,R]×
[−R,R] =: KR. Since C∞0 (]−R,R[) is dense in L1(]−R,R[), there exists a sequence
(uk)k∈IN ⊂ C∞0 (]−R,R[), such that∫ R

−R
|uk(x)− u0(x)| dx→ 0 . (2.1.6)

Let then ψ := ϕt + ϕx, and

ψ0 := max{ |ψ(t, x)| | (t, x) ∈ K } . (2.1.7)

Proceeding as in (2.1.5), we estimate∫
IR2
|uk(x− t)− u0(x− t)| |ψ(t, x)| dA
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=
∫
K
|uk(x− t)− u0(x− t)| |ψ(t, x)| dA

≤ ψ0

∫
KR
|uk(x− t)− u0(x− t)| dA (2.1.8)

≤ 2Rψ0

∫ R

−R
|uk(r)− u0(r)| dr .

By (2.1.6), this last term tends to 0 as k → ∞. Recalling the definition of ψ, this
implies that ∫

IR2
u0(x− t) (ϕt(t, x) + ϕx(t, x)) dA

= lim
k→+∞

∫
IR2
uk(x− t) (ϕt(t, x) + ϕx(t, x)) dA (2.1.9)

= − lim
k→+∞

∫
IR2

(
ukt (x− t) + ukx(x− t)

)
ϕ(t, x) dA = 0 .

Consequently, (2.1.4) holds, and u is indeed a generalized solution of (2.1.1). 2

2. The procedure of this example is rather typical; that is, in order to find a gener-
alized solution u to a PDE, one generally looks for approximate, smooth solutions
uk, and then hopes that these converge to a possibly non smooth function, which
would then be recognized as a solution in the desired generalized sense. Of course,
the choice of the most convenient topology to control the convergence (as in the L1

norm of (2.1.6)) is extremely important; in general one wants to consider the weakest
possible topology. In particular, one often deals with sequences of approximating
solutions which converge only weakly.

Exercise 2.1.1 Let u0, u1 ∈ L1
loc(IR). Show that d’Alembert’s formula

u(t, x) := 1
2

{
u0(x+ t) + u0(x− t) +

∫ x+t

x−t
u1(r) dr

}
(2.1.10)

defines a generalized solution to the linear wave equation

utt − uxx = 0 , (2.1.11)
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with initial values
u(0, x) = u0(x) , ut(0, x) = u1(x) , (2.1.12)

for almost all x ∈ IR.

2.2 Towards Distributions.

Our goal in this section is to introduce a generalization of the notion of the first order
derivative of a function f ∈ L1

loc(IR), which is not assumed to be differentiable in the
classical sense. We will call this new derivative the distributional derivative of f .
To this end, we consider the space C1

0(IR) consisting of those real-valued functions
of a real variable, which are at least once differentiable, with continuous first order
derivative, and whose support is compact in IR. We recall that the support of a
continuous function ϕ : IR→ IR is the closure of the set on which ϕ does not vanish;
that is,

supp (ϕ) := {x ∈ IR | ϕ(x) 6= 0} . (2.2.1)

For example, if

ϕ(x) =

 exp
(
−1

1−|x|2
)

if |x| < 1 ,

0 otherwise ,
(2.2.2)

the support of ϕ is the interval [−1, 1]. Note that if ϕ ∈ C1
0(IR), the support of ϕ ′

is also compact; in fact,
supp (ϕ ′) ⊆ supp (ϕ) . (2.2.3)

We show this in the simple situation when supp (ϕ ′) = [c, d] and supp (ϕ) = [a, b]
(for the general case, see proposition 2.4.1 below). Arguing by contradiction, assume
e.g. that b < d (the other cases are proven similarly). Let z ∈ ]b, d[. Then, z is in
the interior of the support of ϕ ′, so that ϕ ′(z) 6= 0. On the other hand, consider
an open neighborhood I of z such that I ⊂ ]b, d[. Then I ∩ [a, b] = ∅; consequently,
ϕ(x) = 0 for all x ∈ I, and this implies that ϕ ′(z) = 0.

1. In this introductory section, we provisionally define a distribution on IR to be a
linear map T from C1

0(IR) into IR, which is sequentially continuous, in the sense that
if a sequence (ϕn)n≥0 ⊂ C1

0(IR) and a function ϕ ∈ C1
0(IR) are such that ϕ and all

the ϕn vanish outside a compact set K ⊂ IR, and ϕm → ϕ and ϕ ′n → ϕ ′ uniformly
on K, then

T (ϕn) → T (ϕ) (in IR) . (2.2.4)
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(This is not the precise definition of sequential continuity for distributions, which
will be given in part (2) of section 2.4, but it will do for the present introduction.)

Given f ∈ L1
loc(IR), we can define two linear maps Tf , T̃f : C1

0(IR)→ IR, by

Tf (ϕ) :=
∫ +∞

−∞
f(x)ϕ(x) dx , (2.2.5)

T̃f (ϕ) := −
∫ +∞

−∞
f(x)ϕ ′(x) dx , (2.2.6)

for all ϕ ∈ C1
0(IR), and these maps are sequentially continuous. Hence, Tf and T̃f

are distributions, in the provisional sense we have adopted. Note that

T̃f (ϕ) = −Tf (ϕ ′) . (2.2.7)

We call Tf the distribution generated by f , and T̃f the distributional derivative of
Tf . This terminology is motivated by the following remark. Let f ∈ C1(IR). Then,
both f and f ′ ∈ L1

loc(IR), so that these functions generate the distributions Tf and
Tf ′ , via the first of (2.2.5). Integrating by parts, we see that, for all ϕ ∈ C1

0(IR),

Tf ′(ϕ) =
∫ +∞

−∞
f ′(x)ϕ(x) dx = −

∫ +∞

−∞
f(x)ϕ ′(x) dx = T̃f (ϕ) ; (2.2.8)

that is, if f ∈ C1(IR), then

Tf ′ = T̃f , (2.2.9)

which means that the distributional derivative of the distribution generated by f
(i.e., the right side of (2.2.9)), coincides with the distribution generated by the clas-
sical derivative f ′ (i.e., the left side of (2.2.9)). In addition, by (2.2.7),

Tf ′(ϕ) = −Tf (ϕ ′) , (2.2.10)

for all ϕ ∈ C1
0(IR). The key point in this argument is that the distribution T̃f can

be defined even if f ∈ L1
loc(IR) only; that is, the right side of (2.2.10) still makes

sense, while the left side in general does not. Thus, with the same logic that led to
definition 2.1.1, we identify the function f ∈ L1

loc(IR) with the map Tf defined in
(2.2.5), and call T̃f the distributional derivative of f . It is important to realize that
the distributional derivative of an integrable function is a distribution, and not a
function. On the other hand, given f ∈ L1

loc(IR), it may or it may not happen that
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there is another g ∈ L1
loc(IR) such that T̃f = Tg; that is, by (2.2.6) and (2.2.5), such

that the identities

−
∫ +∞

−∞
f(x)ϕ ′(x) dx =

∫ +∞

−∞
g(x)ϕ(x) dx (2.2.11)

hold, for all ϕ ∈ C1
0(IR). For example, this is the case when f ∈ C1(IR), with

g = f ′. We call g the generalized derivative of f ; thus, the generalized derivative of
an integrable function is a function.

2. We summarize the notions introduced so far in

Definition 2.2.1 Let f ∈ L1
loc(IR).

1 ) The linear, sequentially continuous map Tf : C1
0(IR)→ IR defined by (2.2.5) (i.e.,

the distribution Tf ) is called the distribution defined by f .
2 ) The linear, sequentially continuous map T̃f : C1

0(IR) → IR defined by (2.2.6) is
another distribution, called the distributional derivative of f . To emphasize the fact
that T̃f is a derivative, we change notations and denote this map by f ′d; that is, we
set f ′d := T̃f , and rewrite (2.2.6) as

f ′d(ϕ) := −
∫ +∞

−∞
f(x)ϕ ′(x) dx = −Tf (ϕ ′) . (2.2.12)

3 ) If there is g ∈ L1
loc(IR) such that f ′d = Tg, i.e. (2.2.11) holds, we call g the

generalized derivative of f , and set g =: f ′g; in this case, (2.2.7) reads

f ′d(ϕ) = Tg(ϕ) = −Tf (ϕ ′) . (2.2.13)

To repeat in a slightly different way:

1) A locally integrable function f defines, via (2.2.5), a distribution Tf , which is a
linear, sequentially continuous map from C1

0(IR) into IR;
2) The distribution Tf defines another distribution f ′d, via (2.2.12);
3) We identify f with Tf , and say that f ′d is the distributional derivative of f ;
4) If there is another locally integrable function g such that the two distributions f ′d
and Tg coincide, we say that g is the generalized derivative of f , and write g =: f ′g.
5) The distributional derivative of f is a distribution, while its generalized derivative
is a function.

It may be worth to note explicitly that, while the independent variable for the
functions f and f ′ (if the latter exists) is a real number, the independent variable
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for the maps Tf and f ′d is a function in C1
0(IR). The motivation of definition 2.2.1 is

similar to the one that led to the definition 2.1.1 of a generalized solution of the PDE
(2.1.1): (2.2.10) is a necessary condition that the derivative f ′ of a function f ∈ C1(IR)
does satisfy, and that the distributional derivative of f should satisfy. Therefore, it is
natural to take the right side of (2.2.10) as the definition of such new kind of derivative
of f (it is not difficult to prove that the distributional derivative of f is uniquely
determined by f). It is also worth to keep in mind that classical differentiation is a
local concept, while the definition (2.2.12) of distributional derivative is a global one,
as it involves integrals.

3. A function f ∈ L1
loc(IR) can therefore have two types of derivatives: the distribu-

tional and the generalized one. However, we should really be careful about the fact
that the former is in fact the derivative of the map Tf . The advantage of considering
distributional derivatives should be obvious, because while a function f ∈ L1

loc(IR)
may fail to have a generalized derivative, it (or, rather, the corresponding map Tf )
always has a distributional derivative, which is the distribution f ′d.

A natural question is whether definition 2.2.1 is consistent, in the sense that if f
has a locally integrable classical derivative f ′, then f ′ is the generalized derivative
of f . This means that the maps f ′d and Tf ′ should coincide on C1

0(IR); that is, by
(2.2.9) and (2.2.10),

f ′d(ϕ) = Tf ′(ϕ) (2.2.14)

for all ϕ ∈ C1
0(IR). In turn, this means that identity (2.2.8) (which is true if f ∈

C1(IR)) should hold. This is not always the case: as shown in Rudin, [7], § 6.14, this
is indeed the case if, and in fact only if, f is absolutely continuous (in which case f
is differentiable almost everywhere, with derivative f ′ ∈ L1(IR)).

4. We now consider a few examples of distributional and generalized derivatives.

4.1. We start with the computation of the distributional derivative of the Heaviside
functions.

Example 2.2.1 Let α ∈ IR, and define Hα : IR \ {α} → IR by

Hα(x) :=

 0 if x < α ,

1 if x > α .
(2.2.15)

The function Hα is called the Heaviside function centered at α. Clearly, Hα ∈
L1

loc(IR), so we can consider the linear maps THα defined by (2.2.5). We wish to
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compute the distributional derivative of Hα; that is, in the notation of (2.2.12), the
distribution (Hα)′d.

Proposition 2.2.1 Given α ∈ IR, define a map δα : C1
0(IR)→ IR by

δα(ϕ) := ϕ(α) . (2.2.16)

Then, δα is linear and sequentially continuous, hence a distribution on IR, and

(Hα)′d = δα . (2.2.17)

Proof. 1) The linearity of δα is obvious. As for its sequential continuity, we have to
show that δα transforms converging sequences ϕm → ϕ in C1

0(IR) into converging
sequences in IR. Thus, we fix a compact set K ⊂ IR such that ϕ and all the ϕm
vanish outside K, and ϕm → ϕ uniformly on K. Then, if α ∈ K,

δα(ϕm) = ϕm(α)→ ϕ(α) = δα(ϕ) ; (2.2.18)

the same is obviously true if α /∈ K, since in this case

δα(ϕm) = 0 = δα(ϕ) . (2.2.19)

Recalling (2.2.4), this means that δα is sequentially continuous.

2) To prove (2.2.17), we must show that, for all ϕ ∈ C1
0(IR),

(Hα)′d(ϕ) = δα(ϕ) . (2.2.20)

Recalling (2.2.6) of definition 2.2.1, this follows from

(Hα)′d(ϕ) = −THα(ϕ ′) = −
∫ +∞

−∞
Hα(x)ϕ ′(x) dx

= −
∫ α

−∞
0ϕ ′(x) dx−

∫ +∞

α
1ϕ ′(x) dx (2.2.21)

= −
∫ +∞

α
ϕ ′(x) dx = ϕ(α) = δα(ϕ) .

The distribution δα is called the Dirac mass centered at α. 2

4.2. More generally 1,

1Theorem 1.14 and example 1.15 of Seiler, [8], with reversed roles of v and w in the theorem.
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Theorem 2.2.1 Let x0 ∈ IR, and v ∈ C1(]−∞, x0]), w ∈ C1([x0,+∞[). Define u
and ũ : IR \ {x0} → IR by

u(x) :=

 v(x) if x < x0 ,

w(x) if x > x0 ,
ũ(x) :=

 v ′(x) if x < x0 ,

w ′(x) if x > x0 .
(2.2.22)

Then, u and ũ ∈ L1
loc(IR); ũ = u ′ separately on ]−∞, x0[ and ]x0,+∞[, and

(Tu)
′ = Tũ − (v(x0)− w(x0)) δx0 . (2.2.23)

Proof. The claims on u, ũ, and u ′ are clear. To show (2.2.23), let ϕ ∈ C1
0(IR).

Recalling (2.2.12), we compute

[(Tu)
′](ϕ) = [−Tu](ϕ ′) = −

∫ +∞

−∞
u(x)ϕ ′(x) dx

= −
∫ x0

−∞
v(x)ϕ ′(x) dx−

∫ +∞

x0

w(x)ϕ ′(x) dx

=
∫ x0

−∞
v ′(x)ϕ(x) dx− v(x0)ϕ(x0)

+
∫ +∞

x0

w ′(x)ϕ(x) dx+ w(x0)ϕ(x0) (2.2.24)

=
∫ +∞

−∞
ũ(x)ϕ(x) dx− (v(x0)− w(x0))ϕ(x0)

= Tũ(ϕ)− (v(x0)− w(x0)) δx0(ϕ)

= [Tũ − (v(x0)− w(x0)) δx0 ] (ϕ) .

This proves (2.2.23). Note that the number

− (v(x0)− w(x0)) = u(x+
0 )− u(x−0 ) (2.2.25)

measures the height of the jump of u at the discontinuity x0. 2

For example, consider the Heaviside function u = H0, with (e.g.) v(x) = 0 for x ≤ 0
and w(x) = 1 for x ≥ 0. Then, ũ(x) = 0, and (2.2.23) reads

(Hu)
′ = 0 + (w(0)− v(0)) δ0 = (1− 0) δ0 = δ0 , (2.2.26)

as we know from (2.2.17) with α = 0.
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Example 2.2.2 Let u(x) := |1 − x2|. Since u is continuous on IR, (Tu)
′ = Tu ′,

where u ′ is the classical derivative of u, defined in IR \ {∓1}; that is,

u ′(x) =

 − 2x if |x| < 1 ,

+ 2x if |x| > 1 .
(2.2.27)

We wish to use (2.2.22), with u replaced by u ′, to compute (Tu ′)
′. To this end, we

set ũ1 := ũ ′, that is,

ũ1(x) :=

 − 2 if |x| < 1 ,

+ 2 if |x| > 1 ;
(2.2.28)

from which it follows that: at x0 = −1 , v(x) = +2x , w(x) = −2x ,

at x0 = +1 , v(x) = −2x , w(x) = +2x .
(2.2.29)

Consequently,

(Tu ′)
′ = Tũ1 − (2(−1)− (−2)(−1)) δ−1 − ((−2)1− 2(1)) δ1

= Tũ1 + 4 δ−1 + 4 δ1 ,
(2.2.30)

which records the fact that u ′ has two jumps, at x = −1 and x = 1, each of height
4.

4.3. The next example illustrates the relationship between the classical derivative
of a piecewise differentiable function and its distributional derivative.

Proposition 2.2.2 Define f and g by

f(x) :=


0 if x ≤ 0 ,
x if 0 < x ≤ 1 ,
1 if 1 < x ,

g(x) :=


0 if x ≤ 0 ,
1 if 0 < x ≤ 1 ,
0 if 1 < x .

(2.2.31)

Then, f and g ∈ L1
loc(IR), g = f ′ in IR \ {0, 1}, and Tg = f ′g; that is, g is the

generalized derivative of f .
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Proof. It is sufficient to verify (2.2.6), which in this case reads

−
∫ +∞

−∞
f(x)ϕ ′(x) dx =

∫ +∞

−∞
g(x)ϕ(x) dx =

∫ 1

0
ϕ(x) dx (2.2.32)

for all ϕ ∈ C1
0(IR). Thus, fix ϕ ∈ C1

0(IR), and choose a, b ∈ IR such that suppϕ ⊆
[a, b]. Since g = f ′ on ]−∞, 0 [, ] 0, 1 [, and ] 1,+∞[, we see, by classical integration
by parts, that (2.2.32) does hold, if a < b < 0 or 1 < a < b (both sides of (2.2.32)

equal 0). Otherwise: if 0 < b ≤ 1,

−
∫ +∞

−∞
f(x)ϕ ′(x) dx = −

∫ b

0
xϕ ′(x) dx

= − [xϕ(x)]b0 +
∫ b

0
ϕ(x) dx

= −b ϕ(b) +
∫ b

0
ϕ(x) dx

=
∫ b

0
ϕ(x) dx =

∫ 1

0
ϕ(x) dx ,

(2.2.33)

in accord with (2.2.32). If instead b > 1, with a similar computation we find

−
∫ +∞

−∞
f(x)ϕ ′(x) dx = −

∫ 1

0
xϕ ′(x) dx−

∫ b

1
ϕ ′(x) dx

= −ϕ(1) +
∫ 1

0
ϕ(x) dx− ϕ(b) + ϕ(1) =

∫ 1

0
ϕ(x) dx ,

(2.2.34)

again in accord with (2.2.32). This confirms that Tg = f ′g. 2

4.4. From this example it would seem that the distributional derivative f ′d of a
piecewise differentiable function f , with derivative g defined almost everywhere,
would coincide with the distribution Tg (that is, the distribution defined by the
classical derivative of f , wherever this is defined). But this is not necessarily the case,
as example 2.2.1 shows. Indeed, each Hα is piecewise differentiable, with classical
derivative hα ≡ 0 separately in ] −∞, α [ or in ]α,+∞[. Now, hα ∈ L1

loc(IR), but
Thα is not the distributional derivative of THα . Indeed, for ϕ ∈ C1

0(IR),

Thα(ϕ) =
∫ +∞

−∞
hα(x)ϕ(x) dx = 0 , (2.2.35)

in contrast with (2.2.17), which yields that, if α is in the interior of the support of ϕ,

(Hα)′d (ϕ) = δα(ϕ) = ϕ(α) 6= 0 . (2.2.36)
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4.5. A natural question is whether Hα, extended to all of IR by choosing an arbitrary
value for Hα(α), possesses a generalized derivative. We know that the answer to
this question is negative, because Hα is not absolutely continuous on IR (as it is not
even continuous) 2.

Proposition 2.2.3 Let H be the Heaviside function H0 of proposition 2.2.1. There
is no h ∈ L1

loc(IR) such that Th = H ′
d.

Proof. Proceeding by contradiction, assume such h exists. Then, as in (2.2.21), for
all ϕ ∈ C1

0(IR)

Th(ϕ) =
∫ +∞

−∞
h(x)ϕ(x) dx = H ′

d(ϕ)

= −
∫ +∞

−∞
H(x)ϕ ′(x) dx = ϕ(0) .

(2.2.37)

Take now a sequence (ϕk)k∈IN ⊂ C1
0(IR) such that for each k ∈ IN

|ϕk(x)| ≤ 1 ∀x ∈ IR , ϕk(0) = 1 , supp(ϕk) =
[
− 1
k
, 1
k

]
. (2.2.38)

From (2.2.37) we deduce that for each k,

1 = ϕk(0) =
∫ +∞

−∞
h(x)ϕk(x) dx ≤

∫ +∞

−∞
|h(x)| |ϕk(x)| dx

≤
∫ 1/k

−1/k
|h(x)| dx =: λk .

(2.2.39)

But λk → 0 by the absolute continuity of the Lebesgue integral, so we reach a
contradiction. 2

4.6. We conclude with an example which gives another illustration of how the lack
of generalized derivatives, due to jump discontinuities in a function, can be overcome
with the introduction of distributional derivatives. This example also shows that
linearity holds for differentiation in the distributional sense as well.

2The moral of the examples of propositions 2.2.1 and 2.2.2 is that jumps are “bad” for gen-
eralized derivatives, while points where a function is continuous, but not differentiable, behave
somewhat better.
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Proposition 2.2.4 Let f and g be as in proposition 2.2.2, and define f̃ ∈ L1
loc(IR)

by

f̃(x) :=


0 if x ≤ 0 ,
x if 0 < x ≤ 1 ,
2 if 1 < x ,

(2.2.40)

Then, g (which is the generalized derivative of f) is not the generalized derivative
of f̃ . On the other hand,

f̃ ′d = f ′d + δ1 , (2.2.41)

in accord with (2.2.42) below.

Proof. Since δ1 = (H1)′d, (2.2.41) is a consequence of the identity

f̃(x) = f(x) +H1(x) for x 6= 1 , (2.2.42)

with H1 defined as in example 2.2.1. If g were the generalized derivative of f̃ , then,
by (2.2.41), and since, as we know, Tg = f ′d as well,

Tg = f̃ ′d = f ′d + δ1 = Tg + δ1 . (2.2.43)

However, δ1 is not the zero distribution (as we see by applying it to a ϕ ∈ C1
0(IR)

with ϕ(1) 6= 0). In other words, g cannot be the generalized derivative of f̃ , since it
does not record the contribution of the jump of f̃ at x = 1. 2

5. In conclusion, we mention that, traditionally, an abuse of notations is tolerated,
whereby the distribution Tf constructed from a function f ∈ L1

loc(IR) via (2.2.5) is
still denoted by f ; distributions of this kind are called regular, and, when there is
no risk of confusion, their distributional derivative is denoted by T ′. In particular,
propositions 2.2.1 and 2.2.1 implies that the distributions δα = H ′

α, distributional
derivatives of (the distributions defined by) the Heaviside functions Hα, are not
regular distributions.

2.3 Further Remarks on Dirac’s δ Distribution.

2.3.1 The Restrictions of δ to IR<0 and IR>0.

We recall that, on IR, the Dirac δ distribution is the distribution δ ∈ D ′(IR) defined
by

〈δ, ϕ〉D = ϕ(0), ∀ϕ ∈ D(IR), (2.3.1)
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and that δ is the distributional derivative of the regular distribution TH defined by
the locally integrable Heaviside function

x 7→ H(x) =

 0 if x < 0 ,

1 if x > 0 .
(2.3.2)

We have seen that δ is not a regular distribution, i.e. there is no h ∈ L1
loc(IR) such

that δ = Th. It may be worth to recall that, in earlier days, it was thought that H
did have some sort of derivative, which supposedly was a function h such that

h(x) =

 0 if x 6= 0 ,

+∞ if x = 0 ,
(2.3.3)

(the latter because of the vertical jump of H at x = 0, at which H has “infinite
slope”), and, in order to somehow compensate the infinite jumps from 0 to +∞ and
then back to 0 of h at x = 0, such that also∫ +∞

−∞
h(x) dx = 1 (2.3.4)

(see the remark at the end of section 2.3.3). The way out of these ambiguities
is precisely to keep in mind that the only way we can differentiate H is in the
distributional sense, and that δ = H ′ is not a function, but a distribution. More
precisely, δ = (TH)′, and this distribution is known to be non-regular.

The latter statement is a global one, on IR. In contrast, the restrictions of δ to either
interval IR<0 = ] −∞, 0 [ or IR>0 = ] 0,+∞[ are regular distributions. To see this,
we denote respectively by H− and H+ the restrictions of H to IR<0 and IR>0. Then,
both functions H− and H+ are differentiable in their domains, with (H±)′(x) ≡ 0.
Consequently, the corresponding regular distributions

T− := T(H−)′ ∈ D′(IR<0) , T+ := T(H+)′ ∈ D′(IR>0) , (2.3.5)

generated, respectively, by (H−)′ and (H+)′, vanish. On the other hand, we obviously
have that

∀ϕ ∈ D(IR−) ∪ D(IR+) , 〈δ, ϕ〉D = 0 . (2.3.6)

This confirms that δ = T− in D′(IR<0), and δ = T+ in D′(IR>0), and implies that
the restrictions of δ to D(IR±) are regular, as claimed.
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2.3.2 Approximation by Piecewise Differentiable Functions.

Our goal is now to approximate the Heaviside function H (extended to all of IR by
setting H(0) = 1

2
) by a sequence of absolutely continuous functions (Fn)n≥1, and

to show that their derivatives fn = Fn
′, which are in L1(IR), while not converging

in L1(IR), do converge to δ in D ′(IR) (more precisely, Tfn → δ in D ′(IR)). For
n ∈ IN>0 define Fn : IR→ IR by

Fn(x) :=


0 if x < − 1

n
,

1
2
(1 + nx) if |x| ≤ 1

n
,

1 if x > 1
n
.

(2.3.7)

Then, each Fn is clearly absolutely continuous on IR, and differentiable for all x 6=
± 1
n
, with derivative fn = Fn

′ ∈ L1(IR) defined by

fn(x) =

 0 if |x| > 1
n
,

n
2

if |x| < 1
n
.

(2.3.8)

We claim:

Proposition 2.3.1 Let Fn and fn be as above. Then, as n→ +∞:

1. Fn → H pointwise on IR, and also uniformly on compact sets of IR<0 or IR>0.

2. fn → 0 pointwise on IR<0 or IR>0, and also uniformly on compact sets of IR<0

or IR>0.

3. Fn → H in L1
loc(IR).

4. fn = Fn
′ does not converge to 0 (the only possible candidate for H ′ if H had

a generalized derivative) in L1(IR); in fact,

5. The sequence (fn)n≥1 is not a Cauchy sequence in L1(IR).

6. However, fn = Fn
′ → δ = H ′ in D ′(IR).
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Proof. (1) and (2) are obvious, and (3) is a consequence of the Lebesgue’s dominated
convergence theorem, since 0 ≤ Fn(x) ≤ 1 for all x ∈ IR and all n ∈ IN . (4) is a
consequence of (5).

To show (5), take for example m > n > 1. Then,

‖fm − fn‖L1(IR) =
∫ +∞

−∞
|fm(x)− fn(x)| dx =

∫ 1

−1
|fm(x)− fn(x)| dx

=
∫ −1/m

−1/n

n
2

dt+
∫ 1/m

−1/m

(
m
2
− n

2

)
dt+

∫ 1/n

1/m

n
2

dt (2.3.9)

= 2
(
1− n

m

)
.

Thus, choosing (e.g.) m ≥ 2n, it follows that ‖fm − fn‖L1(IR) ≥ 1.

Finally, to show (6), fix ϕ ∈ D(IR), and let a, b ∈ IR be such that suppϕ ⊆ [a, b].
Since

〈fn, ϕ〉D =
∫ +∞

−∞
fn(x)ϕ(x) dx =

∫ 1/n

−1/n
fn(x)ϕ(x) dx , (2.3.10)

it follows that

〈fn, ϕ〉D = 0 = 〈δ, ϕ〉D (2.3.11)

if a < b < 0 and n > −1
b
, or if 0 < a < b and n > 1

a
. If instead a < 0 < b, by the

mean value theorem

〈fn, ϕ〉D =
n

2

∫ 1/n

−1/n
ϕ(x)dx = ϕ(xn) , (2.3.12)

for some xn ∈
[
− 1
n
, 1
n

]
. From (2.3.12) we deduce that

〈fn, ϕ〉D = ϕ(xn)→ ϕ(0) = 〈δ, ϕ〉D , (2.3.13)

and this concludes the proof of proposition 2.3.1. 2

As a concluding remark, note that while each Fn can be represented as an integral
function, by

Fn(x) =
∫ x

−∞
fn(t) dt , (2.3.14)
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the limit function H cannot be represented as an integral; that is, there is no function
h ∈ L1(IR) such that

H(x) =
∫ x

−∞
h(t) dt . (2.3.15)

Indeed, H would otherwise be absolutely continuous on all of IR (see e.g. Rudin,
[6], §8.17), which it is not.

2.3.3 Approximation by C∞ Functions.

In this section we show that, in a certain sense, the results of §2.3.2 cannot be
improved. More precisely, we now approximate H by a sequence of functions Pn ∈
C∞(IR), and show that their derivatives ρn = Pn

′, which are in D(IR), again do not
converge in L1(IR), but still converge to δ in D ′(IR).

To this end, we refer to the test function ρ defined by 3

ρ(x) :=

 ρ0 exp
(

1
1−|x|2

)
if |x| < 1 ,

0 if |x| ≥ 1 ,
(2.3.16)

whose support is the interval [−1, 1], and where the constant ρ0 is chosen so that∫ +∞

−∞
ρ(x) dx =

∫ 1

−1
ρ(x) dx = 1 (2.3.17)

(compare to (2.4.3)). For n ≥ 1 we define

ρn(x) := n ρ(nx) , Pn(x) :=
∫ x

−∞
ρn(t) dt . (2.3.18)

We note that the support of ρn is the interval
[
− 1

n
, 1
n

]
, that

ρn(0) =
n ρ0

e
→ +∞ as n→ +∞ , (2.3.19)

and that, by (2.3.17),∫ +∞

−∞
ρn(t) dt =

∫ 1/n

−1/n
ρn(t) dt = n

∫ 1/n

−1/n
ρ(nt) dt =

∫ 1

−1
ρ(τ) dτ = 1 . (2.3.20)

3This test function is “prototipical”, as it is used extensively; for example, in the definition of
the Friedrichs mollifiers.
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In addition,

∀x ≤ − 1
n
, Pn(x) =

∫ x

−∞
0 dt = 0 , (2.3.21)

∀x ≥ 1
n
, Pn(x) =

∫ 1/n

−∞
ρn(t) dt+

∫ x

1/n
0 dt = 1 , (2.3.22)

because of (2.3.20). Finally, since each ρn is an even function,

Pn(0) = 1
2

∫ 1/n

−1/n
ρn(t) dt = 1

2
. (2.3.23)

Then, the same conclusions of proposition 2.3.1 hold, with Fn and fn replaced by
Pn and ρn.

Proposition 2.3.2 Let Pn and ρn be as above. Then, as n→ +∞,

1. Pn → H pointwise on IR, and also uniformly on compact sets of IR<0 or IR>0.

2. ρn → 0 pointwise on IR<0 or IR>0, and also uniformly on compact sets of IR<0

or IR>0.

3. Pn → H in L1
loc(IR).

4. ρn = Pn
′ does not converge to 0 in L1(IR); in fact,

5. The sequence (ρn)n≥1 is not a Cauchy sequence in L1(IR).

6. However, ρn = Pn
′ → δ = H ′ in D ′(IR).

Proof. (1) and (2) are obvious, and (3) is a consequence of the Lebesgue’s dominated
convergence theorem, since 0 ≤ Pn(x) ≤ 1 for all x ∈ IR and all n ∈ IN . (4) is a
consequence of (5), which we can prove by contradiction if we assume (6). Indeed,
if there existed ρ := lim ρn in L1(IR), by (2) it would be ρ(x) ≡ 0 for all x 6= 0, and
it would follow that, for all ϕ ∈ D(IR),

In :=
∫ +∞

−∞
ρn(x)ϕ(x)dx→ 0 . (2.3.24)
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Choose then ϕ ∈ D(IR) with ϕ(0) 6= 0: then, (6) implies that

In → 〈δ, ϕ〉D = ϕ(0) 6= 0 , (2.3.25)

contradicting (2.3.24).

Finally, to show (6), it is sufficient to show that

〈ρn, ϕ〉D → 〈δ, ϕ〉D (2.3.26)

for all ϕ ∈ D(IR) as above (if a < b < 0 or 0, a < b, (2.3.26) is an obvious consequence
of (2)). Setting

Jn :=
∫ +∞

−∞
ρn(x)ϕ(x)dx− ϕ(0) , (2.3.27)

recalling (2.3.20) we compute that

Jn =
∫ +∞

−∞
ρn(x)ϕ(x) dx− ϕ(0)

∫ +∞

−∞
ρn(t) dt

= n
∫ 1/n

−1/n
ρ(nx)(ϕ(x)− ϕ(0)) dx (2.3.28)

=
∫ 1

−1
ρ(t)

(
ϕ
(
t
n

)
− ϕ(0)

)
dt .

Consequently,

|Jn| ≤ sup
|t|≤1

∣∣∣ϕ ( t
n

)
− ϕ(0)

∣∣∣ ∫ 1

−1
ρ(t) dt = sup

|t|≤1

∣∣∣ϕ ( t
n

)
− ϕ(0)

∣∣∣ , (2.3.29)

and, therefore, Jn → 0. This proves (2.3.26), and the proof of proposition 2.3.2 is
complete. 2

As a concluding remark, in propositions 2.3.1 and 2.3.2 we have proven that fn → δ
and ρn → δ in D ′(IR). Since in both cases∫ +∞

−∞
fn(t) dt = 1 =

∫ +∞

−∞
ρn(t) dt , (2.3.30)

this was taken as a sort of justification of identity (2.3.4) (which, of course, does not
make sense).
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2.4 Test Functions.

1. In this section, Ω ⊂ IRN denotes a domain, that is, an open and connected set,
not necessarily bounded. We introduce the linear space D(Ω) of the so-called test
functions, and introduce in D(Ω) a notion of sequential convergence, that allows
us to consider the set D ′(Ω) of all linear, sequentially continuous maps from D(Ω)
into IR, which we call distributions on Ω.

1. We start with the set C∞0 (Ω) consisting of those functions f : Ω→ IR which are
infinitely differentiable and have compact support in Ω.

Proposition 2.4.1 C∞0 (Ω) is a linear space with respect to the usual definitions
of the sum of two functions and of the product of a function by a scalar. For all
multi-index α ∈ INN and all ϕ ∈ C∞0 (Ω),

supp(Dαϕ) ⊆ supp(ϕ) . (2.4.1)

In addition, C∞0 (IRN) is dense in Lp(IRN) if 1 ≤ p < +∞.

Proof. 1) Let f, g ∈ C∞0 (Ω) and λ ∈ IR. Then, f + λ g ∈ C∞(IR) (this is clear); to
see that the support of f + λ g is compact, we show the inclusion

A := supp(f + λ g) ⊆ supp(f) ∪ supp(g) =: B ; (2.4.2)

indeed, B is compact, and A, being a closed subset of a compact set, is also compact.
To show the inclusion (2.4.2), let x ∈ A. Then, there is a sequence (xn)n≥1 ⊂ Ao

(the interior of A), such that xn → x (if x ∈ Ao, this step is not needed, as we can
take xn = x for all n). Then, for each n ≥ 1, f(xn) + λ g(xn) 6= 0, so that either
f(xn) 6= 0 or g(xn) 6= 0. In the first case, xn ∈ supp(f), while in the other case,
xn ∈ supp(g). In either case, xn ∈ B, which is closed; thus, x = limxn ∈ B, which
proves (2.4.2).
2) We prove (2.4.1) as we did for (2.2.3). Let K := supp(ϕ). Then, ϕ ≡ 0 in Ω \K;
since this set is open, this implies that Dαϕ ≡ 0 on Ω \K; in turn, this implies that
supp(Dαϕ) ⊆ K, as claimed.
3) For a proof of the density claim, see, e.g., [1, Cor. 2.30]. 2

Of course, the function ϕ(x) ≡ 0 is trivially a test function on any open domain. The
prototypical example of a test function on an interval ]α, β[ ⊂ IR (not necessarily
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bounded), with support equal to [a, b] ⊂ ]α, β[, is

ϕ(x) :=

 exp
(
− 1
x−a −

1
b−x

)
if a < x < b ,

0 if x ≤ a or x ≥ b .
(2.4.3)

Similarly, if B(x0, R) is an open ball contained in Ω ⊆ IRN , the function

ϕ(x) =

 exp
(
− 1

R2−|x−x0|2
)

if x ∈ B(x0, R) ,

0 otherwise ,
(2.4.4)

is a test function on Ω, with suppϕ = B(x0, R) (compare to (2.2.2)).

Exercise 2.4.1 Prove that the functions ϕ defined by (2.4.3) and (2.4.4) are test
functions.

Obviously, test functions can be differentiated, and their derivatives of any order are
again test functions. Since they are continuous, test functions can also be integrated,
and their integral functions are again infinitely differentiable functions. However,
the latter are not necessarily test functions; for example, the support of the integral
function

∫ x
a ϕ(y) dy of the test function defined in (2.4.3) is the interval [a,+∞[,

which is unbounded. The following result characterizes test functions whose integrals
are test functions.

Proposition 2.4.2 Let ]α, β[ ⊆ IR be an interval, and ϕ ∈ C∞0 (]α, β[). There
exists ψ ∈ C∞0 (]α, β[), with suppψ ⊆ suppϕ, such that ψ ′ = ϕ, if and only if∫ β

α
ϕ(x) dx = 0 . (2.4.5)

This result can be generalized to N dimensions in the natural way (recall that we
assume that Ω is connected).

Proof. Let ϕ ∈ C∞0 (]α, β[). Let a, b ∈ I be such that suppϕ ⊆ [a, b] ⊂ ]α, β[. Then:
If ψ exists as claimed,∫ β

α
ϕ(x) dx =

∫ b

a
ψ ′(x) dx = ψ(b)− ψ(a) = 0 . (2.4.6)
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Conversely, let

ψ(t) :=
∫ t

α
ϕ(s) ds . (2.4.7)

Then, ψ ∈ C∞(]α, β[), ψ ′ = ϕ, and for all t ∈ ]α, a],

ψ(t) =
∫ t

α
0 ds = 0 , (2.4.8)

while for all t ∈ [b, β[,

ψ(t) =
∫ b

α
ϕ(s) ds =

∫ β

α
ϕ(s) ds = 0 , (2.4.9)

by (2.4.5). This shows that ψ ∈ C∞0 (]α, β[), and suppψ ⊆ suppϕ. 2

2. We now introduce the notion of sequential convergence of test functions. For
m ∈ IN , we set

‖ϕ‖m := max
|α|≤m
x∈Ω

|Dαϕ(x) | , m ∈ IN . (2.4.10)

Definition 2.4.1 Let (ϕk)k≥0 ⊆ C∞0 (Ω), and ϕ ∈ C∞0 (Ω). We say that ϕk → ϕ in
C∞0 (Ω) if:

1 ) There is a compact set K ⊂ Ω such that both suppϕ ⊂ K and suppϕk ⊂ K
for all k ∈ IN , and

2 ) For each m ∈ IN ,
‖ϕk − ϕ‖m → 0 ; (2.4.11)

that is, for all multi-indices α ∈ INN , the derivatives Dαϕk converge to Dαϕ uni-
formly on K.

We remark that the definition of convergence ϕk → ϕ in C∞0 (Ω) requires more than
just the uniform vanishing, as k → +∞, of all the derivatives of the functions ϕk−ϕ,
as required in part (2) of definition 2.4.1. To see this, consider the the function ϕ
defined by (2.4.3) on the interval [−1, 1], and for k ≥ 1 set

ϕk(x) := 1
k
ϕ
(
x
k

)
. (2.4.12)

Then, ϕk ∈ C∞0 (IR) for each k ≥ 1, and Dmϕk → 0 uniformly on IR for each m ∈ IN
(Exercise; the claim is immediate for m = 0). However, ϕk does not converge to 0
in C∞0 (IR), because there is no compact interval K ⊂ I which contains the supports
of all the ϕk. Indeed, suppϕk = [−k, k]. That is, part (1) of definition 2.4.1 fails.
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Proposition 2.4.3 Let (ϕn)n≥1 ⊂ C∞0 (Ω), and ϕ ∈ C∞0 (Ω). If ϕn → ϕ (in the
sense of definition 2.4.1), then Dα ϕn → Dα ϕ for all multi-index α ∈ INN .

Proof. Let K ⊂ Ω be as in definition 2.4.1. Then, for each n ≥ 1, ϕn ≡ 0 on Ω \K,
which an open set. Thus, Dα ϕn ≡ 0 on Ω \K, which means that supp(ϕn) ⊆ K.
Next, recalling (2.4.11), we see that for each m ∈ IN ,

‖Dα(ϕn − ϕ)‖m ≤ ‖ϕn − ϕ‖m+|α| → 0 as n→∞ . (2.4.13)

Thus, Dα(ϕn)→ Dαϕ in the sense of definition 2.4.1. 2

3. As we have stated, the set C∞0 (Ω) of all test functions on Ω is a linear space over
IR, with respect to the usual operations of sum of two functions and product of a
function by a scalar. Following Rudin, [7, Ch. 6, Sct. 2], we recall that, on this
linear space, one can define a locally convex and metrizable topology T1, by means
of the family of norms (2.4.10). However,

Proposition 2.4.4 The topology T1 is not complete.

Proof. Consider a function ϕ ∈ C∞0 (IR), with suppϕ = [0, 1] and ϕ(x) ≥ 0 for all
x ∈ [0, 1], and construct the sequence of functions (ϕm)m≥1 ⊂ C∞0 (IR), defined by

ϕm(x) :=
m∑
j=1

1
j
ϕ(x− j) . (2.4.14)

Then, (ϕm)m≥1 is a Cauchy sequence in C∞0 (IR). Indeed, for all k ∈ IN and m > n,

|Dk(ϕm(x)− ϕn(x))| ≤
m∑

j=n+1

1
j
|Dk(ϕ(x− j))| ≤ 1

n+1
max
y∈IR
|Dkϕ(y)| , (2.4.15)

and the latter quantity of (2.4.15) vanishes, uniformly in x ∈ IR (but not in k), as
n→∞. We show below that, for each m ≥ 1,

supp(ϕm) = [1,m+ 1] ; (2.4.16)

thus, in this case too there is no compact interval K ⊂ IR which contains the
supports of all the ϕm. This means that the sequence (ϕm)m≥1 does not converge



2.5. DISTRIBUTIONS. 41

in C∞0 (IR), in the sense of definition 2.4.1. To show (2.4.16), we first note that, by
(2.4.2),

supp(ϕm) ⊆
m⋃
j=1

supp(ϕ(· − j)) =
m⋃
j=1

[j, j + 1] = [1,m+ 1] . (2.4.17)

Conversely, let x ∈ [1,m + 1]. There is k, 1 ≤ k ≤ m, such that x ∈ [k, k + 1] =
supp(ϕ(· − k); thus, there is a sequence (xn)n≥1 ⊂ ]k, k + 1[, such that xn → x.
Then, ϕ(xn − k) 6= 0, and since ϕ(·) ≥ 0,

ϕm(x) ≥ 1
k
ϕ(x− k) > 0 . (2.4.18)

It follows that xn ∈ supp(ϕm); hence, x = limxn ∈ supp(ϕm), which shows that
[1,m+ 1] ⊆ supp(ϕm). 2

On the other hand, it is also possible to endow C∞0 (Ω) with a topology T2, which is
locally convex and complete, but non-metrizable. Moreover, T2 is such that, if a map
T : C∞0 (Ω)→ IR is linear, then T is continuous with respect to this topology, if and
only if T is sequentially continuous. It is then customary to denote the topological
space (C∞0 (Ω), T2) by D(Ω), and to call each element of D(Ω) a test function.

2.5 Distributions.

1. In this section we extend and refine the provisional definition of distributions
given in section 2.2.

Definition 2.5.1 A linear, sequentially continuous map T : D(Ω)→ IR is called a
distribution on Ω. The set of all distributions on Ω is denoted by D ′(Ω). This
set possesses the natural linear structure defined by

[T1 + αT2](ϕ) = T1(ϕ) + αT2(ϕ) . (2.5.1)

Thus, we call D ′(Ω) the space of distributions on Ω. We shall often use the
alternative notation 〈T, ϕ〉D to denote the number T (ϕ), T ∈ D ′(Ω), ϕ ∈ D(Ω).

The notation D ′(Ω) for the space of distributions is justified by the fact that D ′(Ω)
is indeed the topological dual of the space D(Ω); that is, the linear space C∞0 (Ω)
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equipped with the above mentioned topology T2. Then, D ′(Ω) is itself a topological
space. For our purposes, it turns out that it is sufficient to consider in D ′(Ω) the
weak∗ convergence of sequences 4; that is:

Definition 2.5.2 Let (Tk)k∈IN ⊂ D ′(Ω), and T ∈ D ′(Ω). We say that Tk → T in
D ′(Ω) if Tk(ϕ)→ T (ϕ) (in IR) for all ϕ ∈ D(Ω).

It is essential to remark that a distribution is not a function, although there are
distributions that are defined by means of a function. For example, we have seen
that Dirac’s δ distribution is not a function, and cannot be defined by means of any
locally integrable function. The zero functional on D(Ω) is a trivial distribution on
Ω, which we also denote by 0. Other distributions can be constructed from a given
distribution T by multiplication by a C∞ function; more precisely, given ζ ∈ C∞(Ω)
and T ∈ D ′(Ω), we define a distribution ζ T by

〈ζ T, ϕ〉D := 〈T, ζϕ〉D , ∀ ϕ ∈ D(Ω) . (2.5.2)

This makes sense, because ζ ϕ ∈ D(Ω) if ϕ ∈ D(Ω).

Just like for functions, there is a notion of the restriction of a distribution T ∈ D ′(Ω)
to open subsets A ⊂ Ω: noting that D(A) ⊂ D(Ω), it is natural to define the
restriction TA of T to A as the distribution TA ∈ D ′(A) defined by

〈TA, ϕ〉D = 〈T, ϕ〉D , ∀ϕ ∈ D(A). (2.5.3)

2. A fundamental class of distributions is the class of regular distributions, which
we have already mentioned in section 2.2. The definition of this class is based on
the following result, the proof of which we leave as an exercise.

Proposition 2.5.1 Let f ∈ L1
loc(Ω). Then, the functional Tf : D(Ω) → IR defined

by

〈Tf , ϕ〉D :=
∫

Ω
f(x)ϕ(x) dx , ϕ ∈ D(Ω) (2.5.4)

(compare with (2.2.5)), is a distribution. Moreover,

Tf ≡ 0 in D ′(Ω) ⇐⇒ f ≡ 0 a.e. in Ω . (2.5.5)

4This is the analogous of the point-wise convergence of a sequence of functions.
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For example, if T = Tf for some f ∈ L1
loc(Ω), (2.5.2) reads

〈ζ Tf , ϕ〉D =
∫

Ω
f(x) ζ(x)ϕ(x) dx . (2.5.6)

Proposition 2.5.1 allows us to define a map Ψ : L1
loc(Ω)→ D ′(Ω), by

Ψ(f) := Tf , f ∈ L1
loc(Ω) ; (2.5.7)

this map is obviously linear.

Definition 2.5.3 A distribution T ∈ D ′(Ω) is called regular if T is in the range
of Ψ; that is, if there is f ∈ L1

loc(Ω) such that T = Tf .

An example of a class of regular distributions is that consisting of constant distri-
butions: since constant functions are locally integrable, given c ∈ IR, in accord with
(2.5.4) we can define the distribution Tc, by

〈Tc, ϕ〉D =
∫

Ω
c ϕ(x) dx = c

∫
Ω
ϕ(x) dx , (2.5.8)

for all ϕ ∈ D(Ω).

The meaning of (2.5.5) is that the map Ψ defined in (2.5.7) is injective. This allows us
to identify L1

loc(Ω) with a linear subspace of D ′(Ω); this subspace consists precisely
of those distributions we have called regular. As we know, Ψ is not surjective, that
is, not every distribution is a regular one, as the example of Dirac’s δ shows.

3. We conclude with a criterion that characterizes when a linear map from D(Ω)
into IR is a distribution.

Proposition 2.5.2 A linear map T : D(Ω)→ IR is a distribution if and only if for
every compact set K ⊂ Ω there are a constant CK > 0 and an integer jK ≥ 0 such
that, for all ϕ ∈ D(Ω) with supp(ϕ) ⊆ K,

|T (ϕ)| ≤ CK ‖ϕ‖jK , (2.5.9)

(the norm defined in (2.4.10)).
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Proof. Note that (2.5.9) is obviously true if ϕ ≡ 0.
1) Assume first that T ∈ D ′(Ω), but there is a compact set K̃ ⊂ Ω with the property
that for all C > 0 and all integers j, it is possible to find a test function ϕ ∈ D(Ω)
such that (2.5.9) does not hold; i.e.,

|T (ϕ)| > C ‖ϕ‖j . (2.5.10)

Then, taking C = j, we can construct a sequence (ϕj)j≥1 ⊂ D(Ω), with supp(ϕj) ⊆
K, such that

|T (ϕj)| > j ‖ϕj‖j ≥ 0 . (2.5.11)

In particular, (2.5.11) implies that T (ϕj) 6= 0, so that we can consider the function
ϕ̃j := ϕj

|T (ϕj)| . Clearly, ϕ̃j ∈ D(Ω), and T (ϕ̃j) = 1. Then, for each k ∈ IN , we deduce

from (2.5.11) that, for j ≥ k,

‖ϕ̃j‖k ≤ ‖ϕ̃j‖j ≤ 1
j
|T (ϕ̃j)| = 1

j
; (2.5.12)

consequently, ϕj → 0 in D(Ω). Since T ∈ D ′(Ω), this implies that T (ϕ̃j) → 0 (in
IR), which contradicts the fact that T (ϕ̃j) = 1.
2) Conversely, assume that ϕm → ϕ in D(Ω), and let K ⊂ Ω be as in definition
2.4.1. Then, from (2.5.9),

|T (ϕm)− T (ϕ)| = |T (ϕm − ϕ)| ≤ CK ‖ϕm − ϕ‖jK → 0 (2.5.13)

as m→∞. Hence, T is (sequentially) continuous, which means that T ∈ D ′(Ω). 2

Definition 2.5.4 Let T ∈ D ′(Ω), and assume that there is an integer j such that
for all compact sets K ⊂ Ω there is CK > 0 such that, for all ϕ ∈ D(Ω) with
supp(ϕ) ⊆ K,

|T (ϕ)| ≤ CK ‖ϕ‖j (2.5.14)

(that is, (2.5.9) holds for some j independent of K). Let

j0 := min{j ∈ IN | (2.5.14) holds} . (2.5.15)

We call j0 the order of the distribution T .

For example, regular distributions and the Dirac distributions are distributions of
order 0. Indeed, let f ∈ L1

loc(Ω), and, given ϕ ∈ D(Ω), let K := supp(ϕ). Then,

|Tf (ϕ)| ≤
∫

Ω
|f(x)ϕ(x)| dx ≤ max

x∈K
|ϕ(x)|

∫
K
|f(x)| dx = CK ‖ϕ‖0 . (2.5.16)
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Likewise,
|δx0(ϕ)| = |ϕ(x0)| ≤ max

x∈K
|ϕ(x)| ≤ ‖ϕ‖0 . (2.5.17)

An example 5 of distribution of order 1 on IR is given by the map defined by

T (ϕ) := lim
ε→0+

∫
|x|≥ε

ϕ(x)

x
dx . (2.5.18)

Indeed, we immediately note that∫
|x|≥ε

|ϕ(x)|
|x|

dx ≤ 1
ε

∫
supp(ϕ)

|ϕ(x)| dx , (2.5.19)

so the integrals at the right side of (2.5.18) are well defined for each ε > 0 (note that
the function x 7→ 1

x
is not in L1

loc(IR)). T is clearly linear; we prove that T is a
distribution by means of proposition 2.5.2. To this end, we decompose

T (ϕ) =
∫
|x|≥1

ϕ(x)

x
dx+

∫
ε≤|x|≤1

ϕ(x)

x
dx =: A(ϕ) +Bε(ϕ) . (2.5.20)

Since the function

x 7→ f(x) :=

 0 if |x| ≤ 1 ,

1
x

if |x| ≥ 1 ,
(2.5.21)

is in L1
loc(IR), it follows that A = Tf , and is a distribution of order 0. As for Bε, we

use Taylor’s expansion at x = 0 to write

ϕ(x) = ϕ(0) + x rϕ(x) , (2.5.22)

with rϕ ∈ C∞(IR), and ϕ 7→ rϕ linear. We compute that∫
ε≤|x|≤1

ϕ(0)

x
dx = ϕ(0)

(∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx
)

= 0 ; (2.5.23)

thus,

Bε(ϕ) =
∫
ε≤|x|≤1

rϕ(x) dx →
∫ 1

−1
rϕ(x) dx =: R(ϕ) (2.5.24)

as ε→ 0. The map ϕ 7→ R(ϕ) is linear; in addition, by the mean value theorem for
differentiable functions, for each x ∈ [−1, 1] there is θx ∈ [[0, 1] such that

ϕ(x)− ϕ(0) = ϕ ′(θx)x ; (2.5.25)

5Example 1.10 of Seiler, [8].
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hence, recalling (2.5.22)

|rϕ(x)| =
∣∣∣ 1
x

(ϕ(x)− ϕ(0))
∣∣∣ = |ϕ ′(θx)| ≤ max

x∈supp(ϕ)
|ϕ ′(x)| ≤ ‖ϕ‖1 , (2.5.26)

so that
|R(ϕ)| ≤ 2 max

|x|≤1
|rϕ(x)| ≤ 2 ‖ϕ‖1 . (2.5.27)

By proposition 2.5.2, it follows that R is a distribution of order 1; consequently, also
T = A+R = Tf +R is a distribution of order 1. (2)

2.5.1 Derivatives of Distributions.

1. As we have discussed in our informal introduction, the main motivation for
distributions is that a notion of derivative can be introduced in D ′(Ω), whereby all
distributions possess derivatives of any order, which are also distributions. This is
justified by the following result, whose proof we leave as an exercise.

Proposition 2.5.3 Let T ∈ D ′(Ω), and α ∈ INN . The functionals Tα : D(Ω)→ IR
defined by

< Tα, ϕ >D := (−1)|α| < T,Dαϕ >D , ∀ϕ ∈ D(Ω) , (2.5.28)

(recall the alternative notation introduced in definition 2.5.1) are distributions (i.e.,
Tα ∈ D ′(Ω); note that the right side of (2.5.28) makes sense, since Dαϕ ∈ D(Ω).)

Definition 2.5.5 The distribution Tα defined by (2.5.28) is called the α-th distribu-
tional derivative of T , and is denoted by DαT .

In particular for N = 1 and α = 1, the derivative T ′ is defined by the identities

〈T ′, ϕ〉D = −〈T, ϕ ′〉D , ∀ϕ ∈ D(I) , (2.5.29)

I ⊆ IR an open interval. When T is regular, and is defined by a function f ∈ L1
loc(I)

(i.e., T = Tf ), definition (2.5.29) coincides with (2.2.6).

Definition 2.5.5 is consistent, in the sense that the identity

Dα(Tf ) = TDαf (2.5.30)
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holds in D ′(Ω), at least when f ∈ C |α|(Ω). (Identity (2.5.30) may be false if Dαf is
not continuous; see Rudin, [7], §6.14). To show (2.5.30), let f ∈ C |α|(Ω). Then, both
f and Dαf ∈ L1

loc(Ω), so they define regular distributions Tf and TDαf . Starting
from (2.5.28), and then using classical integration by parts, we compute that, for all
ϕ ∈ D(Ω),

〈Dα(Tf ), ϕ〉D = (−1)|α|〈Tf , Dαϕ〉D

= (−1)|α|
∫

Ω
f(x)[Dαϕ](x) dx

= (−1)2|α|
∫

Ω
[Dαf ](x)ϕ(x) dx

= 〈TDαf , ϕ〉D ;

(2.5.31)

this proves (2.5.31). 2

2. We now briefly review some results that show how the definition of distribu-
tional derivative maintains many of the familiar features of classical derivatives of
functions.

Proposition 2.5.4 Let T ∈ D ′(Ω), ζ ∈ C∞(Ω), and α, β ∈ IN . Then:

1. Distributional derivatives commute; that is, for all multi-indices α and β ∈
INN ,

Dα+βT = Dα[DβT ] = Dβ[DαT ] . (2.5.32)

2. Leibniz’ formula holds:

Dα[ζT ] =
∑
β≤α

(
α
β

)
(Dβζ)Dα−βT . (2.5.33)

(In (2.5.33), the distributions ζT and (Dβζ)Dα−βT are defined via (2.5.2)).

3. If T ∈ D ′(Ω) is a constant distribution, and |α| > 0, DαT = 0.

4. Conversely, if Ω is connected (which we assume), and T ∈ D ′(Ω) is such that
DαT = 0 for all α ∈ IN with |α| = 1, T is a constant distribution.

5. If Tk → T in D ′(Ω) (in the sense of definition 2.5.2), then DαTk → DαT in
D ′(Ω).
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Proof. 1) In accord with (2.5.28), we compute

〈Dα+βT, ϕ〉D = (−1)|α+β|〈T,Dα+βϕ〉D

= (−1)|α|(−1)|β|〈T,Dα(Dβϕ)〉D

= (−1)|α|(−1)|β|〈T,Dβ(Dαϕ)〉D (2.5.34)

= (−1)|α|〈DβT,Dαϕ〉D

= 〈Dα[DβT ], ϕ〉D .

This proves that Dα+βT = Dα[DβT ] in D ′(Ω). Reversing the role of α and β
completes the proof of the first claim.

2) We prove (2.5.33) by induction on m := |α|, with a repeated application of defini-
tions (2.5.28) and (2.5.2), and resorting to the well-known identity(

m
j

)
+
(
m
j−1

)
=
(
m+1
j

)
. (2.5.35)

For m = 1, let j ∈ {1, . . . , n} and ϕ ∈ D(Ω). Then,

〈∂j(ζT ), ϕ〉D = −〈ζT, ∂jϕ〉D = −〈T, ζ(∂jϕ)〉D

= −〈T, ∂j(ζϕ)〉D + 〈T, (∂jζ)ϕ〉D

= 〈∂jT, ζϕ〉D + 〈T, (∂jζ)ϕ〉D (2.5.36)

= 〈ζ(∂jT ), ϕ〉D + 〈(∂jζ)T, ϕ〉D

= 〈ζ(∂jT ) + (∂jζ)T, ϕ〉D .

This means that

∂j(ζT ) = ζ(∂jT ) + (∂jζ)T (2.5.37)

in D ′(Ω); that is, the first step in the induction process holds. Assume then that
(2.5.33) holds for all α, with m = |α| ≥ 1, and let β be such that |β| = m+ 1. There
exists then α ∈ IN , and j ∈ {1, . . . , n}, such that |α| = m and Dβ = ∂jD

α (i.e.,
βk = αk if k 6= j, and βj = αj + 1). Then, as above,

〈Dβ(ζT ), ϕ〉D = −〈Dα(ζT ), ∂jϕ〉D
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= −
∑
γ≤α

(
α
γ

)
〈(Dγζ)Dα−γT, ∂jϕ〉D (2.5.38)

=
∑
γ≤α

(
α
γ

)
〈∂j[(Dγζ)Dα−γT ], ϕ〉D ,

having used (2.5.33) for |α| = m. Since (2.5.33) also holds for m = 1,

〈Dβ(ζT ), ϕ〉D =
∑
γ≤α

(
α
γ

)
〈
(
(Dγζ)∂jD

α−γT + (∂jD
γζ)Dα−γT

)
, ϕ〉D

=
∑
γ≤α
γj=0

(
α
γ

)
〈(Dγζ)∂jD

α−γT, ϕ〉D

+
∑
γ≤α
γj≥1

(
α
γ

)
〈(Dγζ)∂jD

α−γT, ϕ〉D (2.5.39)

+
∑
γ≤α

γj≤αj−1

(
α
γ

)
〈(∂jDγζ)Dα−γT, ϕ〉D

+
∑
γ≤α
γj=αj

(
α
γ

)
〈(∂jDγζ)Dα−γT, ϕ〉D

=: S1 + S21 + S22 + S3 .

We now show that this sum can be written as

〈Dβ(ζT ), ϕ〉D =
∑
ρ≤β
〈(Dρζ)Dβ−ρT, ϕ〉D , (2.5.40)

with S1 corresponding to the terms with ρj = 0, S2 := S21 + S22 corresponding to
the terms with 1 ≤ ρj ≤ βj − 1, and S3 to the terms with ρj = βj. Indeed, consider
S1. Since (

αj
γj

)
=
(
αj
0

)
= 1 =

(
βj
0

)
, (2.5.41)

the coefficients of the terms in S1 are(
α
γ

)
=
(
α1

γ1

)
. . .
(
αj
0

)
. . .
(
αn
γn

)
=
(
β1

γ1

)
. . .
(
βj
0

)
. . .
(
βn
γn

)
=
(
β
γ

)
. (2.5.42)

The terms of S1 corresponding to these coefficients can be written as

〈(Dγζ)∂jD
α−γT, ϕ〉D = 〈(Dγζ)Dβ−γT, ϕ〉D ; (2.5.43)
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consequently, choosing ρ = γ, we see that, indeed,

S1 =
∑
ρ≤β
ρj=0

(
β
ρ

)
〈(Dρζ)Dβ−ρT, ϕ〉D . (2.5.44)

As for S21, setting g := |γ|, we have

〈(Dγζ)∂jD
α−γT, ϕ〉D = (−1)m−g−1〈T, ∂jDα−γ [(Dγζ)ϕ]〉D ; (2.5.45)

choosing ρ = γ we have 0 ≤ γk = ρk ≤ αk = βk if k 6= j, 1 ≤ γj = ρj ≤ αj = βj − 1
and, obviously,

∂jD
α−γ [(Dγζ)ϕ] = Dβ−γ [(Dγζ)ϕ] = Dβ−ρ [(Dρζ)ϕ] . (2.5.46)

Analogously, for S22 we have

〈(∂jDγζ)Dα−γT, ϕ〉D = (−1)m−g〈T,Dα−γ [(∂jD
γζ)ϕ]〉D ; (2.5.47)

thus, choosing now ρ so that ρk = γk if k 6= j and ρj = γj + 1, we have 0 ≤ ρk ≤ βk
if k 6= j, 1〈ρj ≤ βj − 1, so that α− γ = β − ρ, and, therefore,

Dα−γ [(∂jD
γζ)ϕ] = Dβ−ρ [(Dρζ)ϕ] . (2.5.48)

Comparing (2.5.46) and (2.5.48), we see that, indeed, these terms correspond to the
terms 〈(Dρζ)Dβ−ρT, ϕ〉D, with ρ ≤ β and ρj ≤ βj−1. Recalling (2.5.35), we see that
the coefficients of these terms are[(

α1

ρ1

)
. . .
(
αj
ρj

)
. . .
(
αn
ρn

)]
+
[(
α1

ρ1

)
. . .
(
αj
ρj−1

)
. . .
(
αn
ρn

)]
=

=
(
α1

ρ1

)
. . .
[(
αj
ρj

)
+
(
αj
ρj−1

)]
. . .
(
αn
ρn

)
=
(
α1

ρ1

)
. . .
(
αj+1
ρj

)
. . .
(
αn
ρn

)
=
(
β1

ρ1

)
. . .
(
βj
ρj

)
. . .
(
βn
ρn

)
=
(
β
ρ

)
,

(2.5.49)

as desired. Finally, consider S3: since γj = αj, choosing ρ as we did for S22 we have
ρj = γj + 1 = αj + 1 = βj; therefore, since(

αj
γj

)
=
(
αj
αj

)
= 1 =

(
βj
βj

)
=
(
βj
ρj

)
, (2.5.50)

the coefficients in S3 are(
α
γ

)
=
(
α1

γ1

)
. . .
(
αj
γj

)
. . .
(
αn
γn

)
=
(
β1

ρ1

)
. . .
(
βj
ρj

)
. . .
(
βn
ρn

)
=
(
β
ρ

)
. (2.5.51)
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The corresponding terms can be written as 〈(Dρζ)Dβ−ρT, ϕ〉D; thus,

S3 =
∑
ρ≤β
ρj=βj

(
β
ρ

)
〈(Dρζ)Dβ−ρT, ϕ〉D . (2.5.52)

This concludes the proof of (2.5.33).

3) We have to show that, if T = Tc for some c ∈ IR, then ∂jT = 0 for all j ∈
{1, . . . , N}. Thus, fix ϕ ∈ D(Ω) and, if K := suppϕ, choose Ω ′ ⊆ Ω such that ∂Ω ′

is of class C1 and K ⊂ Ω ′ ⊆ Ω. Let ν denote the outward normal to ∂Ω ′. Then, by
the divergence theorem,

〈∂jT, ϕ〉D = −〈T, ∂jϕ〉D = − c
∫

Ω
∂jϕ(x) dx

= − c
∫

Ω ′
∂jϕ(x) dx = − c

∫
∂Ω ′

νj(x)ϕ(x) dx = 0 .
(2.5.53)

4) We prove this result in the simpler case of one dimension, when Ω = I is an
interval of IR; for the general case, see Renardy & Rogers, [5], §5.1. We show first
that if ζ1, ζ2 ∈ D(I) are such that∫

I
ζ1(x) dx =

∫
I
ζ2(x) dx , (2.5.54)

then
〈T, ζ1〉D = 〈T, ζ2〉D ; (2.5.55)

that is, T assigns the same value to test functions which have the same average. This
is an immediate consequence of proposition 2.4.2. By (2.5.54), there exists ψ ∈ D(I)
such that ψ ′ = ζ1 − ζ2. Therefore,

〈T, ζ1 − ζ2〉D = 〈T, ψ ′〉D = −〈T ′, ψ〉D = 0 . (2.5.56)

We fix then ζ ∈ D(I) such that
∫
I
ζ(x) dx = 1 and, given ϕ ∈ D(I), consider the

function

x 7→ α(x) := ϕ(x)−
(∫

I
ϕ(t)dt

)
ζ(x) . (2.5.57)

Then, α ∈ D(I), and since∫
I
α(x) dx =

∫
I
ϕ(x) dx−

∫
I
ϕ(t)dt

∫
I
ζ(x) dx = 0 , (2.5.58)
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by proposition 2.4.2 there is β ∈ D(I) such that α = β ′. Consequently, as in (2.5.56),
〈T, α〉D = 0. In turn, this implies that

〈T, ϕ〉D =
(∫

I
ϕ(x) dx

)
〈T, ζ〉D . (2.5.59)

Letting c denote the value of 〈T, ζ〉D common to all ζ with
∫
I
ζ(x) dx = 1, we con-

clude that

〈Tc, ϕ〉D = c
∫
I
ϕ(x) dx =

(∫
I
ϕ(x) dx

)
〈T, ζ〉D . (2.5.60)

Recalling (2.5.59), this shows that T = Tc, as claimed.

5) The proof of the last claim is immediate. In fact, for each ϕ ∈ D(Ω), as k → +∞,

〈DαTk, ϕ〉D = (−1)|α|〈Tk, Dαϕ〉D → (−1)|α|〈T,Dαϕ〉D = 〈DαT, ϕ〉D . (2.5.61)

This concludes the proof of proposition 2.5.4. 2

2.5.2 An Example: the Equation −∆u = δ0 in IR3.

Let Ω := IR3 \ {0}, and consider the function f : Ω→ IR defined by

x 7→ f(x) :=
1

|x|
. (2.5.62)

Then, f ∈ C∞(Ω), and f and all components of ∇f are in L1
loc(IR

3). In fact, using
spherical coordinates, we see that, for any R > 0,∫

|x|≤R

1

|x|
dx ≤ C1R

2 , (2.5.63)

and, recalling that, for j = 1, 2, 3,

∂j
1

|x|
=
−xj
|x|3

, i.e. ∇ 1

|x|
= − x

|x|3
, (2.5.64)

that ∫
|x|≤R

|[∂jf ](x)| dx ≤ C2R , (2.5.65)
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for suitable constants C1, C2 independent of R. However, no components of the
Hessian matrix D2f are in L1

loc(IR
3). Indeed, since

∂j∂k
1

|x|
=

3xjxk
|x|5

− δjk
|x|3

, (2.5.66)

we also see that, for ε ∈ ]0, R[,

∫
ε≤|x|≤R

|[∂j∂kf ](x)| dx =

 0 if j 6= k ,

O (| ln ε|) if j = k ,
(2.5.67)

as ε→ 0. Our goal is to compute ∆f in distributional sense, interpreting

∆f :=
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

(2.5.68)

as a sum of second-order distributional derivatives of the distribution Tf ∈ D ′(IR3)
defined by the locally integrable function f , via (2.5.4). We claim that

∆f = −4π δ0 in D ′(IR3) . (2.5.69)

Admitting this, it is then common to say that the function

x 7→ u(x) :=
1

4π|x|
(2.5.70)

satisfies the Laplace equation
−∆u = δ0 (2.5.71)

in distributional sense. (In other contexts, u is called the fundamental solution of
the Laplace operator −∆ in IR3; see definition 2.6.2 below.) Identity (2.5.69) may be
somewhat surprising, given that (2.5.66) implies that, for all x ∈ Ω,

∆f(x) = 0 . (2.5.72)

The situation is somewhat similar to that of the derivative of the Heaviside function;
in a vague sense, the right side of (2.5.69) “keeps track” of the different behavior,
with respect to integrability, of the singularities of f and its derivatives at x = 0.

To show (2.5.69), we fix arbitrary ϕ ∈ D(IR3), and start computing

〈∆Tf , ϕ〉D = 〈Tf ,∆ϕ〉D =
∫
IR3

1

|x|
∆ϕ(x) dx

= lim
ε→0

∫
|x|≥ε

1

|x|
∆ϕ(x) dx .

(2.5.73)
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Integrating by parts, we proceed with

〈∆Tf , ϕ〉D = lim
ε→0

{ ∫
|x|≥ε

(
∆ 1
|x|

)
ϕ(x) dx

+
∫
|x|=ε

(ν(x) · ∇ϕ(x)) 1
|x| dx

−
∫
|x|=ε

(
ν(x) · ∇ 1

|x|

)
ϕ(x) dx

}
=: limε→0 (J1ε + J2ε − J3ε) ,

(2.5.74)

where ν is the outward normal to the boundary of the exterior domain IR3−B(0, ε);
that is,

ν(x) =
−x
|x|

= − x
ε
, |x| = ε . (2.5.75)

By (2.5.72), J1ε = 0. Next, we estimate

|J2ε| ≤
∫
|x|=ε
|∇ϕ(x)| 1

ε
dx ≤ 1

ε
max
|x|=ε
|∇ϕ(x)|

∫
|x|=ε

1 dx ≤ Cϕ 4πε , (2.5.76)

for suitable constant Cϕ depending on ϕ. Hence, J2ε → 0 as ε → 0. Similarly,
recalling (2.5.75) and (2.5.64), we compute that, on the boundary {|x| = ε},

ν(x) · ∇ 1

|x|
=

1

ε2
. (2.5.77)

Therefore,

J3ε =
1

ε2

∫
|x|=ε

ϕ(x) dx = 4π
1

4πε2

∫
|x|=ε

ϕ(x) dx . (2.5.78)

Since 4πε2 is the area of the spherical surface {|x| = ε}, and ϕ is continuous,
J3ε → 4πϕ(0) as ε→ 0. It follows that

〈∆Tf , ϕ〉D = lim
ε→0

(J2ε − J3ε) = −4πϕ(0) = −4π 〈δ0, ϕ〉D , (2.5.79)

from which (2.5.69) follows. 2

2.6 Applications to PDEs.

In this section6 we present an application of distribution theory to linear PDEs with
constant coefficients.

6Section 1.5 of Seiler, [8].
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2.6.1 Convolution.

We start with the formal definition of the convolution of two functions, and that of
a distribution with a test function 7.

Definition 2.6.1 Let f , g : IRN → IR. The convolution of f and g is the
function f ∗ g : IRN → IR defined by

[f ∗ g](x) :=
∫
IRN

f(x− y) g(y) dy =
∫
IRN

f(y) g(x− y) dy . (2.6.1)

(The integrals in (2.6.1) are seen to be the same by means of the change of variable
z = x − y, and then renaming z = y). Definition (2.6.1) is formal; one important
case when the integrals at its right side are well defined is described in the following
result, where we denote by | · |p the usual norm in Lp(IRN), 1 ≤ p ≤ +∞.

Theorem 2.6.1 Given p and q ∈ [1,∞], define r ∈ [0,∞] by

1

r
=

1

p
+

1

q
− 1 , (2.6.2)

where we interpret 1
∞ := 0. If f ∈ Lp(IRN) and g ∈ Lq(IRN), then f ∗ g ∈ Lr(IRN),

and satisfies Young’s inequality

|f ∗ g|r ≤ |f |p |g|q . (2.6.3)

Note that (2.6.3) implies the continuity of the map (f, g) 7→ f ∗ g from Lp(IRN) ×
Lq(IRN) into Lr(IRN), and that this map has unit norm. Theorem 2.6.1 implies in
particular that L1(IRN) is an algebra with respect to the convolution product; that
is, if f and g ∈ L1(IRN), then f ∗ g ∈ L1(IRN), and

|f ∗ g|1 ≤ |f |1 |g|1 . (2.6.4)

7One can also define the convolution of two distributions, when at least one of them has compact
support (see (2.5.3) for the definition of the support of a distribution). We refer to § 6.36 of Rudin,
[7], for all details.
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Given a distribution T ∈ D ′(IRN), and ϕ ∈ D(IRN), we define a function u : IRN →
IR by

u(x) := T (ϕ(x− ·)) = 〈T, ϕ(x− ·)〉D ; (2.6.5)

that is, for each fixed x ∈ IRN , the distribution T is applied to the test function
y 7→ ϕ(x − y). We write u =: T ∗ ϕ, and call T ∗ ϕ the convolution of T with ϕ.
Again, this convolution is a function; in fact, using differentiation under the integral
sign 8, we can prove

Theorem 2.6.2 Let u be defined by (2.6.5). Then, u ∈ C∞(IRN), with

[Dαu](x) = 〈DαT, (ϕ(x− ·))〉D = 〈T, [Dαϕ](x− ·)〉D . (2.6.6)

Definition (2.6.5) is motivated by the observation that if T is a regular distribution
generated by a function f ∈ L1

loc(IR
N), then for ϕ ∈ D(IRN)

Tf (ϕ(x− ·)) =
∫
IRN

f(y)ϕ(x− y) dy = [f ∗ ϕ](x) ; (2.6.7)

that is, the convolution of Tf with ϕ coincides with the convolution of the functions
f and ϕ (recall that we often identify fwith Tf ).

As an example of convolution, we show that, for all ϕ ∈ D(IRN),

δ0 ∗ ϕ = ϕ . (2.6.8)

Indeed, for all x ∈ IRN , by (2.6.5),

[δ0 ∗ ϕ](x) = 〈δ0, ϕ(x− ·)〉 = ϕ(x− 0) = ϕ(x) . (2.6.9)

Note that (2.6.8) confirms that δ0 ∗ ϕ ∈ C∞(IRN), in accord with theorem 2.6.2.

2.6.2 Distributions and Linear PDEs.

1. A differential operator
A :=

∑
|α|≤m

aαD
α (2.6.10)

8We consider the integrals in (2.6.1) as integrals depending on the parameter x
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of order m, with constant coefficients aα ∈ IR induces a map Ã : D ′(IRN) →
D ′(IRN), defined by

Ã T :=
∑
|α|≤m

aαD
αT , T ∈ D ′(IRN) , (2.6.11)

in which the derivatives DαT are defined in (2.5.28). Thus, the distribution Ã T is
defined by

〈Ã T, ϕ〉D = 〈T,At (ϕ)〉D , (2.6.12)

where the opertor At, called the formal adjoint of A, is defined by

At :=
∑
|α|≤m

(−1)|α| aαD
α . (2.6.13)

It is usual practice to identify Ã with A, although it should be kept in mind that Ã
acts on distributions, while A (and At) acts on C∞ functions.

2. Given a distribution F ∈ D ′(IRN), we may ask whether there exists a distribution
U ∈ D ′(IRN), solution of the distributional PDE

AU = F ; (2.6.14)

that is, by (2.6.12), such that for all ϕ ∈ D(IRN),

〈T,At ϕ〉D = 〈F, ϕ〉D . (2.6.15)

Definition 2.6.2 A distribution E ∈ D ′(IRN) is called a fundamental solution of
A if

AE = δ0 . (2.6.16)

For example, we saw in section 2.5.2 that the distribution Tu defined by the function
u(x) = 1

4π|x| , which is in L1
loc(IR

3 \ {0}), is a fundamental solution of the Laplacian

−∆ in IR3 (note that (−∆)t = −∆; that is, −∆ is a formally self-adjoint operator).9

The importance of the fundamental solution E of the operator A of (2.6.10) is illus-
trated by the following result.

9The existence of a fundamental solution of a differential operator A with constant coefficients,
as in (2.6.10) is guaranteed by a theorem of Ehrenpreis and Malgrange (1955-56).



58 CHAPTER 2. BASIC DISTRIBUTION THEORY.

Theorem 2.6.3 Given f ∈ D(IRN), let u := E ∗ f . Then u, which is in C∞(IRN),
is a solution of the PDE

Au = f . (2.6.17)

Proof. In order to avoid confusion, we denote by Dα the distributional derivative of
order α, and by ∂αx the classical derivative of order α with respect to the variable x.
Recalling (2.6.6) and (2.6.5), we compute that

[A(E ∗ f)](x) =
∑
|α|≤m

aα [∂αx (E ∗ f)](x)

=
∑
|α|≤m

aα ∂
α
x 〈E, f(x− ·)〉D

=
∑
|α|≤m

aα (−1)|α|〈E, ∂αy f(x− ·)〉D (2.6.18)

=
∑
|α|≤m

aα 〈DαE, f(x− ·)〉D

= 〈
∑
|α|≤m

aαD
αE, f(x− ·)〉D

= 〈AE, f(x− ·)〉D = [(AE) ∗ f ](x)

= [δ0 ∗ f ](x) = f(x) .

In the next to last line of (2.6.18), recall that AE stands for ÃE, with Ã defined in
(2.6.11). 2

For example, the function

w(x) :=
[

1
4π |·| ∗ f

]
(x) = 1

4π

∫
IR3

f(y)

|x− y|
dy (2.6.19)

is a solution to the Laplace equation in IR3

− (∂2
1 + ∂2

2 + ∂2
3)w = f . (2.6.20)
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Exercise 2.6.1 Show that the fundamental solution of the Laplacian ∆ := ∂2
1 + ∂2

2

in IR2 is the distribution Tu, with u ∈ L1
loc(IR

2 \ {0}) defined by

u(x) := −1
2π

ln |x| . (2.6.21)

Write the corresponding solution of the Laplace equation in IR2

− (∂2
1 + ∂2

2)w = f . (2.6.22)

2.7 Tempered Distributions.

As it turns out, in order to define generalized solutions to various types of PDEs
(such as, for example, solutions in the Sobolev spaces Hs(IRN), which are spaces of
distributions that are regular in a sense similar to that of §2.2), we need to consider
spaces of distributions that are smaller than the space D ′(IRN). In a certain sense,
the space D ′(IRN) is “too large”; or, correspondingly, the space D(IRN) of test
functions is “too small”. For example, the requirement that test functions have
compact support is too strong for a satisfactory theory of the Fourier transform
(see chapter 3): the Fourier transform of a test function is a C∞ function whose
support is, in general, not compact. On the other hand, simply doing away with
the requirement of compact support is not satisfactory either, since functions in
C∞(IRN) may grow too fast to be integrable; thus, this space cannot be imbedded
into any space Lp(IRN), with the consequence that the Fourier transform cannot be
defined for all functions in C∞(IRN). Finally, the structure of the topological dual
of this space is too complicated to be of general use in applications.

2.7.1 Rapidly Decreasing Functions.

To overcome the above mentioned obstacles, we introduce a sort of intermediate
space between C∞0 (IRN) and C∞(IRN): this space is called the Schwartz space of
rapidly decreasing functions, and is defined by

S(IRN) :=
{
f ∈ C∞(IRN) | ∀ α, β ∈ INN , (·)βDαf ∈ L∞(IRN)

}
, (2.7.1)

or, equivalently,

S(IRN) =
{
f ∈ C∞(IRN) | ∀ k ∈ IN, ∀α ∈ INN , | · |kDαf ∈ L∞(IRN)

}
. (2.7.2)



60 CHAPTER 2. BASIC DISTRIBUTION THEORY.

Thus, functions in S(IRN) are infinitely differentiable, and all their derivatives decay
faster than any polynomial as |x| → +∞; an example of a function in S(IRN) is
f(x) = e−|x|

2
.

We first record the following obvious properties of S(IRN).

Proposition 2.7.1 Let f ∈ S(IRN). Then, for all k ∈ IN and α ∈ IN ,

lim
|x|→+∞

(1 + |x|2)k|(Dαf)(x)| = 0. (2.7.3)

Moreover, if P is an arbitrary polynomial with constant coefficients, both P (·)f and
P (D)f ∈ S(IRN).

Proof. (2.7.3) follows from the estimate

(1 + |x|2)k|(Dαf)(x)| ≤ (1 + |x|2)k+1|(Dαf)(x)|(1 + |x|2)−1

≤ C ‖ | · |2(k+1)Dαf ‖L∞(IRN )(1 + |x|2)−1 ;
(2.7.4)

next, if P has degree r,

(1 + |x|2)k|(Dα(P (x)f(x))| ≤ C ‖ | · |2k+rDαf ‖L∞(IRN ) , (2.7.5)

(1 + |x|2)k|(DαP (D)(f(x))| ≤ C ‖ | · |2kDα+βf ‖L∞(IRN ) , (2.7.6)

with |β| = r. This ends the proof of proposition 2.7.1. 2

Obviously, C∞0 (IRN) ⊂ S(IRN) (if ϕ ∈ C∞0 (IRN), then (·)βDαϕ ∈ C∞0 (IRN) and
is bounded on IRN , because supp(ϕ) is compact). However, functions in S(IRN)
are not required to have compact support; moreover, S(IRN) ⊂ Lp(IRN) for all
p ∈ [1,+∞] (see proposition 2.7.3 below). It is possible to prove that S(IRN) is a
Fréchet space, endowed with a locally convex metrizable complete topology defined
by the sequence of seminorms

pk,m(u) := max
|α|≤m

sup
x∈IRN

∣∣∣(1 + |x|2)kDαu(x)
∣∣∣ , (2.7.7)

which are all bounded if u ∈ S(IRN). For our purposes, it is sufficient to consider
the notion of sequential convergence, as in D(IRN) (see definition 2.4.1).
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Definition 2.7.1 We say that fr → f in S(IRN) if Dαfr → Dαf uniformly on IRN

for all α ∈ INN , and if the sequences pk,m(fr) are all bounded independently of r;
that is, if for all k, m ∈ IN , there is Ck,m such that pk,m(fr) ≤ Ck,m for all r ∈ IN .

This allows us to prove

Proposition 2.7.2 The space C∞0 (IRN) is dense in S(IRN).

Proof. Let ψ ∈ C∞0 (IRN) be such that 0 ≤ ψ(x) ≤ 1 for all x ∈ IRN , ψ(x) ≡ 1 iff
|x| ≤ 1, ψ(x) ≡ 0 iff |x| ≥ 2. Given f ∈ S(IRN) and ε > 0, set

fε(x) := ψ(εx)f(x) . (2.7.8)

Then fε ∈ C∞0 (IRN), with supp fε = B
(
0, 2

ε

)
. We now show that fε → f in S(IRN).

Indeed, for each k ∈ IN and α ∈ IN , by Leibniz’ formula it follows that

(1 + |x|2)kDαfε(x) =
∑
β≤α

(
α
β

)
(1 + |x|2)kDβf(x)Dα−βψ(εx) , (2.7.9)

so that, recalling the definition of pk,m in (2.7.7),

pk,m(fε) ≤ C pk,m(f) max
|α−β|≤m

sup
x∈IRN

∣∣∣Dα−βψ(εx)
∣∣∣

≤ C pk,m(f) max
|α−β|≤m

ε|α−β| sup
1≤ε|x|≤2

∣∣∣(Dα−βψ)(εx)
∣∣∣ (2.7.10)

≤ C1 pk,m(f) max
|α−β|≤m

ε|α−β| ,

with C1 depending on ψ. This shows that each pk,m(fε) is uniformly bounded with
respect to ε if (e.g.) ε ≤ 1. In the same way, from

Dα(f(x)− fε(x))

=
∑
β≤α

(
α
β

)
Dβf(x)Dα−β(1− ψ(εx)) (2.7.11)

= (1 + |x|2)−k
∑
β≤α

(
α
β

)
(1 + |x|2)kDβf(x)Dα−β(1− ψ(εx))
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we deduce that

|Dα(f(x)− fε(x))| ≤ C
∑
β≤α

∣∣∣(1 + |x|2)kDβf(x)
∣∣∣ ∣∣∣Dα−β(1− ψ(εx))

∣∣∣ . (2.7.12)

By (2.7.3), each function (1 + |x|2)kDβf(x) vanishes as |x| → +∞: thus, given η > 0
there is M > 0 such that |(1 + |x|2)kDβf(x)| ≤ η if |x| ≥M . As above then, for all

ε ≤ min
{

1, 1
M

}
, if |x| ≥ 1

ε
it follows that

|Dα(f(x)− fε(x))| ≤ C η sup
ε |x|≥1

∑
β≤α
|Dα−β(1− ψ(εx))|

≤ C1 η ;
(2.7.13)

since the right side of (2.7.12) equals 0 if |x| ≤ 1
ε
, this shows that

(1 + |x|2)kDα(f(x)− fε(x))→ 0 , (2.7.14)

uniformly in x as ε→ 0. Hence, fε → f in S(IRN) as claimed. 2

Proposition 2.7.3 S(IRN) is dense in Lp(IRN) for all p ∈ [1,+∞[.

Proof. Since C∞0 (IRN) is dense in Lp(IRN), it is sufficient to prove that S(IRN) ⊂
Lp(IRN) (this is obvious if p =∞, with

|ϕ|∞ ≤ p0,0(ϕ) ; (2.7.15)

however, S(IRN) is not dense in L∞(IRN)). If 1 ≤ p < ∞, we choose an integer
m ≥ N

2p
and, for ϕ ∈ S(IRN), and, recalling (2.7.7), estimate

|ϕ|pp =
∫
IRN

(1 + |x|2)−mp (1 + |x|2)mp |ϕ(x)|p dx

≤ sup
x∈IRN

(
(1 + |x|2)m |ϕ(x)|

)p ∫
IRN

(1 + |x|2)−mp dx (2.7.16)

≤ (pm,0(ϕ))p
∫ +∞

0

rN−1

(1 + r2)mp
dr ≤ (pm,0(ϕ))pMp ,

where the constant M depends on ϕ, N , and p; the last integral of (2.7.16) converges,
because of the choicem > N

2p
.For future reference, we note explicitly that from (2.7.16)

it follows that
|ϕ|p ≤M pm,0(ϕ) , (2.7.17)

which also shows that convergence in S implies convergence in Lp(IRN). 2
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2.7.2 Tempered Distributions.

1. Just as we have defined the space D ′(IRN) of distributions as the space of all
linear, sequentially continuous functionals on D(IRN), we define the space S ′(IRN) of
tempered distributions as the space of all linear, sequentially continuous functionals
on S(IRN), and we say that Fm → F in S ′(IRN) if for all ϕ ∈ S(IRN), Fm(ϕ)→ F (ϕ)
in IR, in the sense of definition 2.7.1. As for general distributions, we often denote
the duality between S ′(IRN) and S(IRN) by 〈·, ·〉S .

Example 2.7.1 Let f ∈ Lp(IRN), 1 ≤ p ≤ +∞. The distribution Tf defined by f
via (2.5.4), which now reads

〈Tf , ϕ〉S =
∫
IRN

f(x)ϕ(x) dx, ϕ ∈ S(IRN) , (2.7.18)

is a tempered distribution. More generally, if f : IRN → IR is a measurable function
such that there are C > 0 and r ∈ IN such that, for all x ∈ IRN ,

|f(x)| ≤ C (1 + |x|2)r, (2.7.19)

then f also defines a tempered distribution Tf by means of the same formula (2.7.18).

Proof. Each Tf is obviously linear; if f ∈ Lp(IRN), the sequential continuity of Tf
follows from (2.7.17) and (2.7.15). If f only satisfies (2.7.19), we estimate

|〈Tf , ϕ〉S | ≤
∫
IRN

|f(x)|(1 + |x|2)r+N

(1 + |x|2)r+N
|ϕ(x)| dx

≤ C sup
x∈IRN

(
(1 + |x|2)r+N |ϕ(x)|

) ∫
IRN

1

(1 + |x|2)N
dx (2.7.20)

≤ CM pr+N,0(ϕ).

This proves that Tf ∈ S ′(IRN) in either case. 2

In particular, taking f = 1 (which is in L∞(IRN), and satisfies (2.7.19)) yields that
the map T1 : S(IRN)→ IR, defined by

〈T1, ϕ〉S =
∫
IRN

ϕ(x) dx, (2.7.21)
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is in S ′(IRN).

2. Perhaps the most important example of tempered distributions is given by the
family of the Dirac distributions δα. More precisely:

Theorem 2.7.1 For α ∈ IRN , define δ̃α : S(IRN)→ IR by

〈δ̃α, ϕ〉S = ϕ(α), ∀ϕ ∈ S(IRN). (2.7.22)

Then each δ̃α is in S ′(IRN), and is an extension to S(IRN) of the Dirac δ-distributions
δα ∈ D ′(IRN).

Proof. It is sufficient to show that the maps ϕ 7→ ϕ(α) are sequentially continuous on
S(IRN). But, according to definition 2.7.1, the convergence of a sequence (ϕk)k∈IN to
ϕ in S(IRN) implies, in particular, that ϕk → ϕ uniformly on IRN ; hence, ϕk(α)→
ϕ(α). This shows that each δ̃α ∈ S ′(IRN). On D(IRN), δ̃α obviously coincides with
the corresponding Dirac δ-distribution; since D(IRN) is dense in S(IRN), this shows
that δ̃α is an extension of δα to S(IRN). 2

3. Finally, we remark that, as the example of the Dirac δ-distributions shows,
tempered distributions are indeed distributions; that is, S ′(IRN) ⊂ D ′(IRN). This
inclusion is dense, since D(IRN) is dense in S(IRN); indeed, sequential convergence
in D(IRN) implies sequential convergence in S(IRN), since the factors x 7→ (1+|x|2)k

are bounded on any compact set of IRN . In other words, if ϕm → ϕ in D(IRN) and
T ∈ S ′(IRN) ⊂ D ′(IRN), then 〈T, ϕm − ϕ〉D → 0, because ϕm → ϕ also in S(IRN).
From this, it also follows that distributional derivatives of tempered distributions
are again tempered distributions. On the other hand, there are distributions that
are not tempered, as we see from

Proposition 2.7.4 The distribution Tf ∈ D ′(IR) defined by the locally integrable
function f(x) = ex is not in S ′(IR).

Proof. Assuming the contrary, consider the non-negative function ϕ ∈ C∞(IR)
defined by

ϕ(x) :=


0 if x ≤ −1 ,

ψ(x) if −1 < x < 0 ,

e−x if x ≥ 0 ,

(2.7.23)
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where ψ ∈ C∞([−2, 1]) with ψ(−1) = 0 = ϕ(−1) and ψ(0) = 1 = ϕ(0). Then,
ϕ ∈ S(IR). Since ϕ ≥ 0,

Tf (ϕ) =
∫ +∞

−∞
f(x)ϕ(x) dx ≥

∫ +∞

0
ex e−x dx = +∞ ; (2.7.24)

thus, Tf (ϕ) = +∞, contradicting the fact that Tf (ϕ) is a finite real number if
Tf ∈ S ′(IR). 2
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Chapter 3

The Fourier Transform.

In this chapter we briefly recall the basic results on the Fourier transform in L1(IRN),
L2(IRN), and S(IRN), and its inverse in L2(IRN) and S(IRN). Most of the material
of this chapter is taken from chapter 9 of Rudin, [6].

3.1 Fourier Transform in L1(IRN).

We start with the definition of the Fourier transform of functions in L1(IRN). If
ϕ ∈ L1(IRN), its Fourier transform is the function ϕ̂ : IRN → Cl defined by

ϕ̂(y) := 1
(2π)N/2

∫
IRN

e−ix·yϕ(x) dx , (3.1.1)

where i2 := −1; we set 1
(2π)N/2

=: cN . A first example is

Example 3.1.1 For m ∈ IN , m ≥ 1, let χm denote the characteristic function of
the interval [−m,m]. Then χm ∈ L1(IR), and

χ̂m(y) =



√
2

π

sin(my)

y
if y 6= 0 ,√

2

π
m if y = 0 .

(3.1.2)

67
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Proof. If y 6= 0,

χ̂m(y) = c1

∫ m

−m
e−ixy dx = c1

[
e−ixy

−iy

]x=m

x=−m

= c1
eimy − e−imy

iy
=

√
2

π

sinmy

y
,

(3.1.3)

while if y = 0,

χ̂m(0) = c1

∫ m

−m
1 dx =

√
2

π
m . (3.1.4)

Thus, (3.1.2) follows. Note that χ̂m is continuous at y = 0. 2

The following results are of immediate proof.

Proposition 3.1.1 Let f ∈ L1(IRN), a ∈ IRN and α 6= 0. Then:

1) If fa(x) := f(x− a), then f̂a(y) = e−ia·yf̂(y);

2) If fα(x) := f
(
x
α

)
, then f̂α(y) = αN f̂(α y).

We usually write F to denote the map f 7→ f̂ , which is linear; that is, we set
f̂ = Ff . F is defined on all of L1(IRN); to characterize its range, we show that if
f ∈ L1(IRN), then f̂ is continuous, but not necessarily integrable.

Theorem 3.1.1 Let f ∈ L1(IRN). Then f̂ ∈ UCB(IRN) (that is, f̂ is uniformly
continuous and bounded on IRN); however, f̂ is not necessarily in L1(IRN). The

map F is continuous from L1(IRN) into UCB(IR). The range space F
(
L1(IRN)

)
is

a proper subspaces of UCB(IRN).

Proof. 1) Let f ∈ L1(IRN). Then, for all y ∈ IRN ,

|f̂(y)| ≤ cN

∫
IRN
|e−iy·x| |f(x)| dx ≤ |f |1 , (3.1.5)

which means that f̂ is bounded.
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2) Fix ε > 0. Since f ∈ L1(IRN), by the absolute continuity of the Lebesgue integral
we can find R > 0 such that ∫

|y|≥R
|f(y)|dy ≤ 1

4cN
ε . (3.1.6)

With R so chosen, we choose δ such that

δ ≤ 1

4cNR |f |1
ε , (3.1.7)

and assume that |x− x̄| ≤ δ. Recalling that |e−iz·y − 1| ≤ 2|z · y| for all z, y ∈ IRN ,
we compute that

|f̂(x)− f̂(x̄)| ≤ cN

∫
IRN
|e−ix·y − e−ix̄·y||f(y)| dy

= cN

∫
IRN
|e−ix̄·y| |e−i(x−x̄)·y − 1| |f(y)| dy

≤ 2 cN

∫
|y|≥R

|f(y)| dy

+ 2 cN

∫
|y|≤R

|x− x̄||y||f(y)| dy

≤ 2 cN

(∫
|y|≥R

|f(y)| dy + δR
∫
IRN
|f(y)| dy

)

≤ 2 cN
(

1
4cN

ε+ δR|f |1
)
,

(3.1.8)

having used (3.1.6). By (3.1.7) we conclude that

|f̂(x)− f̂(x̄)| ≤ ε whenever |x− x̄| ≤ δ . (3.1.9)

This proves the uniform continuity of f̂ . In addition, (3.1.5) shows that F is contin-
uous from L1(IRN) into C(IR). In fact, F is a contraction on L1(IRN). Indeed, from
(3.1.5), and recalling that cN < 1, we see that if f , g ∈ L1(IRN),

sup
y∈IRN

|f̂(y)− ĝ(y)| ≤ sup
y∈IRN

cN

∫
IRN
|f(x)− g(x)| dx

= cN |f − g|1 .
(3.1.10)

3) We show that the function χ̂1, transform of the characteristic function χ1 of the
interval [−1, 1], is not in L1(IR) (while, in accord with part (1), χ̂1 is uniformly
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continuous on IR). To show this, recall from (3.1.2) that, if y 6= 0,

χ̂1(y) =

√
2

π

sin y

y
. (3.1.11)

Then, for n ∈ IN ,

In :=
∫ (n+1)π

−(n+1)π

∣∣∣∣∣sin yy
∣∣∣∣∣ dy ≥ 2

n∑
k=0

∫ (k+5/6)π

(k+1/6)π

∣∣∣∣∣sin yy
∣∣∣∣∣ dy

≥ 2
n∑
k=0

∫ (k+5/6)π

(k+1/6)π

1

2y
dy =

n∑
k=0

ln

(
6k + 5

6k + 1

)
(3.1.12)

≥
n∑
k=0

ln
(

1 +
4

6k + 1

)
=: Sn .

Since

lim
n→∞

Sn =
∞∑
k=0

ln
(

1 +
4

6k + 1

)
= +∞ , (3.1.13)

also In → +∞, so that χ̂1 /∈ L1(IR).

4) Finally, we prove that there is no function f ∈ L1(IR) such that f̂(y) ≡ 1.
Assuming otherwise, by the density of C∞0 (IR) in L1(IR), we can find a function
ϕ ∈ C∞0 (IR) such that

c1 |f − ϕ|1 ≤ 1
3
. (3.1.14)

Then for each y ∈ IR,

1 = f̂(y) = c1

∫ +∞

−∞
e−ixyf(x) dx

= c1

∫ +∞

−∞
e−ixy(f(x)− ϕ(x)) dx

+c1

∫ +∞

−∞
e−ixyϕ(x) dx

=: I(y) + J(y) .

(3.1.15)

At first, by (3.1.14), for all y ∈ IR,

|I(y)| ≤ c1 |f − ϕ|1 ≤ 1
3

; (3.1.16)
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to estimate J(y), we integrate by parts: since ϕ has compact support, we find that,
if y 6= 0,

J(y) =
c1

−iy

∫ +∞

−∞

(
d

dx
e−ixy

)
ϕ(x) dx

=
c1

iy

∫ +∞

−∞
e−ixyϕ ′(x) dx .

(3.1.17)

Thus, if y > 0,

|J(y)| ≤ c1

y

∫ +∞

−∞
ϕ ′(x) dx ≤ Cϕ

y
; (3.1.18)

choosing then y so large that
Cϕ
y
≤ 1

3
, (3.1.19)

(3.1.15), (3.1.16) and (3.1.18) yield a contradiction. This concludes the proof of theorem
3.1.1. 2

3.2 The Heat Kernel.

The following result is fundamental for the sequel, and is at the basis of the solution
theory of the heat equation.

Proposition 3.2.1 Define E : IRN → IR>0 by

E(x) := e−|x|
2/2 . (3.2.1)

Then E ∈ L1(IRN), and Ê = E; that is, E is an invariant for F . Moreover,

E(0) = Ê(0) = cN

∫
IRN

e−|x|
2/2 dx = 1 . (3.2.2)

Finally, for all y ∈ IRN and t > 0,

E
(

y√
2t

)
= cN

(√
2t
)N ∫

IRN
eiy·z−t|z|

2

dz . (3.2.3)



72 CHAPTER 3. THE FOURIER TRANSFORM.

Proof. Let first N = 1: then E(x) = e−x
2/2, and solves the Cauchy problem h ′ + xh = 0 ,

h(0) = 1 .
(3.2.4)

By definition,

Ê(y) = 1√
2π

∫ +∞

−∞
e−ixye−x

2/2 dx , (3.2.5)

and we note that we can differentiate with respect to y within this integral, since

∂

∂y

(
e−ixye−x

2/2
)

= (−ix)e−ixye−x
2/2 , (3.2.6)

the right side of (3.2.6) satisfies the estimate

|(−ix)e−ixye−x
2/2| ≤ |x|E(x) , (3.2.7)

and the function x 7→ |x|E(x) is in L1(IR). Thus, by (3.2.4), and integrating by
parts,

Ê ′(y) = 1√
2π

∫ +∞

−∞
e−ixy (−ix)E(x) dx

= i√
2π

∫ +∞

−∞
e−ixyE ′(x) dx

= −i√
2π

∫ +∞

−∞
(−iy) e−ixyE(x) dx (3.2.8)

= −y√
2π

∫ +∞

−∞
e−ixyE(x) dx

= −y Ê(y) .

Since also

Ê(0) = 1√
2π

∫ +∞

−∞
e−x

2/2 dx = 1 , (3.2.9)

we conclude that Ê is also a solution of (3.2.4); hence, Ê = E. This proves that
Ê = E when N = 1. When N > 1, letting h(r) := e−r

2/2, r ∈ IR, we decompose

E(x) = exp

−1

2

N∑
j=1

x2
j

 =
N∏
j=1

e−x
2
j/2 =

N∏
j=1

h(xj) , (3.2.10)
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so that

Ê(y) =
1

(2π)n/2

N∏
j=1

∫ +∞

−∞
e−iyjxje−x

2
j/2 dxj

=
N∏
j=1

ĥ(yj) =
N∏
j=1

h(yj) = E(y) .

(3.2.11)

This proves that Ê = E for all N . Next, we compute directly that, by (3.2.9),

E(0) = Ê(0) =
1

(2π)N/2

∫
IRN

e−|x|
2/2 dx

=
N∏
j=1

1√
2π

∫ +∞

−∞
e−x

2
j/2 dxj (3.2.12)

= 1 ,

which proves (3.2.2); note that this implies the well-known identity

∫
IRN

e−|x|
2/2 dx = (2π)N/2 . (3.2.13)

As for (3.2.3), we compute

cN

∫
IRN

eiy·z−t|z|
2

dz = cN

∫
IRN

e−iy·(−z)e−t|−z|
2

dz

= cN

∫
IRN

e−iy·ze−t|z|
2

dz (3.2.14)

=
cN

(
√

2t)N

∫
IRN

e−iy·(u/
√

2t)e−|u|
2/2 du ,

so that the right side of (3.2.3) equals

cN

∫
IRN

e−i(y/
√

2t)·uE(u) du = Ê
(

y√
2t

)
= E

(
y√
2t

)
. (3.2.15)

Thus, (3.2.3) holds, and the proof of proposition 3.2.1 is complete. 2
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In particular, for t = 1
2

(3.2.3) yields the identity

E(y) = cN

∫
IRN

eiy·x−|x|
2/2 dx

= cN

∫
IRN

eiy·xE(x) dx

= cN

∫
IRN

eiy·xÊ(x) dx ;

(3.2.16)

as we shall see in §3.3 below, this means that E also coincides with its own inverse
Fourier transform. For t > 0, we now set 1

E(t)(x) :=
cN

(
√

2t)N
e−|x|

2/4t =
1

(
√

4πt)N
E

(
x√
2t

)
. (3.2.17)

For each t > 0, the function x 7→ E(t)(x) is obviously in Lq(IRN) for all q ∈ [1,+∞[.
The function (t, x) 7→ E(t)(x) =: H(t, x) is called the Heat Kernel, because, as it
is immediate to verify, H satisfies, on the set IR>0 × IRN , the heat equation

Ht −∆H = 0 . (3.2.18)

We list the most important properties of the heat kernel.

Proposition 3.2.2 Let E(t) be the heat kernel defined in (3.2.17). Then:

1 ) For all t > 0, ∫
IRN

E(t)(x) dx = 1 ; (3.2.19)

Ê(t)(y) = cN e−t |y|
2

; (3.2.20)

E(t)(x) = cN

∫
IRN

eix·yE
(√

2t y
)

dy . (3.2.21)

1We adopt the somewhat cumbersome notation E(t), instead of the usual one Et, in order not
to confuse the latter with the partial derivative of E, considered as a function of the two variables
t and x, with respect to t (compare to (3.2.18)).
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2 ) If f ∈ L1(IRN),

[f ∗ E(t)](x) =
∫
IRN

e−t|y|
2+ix·yf̂(y) dy . (3.2.22)

3 ) If f ∈ Lp(IRN), 1 ≤ p < +∞, then f ∗ E(t) ∈ Lp(IRN), and

f ∗ E(t) → f in Lp(IRN) as t→ 0 . (3.2.23)

4 ) If f ∈ L∞(IRN) and is continuous at a point x ∈ IRN , then

lim
t→0

[f ∗ E(t)](x) = f(x) . (3.2.24)

Proof. We follow chapter 9 of Rudin, [6]. (3.2.19) follows immediately from (3.2.2),
via the change of variable x =

√
2t z; likewise, (3.2.20) follows from (3.2.17) and part

(2) of proposition 3.1.1, with α =
√

2t, recalling that Ê = E. From (3.2.17) and
(3.2.3) it also follows that

E(t)(x) =
cN

(
√

2t)N
E(x/

√
2t)

= cN

∫
IRN

eix·y−t|y|
2

dy (3.2.25)

= cN

∫
IRN

eix·yE
(√

2t y
)

dy ,

which proves (3.2.21). Using this, we compute that

[f ∗ E(t)](x) =
∫
IRN

f(x− y)E(t)(y) dy

= cN

∫
IRN

f(x− y)
∫
IRN

eiy·zE
(√

2t z
)

dz dy

= cN

∫
IRN

E
(√

2t z
) ∫

IRN
f(x− y)eiy·z dy dz

= cN

∫
IRN

E
(√

2t z
)

eix·z
∫
IRN

f(u)e−iu·z du dz

=
∫
IRN

E
(√

2t z
)

eix·zf̂(z) dz

=
∫
IRN

e−t|z|
2+ix·zf̂(z) dz ,

(3.2.26)
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which is (3.2.22). Next, let q be the conjugate index of p (that is, 1
p

+ 1
q

= 1). By
(3.2.19) and Hölder’s inequality,

|[f ∗ E(t)](x)| ≤
∫
IRN
|f(x− y)|

(
E(t)(y)

)1/p (
E(t)(y)

)1/q
dy

≤
(∫

IRN
|f(x− y)|pE(t)(y) dy

)1/p

,

(3.2.27)

so that, again by (3.2.19),∫
IRN
|[f ∗ E(t)](x)|p dx ≤

∫
IRN

∫
IRN
|f(x− y)|pE(t)(y) dy dx

≤
∫
IRN

E(t)(y)
∫
IRN
|f(x− y)|p dx dy (3.2.28)

≤ |f |pp ;

thus, f ∗ E(t) ∈ Lp(IRN). To prove (3.2.23), we first note that (3.2.19) allows us to
write

[f ∗ E(t)](x)− f(x) =
∫
IRN

f(x− y)E(t)(y) dy −
∫
IRN

f(x)E(t)(y) dy ; (3.2.29)

thus, proceeding as above,

∣∣∣[f ∗ E(t)](x)− f(x)
∣∣∣ ≤ ∫

IRN
|f(x− y)− f(x)|E(t)(y) dy

=
(∫

IRN
|f(x− y)− f(x)|p

(
E(t)(y)

)
dy
)1/p

,

(3.2.30)

from which we deduce that∫
IRN

∣∣∣[f ∗ E(t)](x)− f(x)
∣∣∣p dx

≤
∫
IRN

E(t)(y)
∫
IRN
|f(x− y)− f(x)|p dx dy (3.2.31)

≤
∫
IRN

E(t)(y) |f(· − y)− f |pp dy .
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Since traslations are uniformly continuous in Lp(IRN), given ε > 0 there is δ > 0
such that if |y| ≤ δ,

g(y) := |f(· − y)− f |pp ≤ ε ; (3.2.32)

with this δ now fixed, we split the last integral in (3.2.31) and write∫
IRN

∣∣∣(f ∗ E(t)

)
(x)− f(x)

∣∣∣p dx

≤
∫
|y|≤δ

E(t)(y)g(y) dy +
∫
|y|≥δ

E(t)(y)g(y) dy (3.2.33)

=: It + Jt .

Because of (3.2.19) and (3.2.32),

0 ≤ It ≤ ε
∫
|y|≤δ

E(t)(y) dy = ε ; (3.2.34)

since g is also bounded on IRN , we can estimate

0 ≤ Jt ≤ sup
y∈IRN

∫
|y|≥δ

E(t)(y) dy

= sup
y∈IRN

cN

(
√

2t)N

∫
|y|≥δ

e−|y|
2/4t dy (3.2.35)

= cN sup
y∈IRN

∫
|z|≥δ/

√
2t

e−|z|
2/2 dz .

The last integral vanishes as t → 0; together with (3.2.34), this implies (3.2.23).
Finally, to prove (3.2.24) we start as in (3.2.30) with∣∣∣(f ∗ E(t)

)
(x)− f(x)

∣∣∣ ≤ ∫
IRN
|f(x− y)− f(x)|E(t)(y) dy

= 1
(
√

2t)N

∫
IRN
|f(x− y)− f(x)|E

(
y√
2t

)
dy (3.2.36)

=
∫
IRN
|f(x−

√
2t z)− f(x)|E(z) dz ,

having used (3.2.17). Since f is continuous at x, the last integrand in (3.2.36) con-
verges pointwise to 0 as t → 0; since f ∈ L∞(IRN), it is also bounded by the
function 2 |f |∞E(·), which is in L1(IRN). Hence, (3.2.24) follows by the dominated
convergence theorem. This completes the proof of proposition 3.2.2. 2
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3.3 Towards F−1.

1. Our goal is now to define an inverse of the map F , that is, to define the inverse
Fourier transform. The fact that the range of F is not even a subspace of L1(IRN)
creates unsurmountable difficulties, and will lead us to eventually redefine F in a
suitable way on the space L2(IRN) (note that since IRN has infinite measure, L2(IRN)
is also not a subspace of L1(IRN)). Thus, for the moment we restrict our attention
to the space of those integrable functions whose Fourier transform is also integrable,
that is, the space

Λ1(IRN) := {f ∈ L1(IRN) | f̂ ∈ L1(IRN)} . (3.3.1)

This space is not empty: from proposition 3.2.1 we know that E ∈ Λ1(IRN).

Given ϕ ∈ L1(IRN), in analogy to (3.1.1) we define the function ϕ̌ : IRN → Cl by

ϕ̌(y) := cN

∫
IRN

eix·yϕ(x) dx . (3.3.2)

This defines a linear map ϕ 7→ ϕ̌ =: Φ(ϕ) on L1(IRN), which enjoys all the properties
of F described in theorem 3.1.1. We propose to show that the map Φ defined by
(3.3.2) does yield the desired inverse Fourier transform, at least on Λ1(IRN). More
precisely, we wish to show that the composition F ◦ Φ is the identity in Λ1(IRN);
that is, if ϕ ∈ Λ1(IRN), then ϕ̌ ∈ L1(IRN), and

F(ϕ̌) = ϕ . (3.3.3)

For example, E ∈ Λ1(IRN); since, by (3.2.16),

E = Φ(Ê) = Ě , (3.3.4)

it follows that
F(Ě) = F(E) = E . (3.3.5)

In particular, (3.3.3) would justify the notation Φ =: F−1; that is,

ϕ̌ =: F−1(ϕ) , ϕ ∈ Λ1(IRN) . (3.3.6)

The justification that the map defined by (3.3.2) should in fact be the inverse map
of F is a consequence of the following inversion theorem, a proof of which can be
found in Rudin, [6, sct. 9.11].
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Theorem 3.3.1 Let f ∈ Λ1(IRN), and define g on IRN by

g(x) := cN

∫
IRN

eix·yf̂(y) dy . (3.3.7)

Then, g ∈ C(IRN), and g = f almost everywhere in IRN .

As a consequence, F is injective on L1(IRN). Indeed, assume that f , g ∈ L1(IRN)
are such that f̂ = ĝ, and let h := f − g. Then, h ∈ L1(IRN) and, since ĥ ≡ 0, also
ĥ ∈ L1(IRN). Hence, h ∈ Λ1(IRN); thus, by (3.3.7),

0 = cN

∫
IRN

eix·yĥ(y) dy = h(x) = f(x)− g(x) . (3.3.8)

This shows that f = g almost everywhere. 2

Corollary 3.3.1 Let f ∈ Λ1(IRN). The inversion formula

f(x) = cN

∫
IRN

eix·yf̂(y) dy (3.3.9)

holds almost everywhere in IRN . Consequently, f and f̂ ∈ C(IRN), and vanish at
infinity. In particular f and f̂ are bounded; consequently, f and f̂ ∈ Lp(IRN), for
all p ∈ [1,+∞].

Proof. Since f ∈ L1(IRN) ∩ L∞(IRN),we only need to show that f ∈ Lp(IRN) for
1 < p <∞. This follows by interpolation; that is, from the estimate

|f |pp =
∫
IRN
|f(x)|p dx

≤ sup
x∈IRN

|f(x)|p−1
∫
IRN
|f(x)| dx ≤ |f |p−1

∞ |f |1 .
2 (3.3.10)

2. The following results summarize the other major properties of the space Λ1(IRN)
that we need in the sequel; in general, if h is a complex-valued function, we denote
by h its complex conjugate.
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Proposition 3.3.1 Let f ∈ Λ1(IRN). Then, f ∈ UCB(IRN) (that is, f is uniformly
continuous and bounded on IRN), and for all x ∈ IRN ,

[F(f̂)](x) = f(−x) . (3.3.11)

If also g ∈ Λ1(IRN), ∫
IRN

f(x)g(x) dx =
∫
IRN

f̂(y)ĝ(y) dy , (3.3.12)

∫
IRN

f̂(y)g(y) dy =
∫
IRN

f(x)ĝ(x) dx . (3.3.13)

Identity (3.3.12) is known as Parseval’s formula.

Proof. 1) The uniform continuity and boundedness of f follows from theorem 3.1.1.
Next, note that since f̂ ∈ L1(IRN), it makes sense to consider its Fourier transform
F(f̂). Then, (3.3.11) follows from the inversion formula (3.3.9). Indeed,

[F(f̂)](x) = cN

∫
IRN

e−ix·yf̂(y) dy

= cN

∫
IRN

ei(−x)·yf̂(y) dy = f(−x) .
(3.3.14)

2) We first note that each term of (3.3.12), as well as of (3.3.13), makes sense, since f̂
and ĝ ∈ L2(IRN), by corollary 3.3.1. Again by the inversion formula (3.3.9), (3.3.12)

follows from∫
IRN

f(x)g(x) dx = cN

∫
IRN

∫
IRN

eix·yf̂(y) dy g(x) dx

= cN

∫
IRN

f̂(y)
∫
IRN

eix·yg(x) dx dy

= cN

∫
IRN

f̂(y)
∫
IRN

e−ix·yg(x) dx dy

=
∫
IRN

f̂(y)ĝ(y) dy .

(3.3.15)

3) Similarly, (3.3.13) follows from∫
IRN

f(x)ĝ(x) dx = cN

∫
IRN

f(x)
∫
IRN

e−ix·yg(y) dy dx
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= cN

∫
IRN

g(y)
∫
IRN

e−iy·xf(x) dx dy (3.3.16)

=
∫
IRN

g(y)f̂(y) dy .

This completes the proof of proposition 3.3.1. 2

In particular, taking g = f in (3.3.12) yields Plancherel formula for f ∈
Λ1(IRN); that is,

|f |2 = |f̂ |2 . (3.3.17)

Example 3.3.1 For each m ∈ IN , m ≥ 1,

Im :=
∫ +∞

−∞

(sin y) (sin(my))

y2
dy = π . (3.3.18)

Proof. First note that the generalized integral in (3.3.18) is well-defined. Then,
recalling (3.1.2), we compute that

sin(my)

y
=

√
π

2
χ̂m(y) . (3.3.19)

Consequently, χm ∈ Λ1(IRN); thus, by (3.3.12),

Im =
∫ +∞

−∞

sin y

y

sin(my)

y
dy

=
π

2

∫ +∞

−∞
χ̂1(y) χ̂m(y) dy

=
π

2

∫ +∞

−∞
χ1(y)χm(y) dy

=
π

2

∫ 1

−1
1 dy ,

(3.3.20)

from which (3.3.18) follows. 2

3. A completely analogous set of results holds for functions in the space

Λ̃1(IRN) := {f ∈ L1(IRN) | f̌ ∈ L1(IRN)} , (3.3.21)

which is also not empty because, by proposition 3.2.1, E ∈ Λ̃1(IRN). More precisely,
the same conclusions of theorem 3.3.1, corollary 3.3.1 and proposition 3.3.1 hold,
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and can be proven in the same way, with the assumptions f , g ∈ Λ1(IRN) replaced by
f , g ∈ Λ̃1(IRN), and f̂ , ĝ replaced by f̌ , ǧ throughout. In particular, the analogous
of theorem 3.3.1 guarantees that if f ∈ Λ̃1(IRN) and

g̃(y) := cN

∫
IRN

e−ix·yf(x) dx , (3.3.22)

then g̃ = f̂ almost everywhere. Consequently, the map F−1 is also injective; that
is, if f , g ∈ L1(IRN) are such that f̌ = ǧ, then f = g almost everywhere.

3.4 Fourier Transform and Convolution.

1. In this section we consider the Fourier transform of the convolution of two
functions. We recall that L1(IRN) is an algebra with respect to the convolution
product; that is, if f and g ∈ L1(IRN), then f ∗ g ∈ L1(IRN), and

|f ∗ g|1 ≤ |f |1 |g|1 . (3.4.1)

Thus, it makes sense to consider the Fourier transform of the convolution of two
integrable functions. In the sequel, we adopt the notation F−1 for the map Φ
defined in (3.3.6); that is, again, for f ∈ Λ1(IRN), we set

[F−1(f)](x) = f̌(x) = cN

∫
IRN

ei x·y f(y) dy . (3.4.2)

Proposition 3.4.1 Let f, g ∈ L1(IRN). Then,

F(f ∗ g) = 1
cN
f̂ ĝ, F−1(f ∗ g) = 1

cN
f̌ ǧ . (3.4.3)

Conversely, assume that f , g ∈ Λ1(IRN) [respectively, Λ̃1(IRN)]. Then,

F(f g) = 1
cN
f̂ ∗ ĝ, [resp., F−1(f g) = 1

cN
f̌ ∗ ǧ ] . (3.4.4)

Proof. First, we remark that (3.4.3) means that the maps F and F−1 transform a
convolution product into a pointwise product; the latter makes sense, because f̂ , ĝ,
f̌ , and ǧ, are continuous functions. Next:
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1) Identity (3.4.3) is a consequence of Fubini’s theorem. Following Rudin, [6, sct.
9.2], we set h := f ∗ g, and compute

ĥ(y) = cN

∫
IRN

e−ix·y h(x) dx

= cN

∫
IRN

e−ix·y
∫
IRN

f(z) g(x− z) dz dx

= cN

∫
IRN

f(z)
∫
IRN

e−ix·y g(x− z) dx dz

= cN

∫
IRN

f(z)
∫
IRN

e−iy·(s+z) g(s) ds dz (3.4.5)

= cN

∫
IRN

f(z)e−iy·z
∫
IRN

e−iy·s g(s) ds dz

=
(
cN

∫
IRN

e−iy·z f(z) dz
)

1
cN

(
cN

∫
IRN

e−iy·s g(s) ds
)

= 1
cN

f̂(y) ĝ(y) .

This proves the first identity of (3.4.3); the second is proven in the same way.

2) Note first that (3.4.4) makes sense, since by corollary 3.3.1 f and g ∈ L2(IRN), so
that the product fg is in L1(IRN), and its Fourier transform is defined. Moreover,
also f̂ ∗ ĝ ∈ L1(IRN), and, by (3.4.3) and (3.3.11),[

F(f̂ ∗ ĝ)
]

(x) = 1
cN

[F f̂ ](x)[F ĝ](x)

= 1
cN
f(−x)g(−x) = 1

cN
[fg](−x) (3.4.6)

= 1
cN

[F (F(fg))] (x) .

This implies that

F
[(
f̂ ∗ ĝ

)
− 1

cN
F(fg)

]
= 0 , (3.4.7)

so by theorem 3.3.1 we conclude that

f̂ ∗ ĝ = 1
cN
F(fg) , (3.4.8)
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from which the first of (3.4.4) follows. The second of (3.4.4) is proven in the same
way. 2

2. As a first application of proposition 3.4.1, we show the so-called semigroup
property of the heat kernel.

Proposition 3.4.2 Let E(t) be the heat kernel defined in (3.2.17). Then, for all t
and s > 0,

E(t+s) = E(t) ∗ E(s) . (3.4.9)

Proof. This result is an immediate consequence of (3.2.20) and (3.4.3), which imply
that

Ê(t+s)(y) = cN e−(t+s)|y|2 = c−1
N cN e−t|y|

2
cN e−s|y|

2

= 1
cN

Ê(t)(y) Ê(s)(y) =
[
F(E(t) ∗ E(s))

]
(y) . 2

(3.4.10)

As a second application, we prove an important formula characterizing the Fourier
transform of an integrable function.

Proposition 3.4.3 Let f ∈ L1(IRN). Then, for all y ∈ IRN ,

f̂(y) = cN
[
f ∗ ei y·(·)

]
(0) . (3.4.11)

Proof. We compute that

f̂(y) = cN

∫
IRN

e− is·y f(s) ds = cN

∫
IRN

ei z·y f(−z) dz

= cN

∫
IRN

ei z·y f(0− z) dz =
[
f ∗ ei y·(·)

]
(0) ,

(3.4.12)

having used the change of coordinates z = − s and the definition of convolution of
two functions, evaluated at x = 0. 2

3. A more important consequence of proposition 3.4.1 is that it allows us to show
that while the map F is, by theorem 3.1.1, continuous from L1(IRN) into UCB(IRN),
the inverse map F−1 needs not be continuous from UCB(IRN) ∩ L1(IRN), with the
topology induced by UCB(IRN), into L1(IRN). Note that we do need to consider the
restriction of F−1 to the intersection UCB(IRN)∩L1(IRN), in order to guarantee that
F−1 be defined. This highlights once more the unsuitability of the space L1(IRN)
as domain of the Fourier transform.
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Example 3.4.1 For m ∈ IN , let χm denote the characteristic function of the inter-
val [−m,m], and set gm := χm ∗ χ1. Define

fm(x) :=


2

π

(sinx) (sin(mx))

x2
if x 6= 0 ,

2

π
m if x = 0 .

(3.4.13)

The functions fm and gm are in UCB(IR) ∩ L1(IR) for all m ∈ IN , and fm = 1
c1
ǧm.

However, |fm|1 → +∞ as m→∞, while |gm|∞ = 1.

Proof. It is easy to compute that

gm(y) =


1 if |y| ≤ m ,

m+ 1− |y| if m ≤ |y| ≤ m+ 1 ,

0 if |y| ≥ m+ 1 ;

(3.4.14)

thus, obviously gm ∈ UCB(IR) ∩ L1(IR). We immediately verify that the same is
true for fm. Exactly as in (3.1.2), we also compute that, if y 6= 0,

χ̌m(y) =

√
2

π

sin(my)

y
. (3.4.15)

Hence, from the second of (3.4.3),

ǧm = F−1(χm ∗ χ1) =
√

2π (χ̌mχ̌1) =
√

2π fm , (3.4.16)

as claimed. Clearly, |gm|∞ = 1; to estimate |fm|1, we first choose δ ∈ ]0, 1[ such that
sinx
x
≥ 1

2
if 0 < x < δ and then, for m > 5π

6δ
, we set

Km := max
{
k ∈ IN

∣∣∣∣ 5π
6m

+ kπ
m
≤ δ

}
=
⌊
mδ
π
− 5

6

⌋
. (3.4.17)

Then, since in general bxc > x− 1,

Km ≥ mδ
π
− 11

6
. (3.4.18)

Noting that fm is even, for m > 5π
6δ

we compute that

|fm|1 = 2
∫ ∞

0
|fm(x)| dx

≥ 2
Km∑
k=0

∫ (5+6k)π
6m

(1+6k)π
6m

| sinx|
x

| sin(mx)|
x

dx .
(3.4.19)
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Our choices of m and δ guarantee that

0 <
π

6m
+
kπ

m
≤ x ≤ 5π

6m
+
kπ

m
< δ , (3.4.20)

so that sinx > 0 and sinx
x
≥ 1

2
. Likewise,

0 <
π

6
+ kπ ≤ mx ≤ 5π

6
+ kπ , (3.4.21)

so | sin(mx)| ≥ 1
2
. Consequently,

|fm|1 ≥
1

2

Km∑
k=0

∫ (5+6k)π
6m

(1+6k)π
6m

1

x
dx

≥ 1

2

Km∑
k=0

6m

(5 + 6k)π

4π

6m
(3.4.22)

= 2
Km∑
k=0

1

5 + 6k
.

Since, by (3.4.18), Km ≥ C m for a suitable constant C independent of m, it follows
that |fm|1 → +∞, as claimed. 2

3.5 Fourier Transform and Differentiation.

One of the main reasons why the Fourier transform plays such an important role
in the study of PDEs (see section 3.9) is that it transforms differentiation into
multiplication, and viceversa. Before we proceed, we need a result that extends the
density claim of proposition 2.4.1.

Definition 3.5.1 Let p ∈ [1,∞[, m ∈ IN , and α ∈ INN , with |α| ≤ m. Given
f ∈ Lp(IRN), we say that Dαf ∈ Lp(IRN) if there is gα ∈ Lp(IRN) such that

Dα Tf = Tgα ; (3.5.1)
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then, we introduce the (Sobolev) space

Wm,p(IRN) :=
{
f ∈ Lp(IRN) | Dαf ∈ Lp(IRN) ∀α , |α| ≤ m

}
. (3.5.2)

In other words, Wm,p(IRN) consists of all p-integrable functions having regular dis-
tributional derivatives of order up to m generated by functions in Lp(IRN).

Proposition 3.5.1 Wm,p(IRN) is a Banach space with respect to the norm

‖f‖m,p :=
∑
|α|≤m

‖Dα f‖Lp(IRN ) . (3.5.3)

The space C∞0 (IRN) is dense in Wm,p(IRN).

Proof. See, e.g., Adams and Fournier, [1, thm. 3.3 & cor. 3.23]. 2

We are now ready to prove

Theorem 3.5.1 Let f ∈ W 1,1(IRN), and 1 ≤ j ≤ N . Then,

[F(∂jf)](y) = i yj f̂(y) . (3.5.4)

Conversely, define gj(y) := iyj f̂(y). Then, if f̂ and g ∈ L1(IRN), f has a classical
derivative ∂jf given by

[∂jf ](x) = ǧj(x) = [F−1(i(·)j f̂)](x) . (3.5.5)

Proof. We first note that since ∂jf ∈ L1(IRN), it does have a Fourier transform.
Because of proposition 3.5.1, it is sufficient 2 to show (3.5.4) for f ∈ C∞0 (IRN), in
which case (3.5.4) is obtained by simple integration by parts. Indeed,

[F(∂jf)](y) = cN

∫
IRN

e−i x·y [∂jf ](x) dx

= − cN
∫
IRN

(−iyj) e−ix·y f(x) dx = i yj f̂(y) .
(3.5.6)

Conversely, note first that f is (uniformly) continuous because f̂ ∈ L1(IRN), which
also implies that the inversion formula (3.3.9) holds. It is then sufficient to prove the

2The reader is encouraged to work out the details of this (standard) density argument.
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one-dimensional version of (3.5.5), that is, that f ′(a) = ǧ(a) for all a ∈ IR, assuming
that f̂ and g ∈ L1(IR). Thus, recalling that∣∣∣∣∣ei z·y − 1

z

∣∣∣∣∣ ≤ |y| (3.5.7)

for all y, z ∈ Cl 3, we compute that

f(x)− f(a)

x− a
=

c1

x− a

∫ +∞

−∞

(
eixy − eiay

)
f̂(y) dy

=
c1

x− a

∫ +∞

−∞
eiay

(
eiy(x−a) − 1

)
f̂(y) dy

= i c1

∫ +∞

−∞
eiay

eiy(x−a) − 1

i(x− a)
f̂(y) dy

=: i c1

∫ +∞

−∞
eiay E(x, a, y) f̂(y) dy .

(3.5.8)

Since, by (3.5.7),
|eiay E(x, a, y)f(y)| ≤ |y||f̂(y)| = |g(y)| , (3.5.9)

independently of |x− a|, and g ∈ L1(IR), and

E(x, a, y)→ y as x→ a , (3.5.10)

the Lebesgue dominated convergence theorem allows us to deduce from (3.5.8) that

f ′(a) = i c1

∫ +∞

−∞
eiayyf̂(y) dy = c1

∫ +∞

−∞
eiayg(y) dy = ǧ(a) , (3.5.11)

as claimed. 2

Corollary 3.5.1 Let f ∈ Wm,1(IRN), and α ∈ IN , with |α| ≤ m. Then,

[F(Dαf)](y) = (iy)αf̂(y) (3.5.12)

(recall that yα := yα1
1 . . . yαNN ). In particular, if f ∈ W 2,1(IRN),

∆̂ f(y) = − |y|2 f̂(y) . (3.5.13)

3To prove (3.5.7), recall that 0 ≤ 1− cos θ ≤ 1
2 θ

2 for all θ ∈ IR.
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Conversely, define functions y 7→ gα(y) by the right side of (3.5.12), and assume that,
for some m ∈ IN , f and gα ∈ L1(IRN) for all α ∈ IN such that |α| ≤ m. Then,
Dαf ∈ UCB(IRN), and for all x ∈ IRN ,

[Dαf ](x) = ǧα(x) . (3.5.14)

Proof. It is sufficient to show (3.5.13). By (3.5.12) with Dα = ∂2
k, 1 ≤ k ≤ N (that is,

with α = 2 ek (the k-th unit vector of the standard basis of IRN), it follows that

[F(∂2
k)](y) = (i y)2 ek f̂(y) = − y2

k f̂(y) . (3.5.15)

Consequently,

∆̂ f(y) = −
N∑
k=1

y2
k f̂(y) = − |y|2 f̂(y) , (3.5.16)

which is (3.5.13). 2

Formulas (3.5.12) and (3.5.14) express the conversion of differentiation into multiplica-
tion we mentioned above; indeed, either formula allows us to recover the derivative
Dαf from the knowledge (admittedly a difficult question in itself!) of the inverse
Fourier transform of gα.

3.6 Fourier Transform in L2(IRN).

1. In order to eliminate the unpleasant “asymmetry” between the domain (i.e.
L1(IRN)) and the range (i.e. UCB(IRN)) of the maps F and F−1, which is apparent
in the results of the previous section, we extend these maps to linear isometries from
L2(IRN) into itself, in such a way that F and F−1 are indeed the inverse one of the
other, as maps in L2(IRN). The basis of the construction of the Fourier transform
in L2(IRN) is the density of the space

L1∩2(IRN) := L1∩2(IRN) (3.6.1)

into L2(IRN): we show that the map F , which is defined in L1∩2(IRN) because
L1∩2(IRN) ⊂ L1(IRN), when restricted to this space has range in L2(IRN), and this
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restriction preserves the L2-norm. Thus, we can extend this restriction to a unitary
operator in L2(IRN), which we finally show to be invertible.

We start with

Theorem 3.6.1 Let f ∈ L1∩2(IRN). Then, f̂ , which is in UCB(IRN), is also in
L2(IRN), and Plancherel’ formula (3.3.17) holds, i.e.

|f̂ |2 = |f |2 . (3.6.2)

Proof. Given f ∈ L1∩2(IRN), let f0(x) := f(−x) and g := f ∗ f0; explicitly,

g(x) =
∫
IRN

f(x− y)f(−y) dy

=
∫
IRN

f(x+ z)f(z) dz = 〈f(x+ ·), f〉 ,
(3.6.3)

where the last pairing denotes the scalar product in L2(IRN). In particular,

g(0) = |f |22 . (3.6.4)

By the continuity of translations in L2(IRN), g is continuous. By (3.6.3), g is also
bounded on IRN , with

|g(x)| ≤ |f |22 (3.6.5)

for all x ∈ IRN . In addition, g ∈ L1(IRN) as well (because L1(IRN) is an algebra
with respect to the convolution product), and, by (3.4.3),

ĝ = 1
cN

f̂ f̂0 (3.6.6)

(pointwise product). Since

f̂0(y) = cN

∫
IRN

e−iy·xf(−x) dx = cN

∫
IRN

eiy·zf(z) dz

= cN

∫
IRN

e−iy·zf(z) dz = f̂(y) ,

(3.6.7)

(3.6.6) implies that

ĝ = 1
cN

f̂ f̂ . (3.6.8)
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Let now E(t) be the heat kernel defined in (3.2.17). By (3.2.24) applied to g, which is
bounded and continuous at x = 0, and (3.6.4),

lim
t→0

(g ∗ E(t))(0) = g(0) = |f |22 . (3.6.9)

On the other hand, since g ∈ L1(IRN), by (3.2.22) we also have that

(g ∗ E(t))(0) = cN

∫
IRN

e−t|z|
2

ĝ(z) dz ; (3.6.10)

since for each z ∈ IRN , e−t|z|
2 → 1− as t→ 0, by the dominated convergence theorem

we deduce from (3.6.10) that ĝ ∈ L1(IRN) (so that g ∈ Λ1(IRN)), and, by (3.6.9),∫
IRN

ĝ(z) dz = 1
cN

lim
t→0

(g ∗ E(t))(0) = 1
cN
|f |22 . (3.6.11)

Recalling (3.6.8), (3.6.2) follows from (3.6.11). 2

2. Let now f ∈ L2(IRN). Since L1∩2(IRN) is dense in L2(IRN), there is a sequence
(fm)m≥0 ⊂ L1∩2(IRN) such that fm → f in L2(IRN). By theorem 3.6.1, each f̂m is
in L2(IRN), and Plancherel’s identity (3.6.2) implies that

|f̂m − f̂r|2 = |fm − fr|2 . (3.6.12)

This means that (f̂m)m≥0 is a Cauchy sequence in L2(IRN); thus, it converges to a
limit f̃ ∈ L2(IRN). This limit depends only on f ; that is, it does not depend on the
particular sequence (fm)m≥0 approximating f . Indeed, if (gm)m≥0 ⊂ L1∩2(IRN) also
converges to f , again by (3.6.2) we see that

|ĝm − f̃ |2 ≤ |ĝm − f̂m|2 + |f̂m − f̃ |2

= |gm − fm|2 + |f̂m − f̃ |2 ,
(3.6.13)

which implies that ĝm → f̃ as well. (For example, following Rudin, [6, sct. 9.13],
we can take fm = f χm, where χm is the characteristic function of the ball B(0,m)).
Since f̃ coincides with f̂ if f ∈ L1∩2(IRN) (as in this case we can take fm = f for
all m), we define f̃ to be the Fourier transform of f ∈ L2(IRN), and we set again
f̃ =: f̂ . We have thus defined a map

Φ : L2(IRN)→ L2(IRN) , Φf = f̂ , (3.6.14)



92 CHAPTER 3. THE FOURIER TRANSFORM.

which coincides with F on L1∩2(IRN); moreover, Plancherel’s formula (3.6.2) still
holds in L2(IRN), because if f and fm are as above,

|f̂ |2 = lim |f̂m|2 = lim |fm|2 = |f |2 . (3.6.15)

In a totally analogous way, we can extend the inverse Fourier transform F−1 from
L1∩2(IRN) into a map

Ψ : L2(IRN)→ L2(IRN) , (3.6.16)

in such a way that Ψf = f̌ if f ∈ L1∩2(IRN), and

|Ψf |2 = |f |2 (3.6.17)

for all f ∈ L2(IRN). Naturally, we set f̌ := Ψf for f ∈ L2(IRN) as well.

To summarize: Given f ∈ L2(IRN), we define its Fourier transform f̂ as follows.
First, we take an arbitrary sequence (fm)m≥0 ⊂ L2(IRN) ∩ L1(IRN) such that

|fm − f |2 → 0 as m→∞ ; (3.6.18)

that is, fm → f in L2(IRN). We have shown that the sequence (f̂m)m≥0 has a limit
in L2(IRN); thus, we define

f̂ := lim f̂m in L2(IRN) . (3.6.19)

3. We now show that the map Φ defined in (3.6.14) is onto L2(IRN) and invertible,
and that, as in Λ1(IRN), Φ−1 = Ψ, the map defined in (3.6.16). To this end, we
prepare

Proposition 3.6.1 Let f ∈ L1∩2(IRN), and, for t > 0, set g(t) := f ∗ E(t), where
E(t) is the heat kernel, and ĝ(t) := F(g(t)). Then, both g(t) and ĝ(t) ∈ L1∩2(IRN), for
all t > 0.

Proof. The statement for g(t) follows from part (3) of Propositon 3.2.2, for p = 1
and p = 2. As for ĝ(t), by (3.4.3) it follows that

ĝ(t) = F [f ∗ E(t)] = 1
cN
f̂ Ê(t) , (3.6.20)

so that the conclusion follows because f̂ is uniformly bounded on IRN and Ê(t) ∈
L1∩2(IRN) (by (3.2.20)). 2
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As a consequence, we deduce that for all f ∈ L1∩2(IRN) and t > 0,

ΨΦ(f ∗ E(t)) = f ∗ E(t) ; (3.6.21)

thus, by (3.2.23),
lim
t→0

ΨΦ(f ∗ E(t)) = lim
t→0

f ∗ E(t) = f , (3.6.22)

from which we conclude that the identity ΨΦf = f holds also in L2∩1(IRN). By the
density of this space in L2(IRN), it follows that this identy also holds in L2(IRN).

A completely analogous argument allows us to interchange Ψ and Φ, yielding the
identity ΦΨg(t) = g(t) for all g(t) ∈ L2(IRN). Thus, we obtain that if g(t) ∈ L2(IRN)
and f(t) := Ψg(t), then f(t) ∈ L2(IRN) and Φf(t) = g(t): this shows that the map Φ is
onto. Since so is Ψ, this shows that Ψ and Φ are indeed inverse one of the other, as
isometries in L2(IRN).

From now on we denote Φ = F and Ψ = F−1 as usual.

Finally, the validitiy of Parseval’s formula (3.3.12) in L2(IRN) follows from the par-
allelogram identity

f g = 1
4

(
|f + g|2 − |f − g|2 + i |f + ig|2 − i |f − ig|2

)
, (3.6.23)

and Plancherel’s formula (3.6.2).

4. As a final remark, and as an application of these results, we prove the well-known
identity ∫

IRN
e(2πi) z·y−π|y|2 dy = e−π|z|

2

. (3.6.24)

Indeed, recalling (3.2.20) we compute that

E(t)(x) =
[
F−1

(
cN e−t|·|

2
)]

(x) = c2
N

∫
IRN

eix·y−t |y|
2

dy ; (3.6.25)

comparing this to the definition (3.2.17) of E(t), we obtain the identity

cN

∫
IRN

eix·y−t |y|
2

dy =
1

(
√

2t)N
e−|x|

2/4t. (3.6.26)

Since cN =
(√

2π
)−N

, (3.6.24) follows then from (3.6.26) for the choice t = π and the
change of variable x = 2πz.
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3.7 Fourier Transform in S(IRN).

In this section we show that the Fourier transform is “well behaved” in the space
of the rapidly decreasing functions, in the sense that F maps S(IRN) into itself,
and is in fact a continuous bijection between S(IRN) and itself. This would give us
an alternative way to define the Fourier transform in L2(IRN), defining it first on
S(IRN), and then extending the definition to L2(IRN) by the density of S(IRN) into
L2(IRN), as per propositiion 2.7.3. In the approach we have followed instead, the
Fourier transform is obviously defined on S(IRN), since S(IRN) ⊂ L1(IRN).

1. Our first goal is to show that F maps S(IRN) into itself. To this end, given
f ∈ S(IRN) and k = 1, . . . , N we set fk(x) := xk f(x), and prepare

Proposition 3.7.1 For each f ∈ S(IRN), k = 1, . . . , N , and y ∈ IRN ,

[F(∂kf)](y) = i yk f̂(y) , (3.7.1)

[F(fk)](y) = i
∂f̂

∂yk
(y) . (3.7.2)

Proof. If f ∈ S(IRN), also ∂kf ∈ S(IRN) ⊂ L1(IRN); thus, by an admissible
integration by parts,

(∂kf)ˆ(y) = cN

∫
IRN

e−i x·y ∂kf(x) dx

= −cN
∫
IRN

(−i yk)e−i x·yf(x) dx = i yk f̂(y) .
(3.7.3)

This proves (3.7.1) (note that this identity corresponds to (3.5.4)). To prove (3.7.2),
noting that the function x 7→ xkf̂(x) is still in S(IRN), we compute that

[F(fk)](y) = cN

∫
IRN

e−i x·y xkf(x) dx

= − cN
1

i

∫
IRN

∂

∂yk
e−i x·yf(x) dx

= cN i
∫
IRN

∂

∂yk
e−i x·yf(x) dx = i

∂

∂yk
f̂(y) ,

(3.7.4)
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where for the last step we note that differentiation under the integral sign is per-
missible, because

|e−i x·yf(x)| ≤ |f(x)| , |xke−i x·yf(x)| ≤ |xkf(x)| , (3.7.5)

and both |f | and |fk| ∈ L1(IRN). This proves (3.7.2). 2

By repeated application of proposition 3.7.1, we obtain that if P is a polynomial
with constant coefficients, then for all f ∈ S(IRN),

[F(P (D)f)](y) = P (i y)f̂(y) , (3.7.6)

[F(P (·)f)](y) = P (iD)f̂(y) ; (3.7.7)

in particular,[
F(Dβ

x((·)αf))
]

(y) = (i y)β[F((·)αf)](y) = iα+βyβDα
y f̂(y) . (3.7.8)

We are now in a position to prove

Theorem 3.7.1 The Fourier transform F maps S(IRN) continuously into itself.

Proof. We first show that F(S) ⊆ S (that is, that F maps S(IRN) into itself) and
then, that F is bounded; since F is linear, this implies its continuity. To show that
f̂ ∈ S if f ∈ S(IRN), recalling (2.7.1), we need to show that, for each α, β ∈ IN , the
map

y 7→ (y)βDα
y f̂(y) (3.7.9)

is bounded. This is a consequence of (3.7.8): indeed, the function

x 7→ Dβ
x(xαf(x)) (3.7.10)

is still in S(IRN) ⊂ L1(IRN), so (3.7.8) implies that the function in (3.7.9) is bounded.
More precisely, by (3.7.8) we can estimate

sup
y∈IRN

∣∣∣yβDα
y f̂(y)

∣∣∣ = sup
y∈IRN

∣∣∣Dβ
y [F((·)αf)] (y)

∣∣∣
≤ sup

y∈IRN

∫
IRN

∣∣∣e−i x·yDβ
x(xαf(x))

∣∣∣ dx
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≤
∫
IRN

(1 + |x|2)−N
∣∣∣(1 + |x|2)NDβ

x(xαf(x))
∣∣∣ dx (3.7.11)

≤ C p|α|+2N,|β|(f)
∫
IRN

(1 + |x|2)−N dx

≤ CN p|α|+2N,|β|(f) ,

where the constant CN depends only on N . 2

2. Our second goal is to show that the Fourier transform maps S(IRN) onto itself
and, in fact, that F is a bijection of S(IRN) into itself, whose inverse is exactly the
map F−1(IRN), defined by (3.3.2). To this end, note first that the map f 7→ f̌ does
map S(IRN) into itself, and is continuous (the proof of this result is analogous to
that of theorem 3.7.1). To show that F is onto, we prove

Theorem 3.7.2 Given g ∈ S(IRN), let f = ǧ (thus, f ∈ S(IRN)). Then, f̂ = g
(that is, f is a counterimage of g by F).

Proof. Let E be the function defined in proposition 3.2.1. Recalling that Ě = E,
for ε > 0 we compute∫

IRN
ǧ(x)E(εx) e−iy·x dx

= cN

∫
IRN

E(εx) e−iy·x
∫
IRN

eix·zg(z) dz dx

= cN

∫
IRN

g(z)
∫
IRN

eix·(z−y) E(εx) dx dz

= cN

∫
IRN

g(z)
∫
IRN

ei(εx)·((z−y)/ε) E(εx) dx dz

=
cN
εN

∫
IRN

g(z)
∫
IRN

eiu·((z−y)/ε) E(u) du dz

= 1
εN

∫
IRN

g(z) Ě
(
z−y
ε

)
dz

= 1
εN

∫
IRN

g(z)E
(
z−y
ε

)
dz

=
∫
IRN

g(y + εz)E(z) dz.

(3.7.12)
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We now let ε→ 0 on both sides of this estimate, which we can do by the dominated
convergence theorem, since

|ǧ(x)E(εx) e−ix·y| ≤ |ǧ(x)| , (3.7.13)

with ǧ ∈ S(IRN) ↪→ L1(IRN), and

|g(y + εz)E(z)| ≤ sup
IRN
|g(·)|E(z) , (3.7.14)

with E ∈ L1(IRN). Thus, we obtain∫
IRN

ǧ(x)E(0) e−ix·y dy ≤
∫
IRN

g(y)E(z) dz . (3.7.15)

Recalling (3.2.2), we multiply both sides of (3.7.15) by cN and obtain

cN

∫
IRN

e−iy·x ǧ(x) dx = cN g(y) ; (3.7.16)

that is, (ǧ)ˆ(y) = g(y), as claimed. 2

3. In conclusion, we have proven that F is a continuous bijection of S(IRN) into it-
self, with a continuous inverse given by the inversion formula (3.3.2). With analogous
techniques, we can prove

Proposition 3.7.2 The map F has period 4 on S(IRN), i.e. F4 = IS , the identity
map on S(IRN); moreover, identity (3.3.11) holds for all f ∈ S(IRN), that is

F2f = F(f̂ ) = f̃ , (3.7.17)

where f̃(x) := f(−x).

Proof. If (3.7.17) holds, then for each f ∈ S(IRN), F4f = F2f̃ = ˜̃f = f : this proves
that F4 = IS . To show (3.7.17), using the inversion formula (3.3.2) we compute that

[F f̂ ](x) = cN

∫
IRN

e−ix·yf̂(y) dy

= cN

∫
IRN

ei(−x)·yf̂(y) dy (3.7.18)

= [F−1f̂ ](−x) = f(−x) = f̃(x) ,
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as claimed. 2

Finally, we remark that all the properties of the Fourier transform we have proven so
far obviously hold in S(IRN); in particular, this holds for the identities of propositions
3.3.1 and 3.4.1. For example, (3.7.17) is a rewriting of (3.3.11) in S(IRN).

3.8 Fourier Transform in S ′(IRN).

1. We now define the Fourier transform on the space S ′(IRN) of tempered distri-
butions introduced in §2.7.2. We provisionally denote by Φ the map Φ : S ′(IRN)→
S ′(IRN) defined by

< Φ(T ), ϕ >S ′×S := < T, ϕ̂ >S ′×S , T ∈ S ′(IRN) , ϕ ∈ S(IRN) , (3.8.1)

where the index S ′ × S, which we omit in the sequel for brevity, denotes the du-
ality pairing between S ′ and S. The map Φ is well-defined, because theorem 3.7.1
guarantees that Φ(T ), which is obviously linear, is also continuous on S(IRN) (note
that ϕ̂ ∈ S(IRN), again by theorem 3.7.1). Definition (3.8.1) is motivated by the ob-
servation that if T = Tf , i.e. if T is the regular distribution generated by a function
f ∈ L1(IRN), then Φ(T ) = Tf̂ ; i.e., Φ(T ) is the regular distribution generated by

the function f̂ , which is in L1(IRN). Indeed, recalling (3.3.13) we compute that for
all ϕ ∈ S(IRN),

< Φ(Tf ), ϕ > = < Tf , ϕ̂ > =
∫
IRN

f(x)ϕ̂(x) dx

=
∫
IRN

f̂(y)ϕ(y) dy = < Tf̂ , ϕ > .
(3.8.2)

This justifies calling Φ(T ) the Fourier transform of T in S ′(IRN); that is, given the
tempered distribution T , we define its Fourier transform T̂ := F(T ) as the tempered
distribution defined by (3.8.1), i.e.

< T̂ , ϕ > = < T, ϕ̂ >, ϕ ∈ S(IRN) . (3.8.3)

In an analogous way, we can define a map F−1 on S ′(IRN) by F−1(T ) = Ť , the
latter being the tempered distribution defined by

< Ť , ϕ > = < T, ϕ̌ >, ϕ ∈ S(IRN) ; (3.8.4)
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the fact that this map is indeed the inverse of the Fourier transform map defined in
S ′(IRN) by (3.8.3) follows from the invertibility of the Fourier transform in S(IRN).
We confirm this in

Theorem 3.8.1 Let F be the Fourier transform in S ′(IRN) defined in (3.8.3). Then
F is a linear, continuous bijection of S ′(IRN), endowed with the topology of weak ∗

convergence, into itself. The inverse map F−1 is defined by (3.8.4), and is continuous.
Moreover, the analogous of proposition 3.7.2 holds, i.e. F4 = IS ′ (the identity in
S ′(IRN)), and F2T = T̃ , the tempered distribution defined by

< T̃ , ϕ >=< T, f̃ > ∀ϕ ∈ S(IRN). (3.8.5)

In addition, if P is a polynomial with constant coefficients, then for all T ∈ S ′(IRN)

F(P (D)T ) = P (i·)T̂ , F(P (·)T ) = P (iD)T̂ (3.8.6)

(recall that the distribution P (·)T is defined as in (2.5.2)).

Proof. All results are an immediate consequence of the fact that the analogous
statements are true in S(IRN). For example, to show that F is onto, given L ∈
S ′(IRN) let T = Ľ: then T ∈ S ′(IRN), and T̂ = L, because for all ϕ ∈ S(IRN),

< T̂ , ϕ >=< T, ϕ̂ >=< Ľ, ϕ̂ >=< L,F−1ϕ̂ >=< L,ϕ > . (3.8.7)

In particular, the continuity of F−1 follows from that of F , via the identity F−1 =
F3. As for (3.8.6), these identities follow from the analogous identities (3.7.6) and
(3.7.7) in S(IRN). For example, from (3.7.2) we obtain that

< F [∂jT ], ϕ > = < ∂jT, ϕ̂ >= − < T, ∂jϕ̂ >

= − 1
i
< T,F [(·)jϕ] >= i < T̂ , (·)jϕ > (3.8.8)

= i < (·)jT̂ , ϕ > ,

which shows that F [∂jT ] = i(·)jT̂ , in accord with the first of (3.8.6). 2

2. As an important application, we show
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Proposition 3.8.1 Let P be a polynomial with constant coefficients, and define
TP ∈ S ′(IRN) by

< TP , ϕ >= cN

∫
IRN

P (x)ϕ(x) dx, ∀ϕ ∈ S(IRN) (3.8.9)

(a slight modification of the usual definition of TP ). Then,

F(TP ) = P (iD)δ0, F(P (−iD)δ0) = TP , (3.8.10)

where δ0 is the Dirac δ-distribution on IRN (which is a tempered distribution).

Proof. (a) If P (x) ≡ 1, then for all ϕ ∈ S(IRN)

< F(T1), ϕ > = < T1, ϕ̂ >= cN

∫
IRN

1 ϕ̂(x) dx

= cN

∫
IRN

ei 0·xϕ̂(x) dx = ϕ(0) = < δ0, ϕ > ,
(3.8.11)

in accord with the first of (3.8.10). Analogously,

< F(δ0), ϕ > = < δ0, ϕ̂ > = ϕ̂(0) = cN

∫
IRN

e−i 0·yϕ(y) dy

= cN

∫
IRN

1ϕ(y) dy =< T1, ϕ > ,
(3.8.12)

in accord with the second of (3.8.10).

(b) More generally, if P is an arbitrary polynomial with constant coefficients, by
(3.8.6) we compute that

F(TP ) = F(P (·)T1) = P (iD)(F(T1)) = P (iD)δ0 , (3.8.13)

F(P (−iD)δ0) = P ((−i)(i·))(F(δ0)) = P (·)T1 = TP , (3.8.14)

from which (3.8.10) follows. 2

We remark explicitly that part (a) of the proof of proposition 3.8.1 shows that

δ0 = F(I), F(δ0) = I , (3.8.15)

where I denotes the distribution T1 generated by the constant polynomial P (x) ≡ 1.

3. We conclude with the following result.
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Proposition 3.8.2 Let T ∈ S ′(IRN) be such that T̂ ∈ L2(IRN). Then T ∈ L2(IRN).

Remark. Per se, the assumption that T ∈ S ′(IRN) only implies that T̂ ∈ S ′(IRN).
But as L2(IRN) ⊂ S ′(IRN), it may or may not happen that T̂ ∈ L2(IRN). Propo-
sition 3.8.2 states that if this is the case, then in fact also the original tempered
distribution T is regular; that is, T ∈ L2(IRN). �

Proof. To say that T̂ ∈ L2(IRN) means that there is g ∈ L2(IRN) such that T̂ is the
distribution generated by g; that is, with a small abuse of notation, that T̂ = T̂g.
More precisely, for all ϕ ∈ S(IRN),

< T̂ , ϕ >=
∫
IRN

g(x)ϕ(x) dx . (3.8.16)

We now claim that T is the distribution generated by ǧ; that is, that T = Tǧ. Since
ǧ ∈ L2(IRN), this proves the proposition. Given then ϕ ∈ S(IRN), we compute that

< ĝ, ϕ >=< g, ϕ̌ >= < T̂ , ϕ̌ >=< T,F [ϕ̌] >=< T, ϕ > , (3.8.17)

which proves our claim. 2

3.9 Applications to PDEs of Evolution.

In this section we apply the results we have seen on the Fourier transform to solve
the initial-value problems for the linear heat and the wave equations in IRN .

3.9.1 The Heat Equation.

Given a function u0 ∈ L1(IRN), we seek to find a function u : IR≥0×IRN → IR which
solves the Cauchy problem consisting of the heat equation

ut −∆u = 0 in IR>0 × IRN , (3.9.1)

together with the initial condition

u(0, ·) = u0 in {t = 0} × IRN . (3.9.2)
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Theorem 3.9.1 Let

u(t, x) :=


1

(4πt)N/2

∫
IRN

u0(y) e− |x−y|
2/4t dy if t > 0 ,

u0(x) if t = 0 .

(3.9.3)

Then, u ∈ C∞( ]0,+∞[×IRN); u solves the heat equation (3.9.1) for all (t, x) ∈
]0,+∞[×IRN , and takes on the initial value (3.9.2) in the generalized sense that

lim
t→0

u(t, ·) = u0 in L1(IRN) . (3.9.4)

If u0 ∈ Cb(IRN), then u ∈ C([0,+∞[ ×IRN) as well, and

lim
(t,x)→(0,x0)

u(t, x) = u0(x0) (3.9.5)

for all x0 ∈ IRN .

Proof. We first proceed formally, keeping t > 0 fixed and taking the Fourier trans-
form of the two terms of equation (3.9.1) with respect to the space variable. Recalling
(3.5.13), we obtain that the function

[Fu(t, ·)](y) = û(t, y) (3.9.6)

should solve the equation

ût + |y|2 û = 0 . (3.9.7)

We look at this equation as a family of ODEs in the unknowns t 7→ û(t, y), parametri-
zed by y ∈ IRN , and attach to these ODEs the natural initial conditions

û(0, ·) = û0 . (3.9.8)

Thus, we are led to consider, for each y ∈ IRN , the Cauchy problem
d
dt
v + |y|2 v = 0 ,

v(0) = û0(y) ,
(3.9.9)

which has the solution

v(t, y) = û0(y) e− |y|
2 t . (3.9.10)



3.9. APPLICATIONS TO PDES OF EVOLUTION. 103

Recalling (3.2.20), we deduce that

v(t, y) = 1
cN
Ê(t)(y) = [F(u0 ∗ E(t))](y) , (3.9.11)

where E(t) is the heat kernel defined in (3.2.17). For t > 0, we now define u by

u(t, x) :=
[
F−1(v(t, ·)

]
(x) = [u0 ∗ E(t)](x) , (3.9.12)

and, recalling (3.2.18), we see that u is the desired solution of the heat equation (3.9.1).
The generalized taking of the initial condition (3.9.4) is a consequence of (3.2.23) of
proposition 3.2.2. For (3.9.5), see, e.g., Evans, [3, sct. 2.3.b]. Note that (3.9.3) defines
u uniquely, because if z := u − ũ is the difference of two solutions corresponding
to the same initial value u0, then z satisfies the heat equation (3.9.1), with initial
condition z(0, ·) = 0; replacing z0 = 0 in (3.9.3), written with u replaced by z, we
deduce that z = 0. 2

3.9.2 The Wave Equation.

Given two functions u0, u1 ∈ L1(IRN), we seek to find a function u : IR≥0×IRN → IR
which solves the Cauchy problem consisting of the wave equation

utt −∆u = 0 in IR>0 × IRN , (3.9.13)

together with the initial conditions

u(0, ·) = u0 , ut(0, ·) = u1 in {t = 0} × IRN . (3.9.14)

Reasoning as in the previous section, we proceed formally, keeping t > 0 fixed and
taking the Fourier transform of the two terms of equation (3.9.13) with respect to
the space variable. Recalling (3.5.13), we obtain that the function û defined in (3.9.6)

should now solve the equation

ûtt + |y|2 û = 0 . (3.9.15)

Again, we look at this equation as a family of ODEs in the unknowns t 7→ û(t, y),
parametrized by y ∈ IRN , and attach to these ODEs the natural initial conditions

û(0, ·) = û0 , ût(0) = û1 . (3.9.16)
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Thus, we are led to consider, for each y ∈ IRN , the Cauchy problem
d2

dt2 v + |y|2 v = 0 ,

v(0) = û0(y) , v ′(0) = û1(y) ,
(3.9.17)

which has the solution

v(t, y) =


û1(y) sin(|y| t)

|y| + û0(y) cos(|y| t) if y 6= 0 ,

û1(0) t+ û0(0) if y = 0 .
(3.9.18)

As in (3.9.12), we now define

u(t, x) :=
[
F−1(v(t, ·)

]
(x) , (3.9.19)

and obtain 4

Theorem 3.9.2 Let u0, u1 ∈ L1(IRN), and define u by (3.9.19). Then, v ∈ C1([0,
+∞[ , L1(IRN)), and solves the initial-value problem (3.9.13)+(3.9.14).

To find an explicit expression for u, involving the inverse Fourier transforms of the
functions appearing at the right side of (3.9.19), we refer to Torchinsky’s paper [9],
where, with some candid understating, of this problem it is said that “it is not easy”.
Here, we limit ourselves to consider the one-dimensional case, and show that the
function u defined in (3.9.19) coincides with the solution of the wave equation given
by d’Alembert’s formula (2.1.10). Noting that the functions

x 7→ sin(tx)

x
and x 7→ cos(tx) (3.9.20)

are even in x, from (3.9.18) and (3.1.2) we obtain that, if y 6= 0,

v(t, y) = û1(y)
sin(y t)

y
+ û0(y) cos(y t)

=
√

π
2
û1(y) χ̂

[−t,t](y) + û0(y) cos(y t) .

(3.9.21)

4The reader is encouraged to work out the proof of theorem 3.9.2.
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Assume for the moment that u0 = 0, and call ṽ and ũ the corresponding functions,
defined by (3.9.18) (3.9.19). Recalling the first of (3.4.3), we find that

v(t, y) = c1

√
π
2

[
F(u1 ∗ χ[−t,t])

]
(y) = 1

2

[
F(u1 ∗ χ[−t,t])

]
(y) , (3.9.22)

from which

ũ(t, x) =
[
F−1 ṽ(t, ·)

]
(x) = 1

2

[
u1 ∗ χ[−t,t]

]
(x)

= 1
2

∫ +∞

−∞
u1(y)χ

[−t,t](x− y) dy (3.9.23)

= 1
2

∫ x+t

x−t
u1(y) dy ,

having noted that

χ
[−t,t](x− y) =

 1 if |x− y| ≤ t ,

0 if |x− y| > t ,
(3.9.24)

that is,

χ
[−t,t](x− y) =

 1 if x− t ≤ y ≤ x+ t ,

0 otherwise .
(3.9.25)

If u0 6= 0, we note that we can decompose 5 the solution of the wave equation as

u = u1 + u2
t , (3.9.26)

where u1 and u2 are the solutions of the Cauchy problems

uitt − uixx = 0 , i = 1, , 2 , (3.9.27)

with initial values

u1(0) = 0 , u1
t (0) = u1 , u2(0) = 0 , u2

t (0) = u0 . (3.9.28)

In fact, clearly

utt − uxx = (u1
tt − u1

xx) + (u2
tt − u2

xx)t = 0 ; (3.9.29)

5Decomposition (3.9.26) holds in any space dimension.
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moreover, by (3.9.28),

u(0) = u1(0) + u2
t (0) = 0 + u0 , (3.9.30)

ut(0) = u1
t (0) + u2

tt(0) = u1
t (0) + u2

xx(0) = u1 + 0 . (3.9.31)

Consequently, from (3.9.23),

u(t, x) = 1
2

(∫ x+t

x−t
u1(y) dy +

∂

∂ t

∫ x+t

x−t
u0(y) dy

)

= 1
2

(∫ x+t

x−t
u1(y) dy + u0(x+ t) + u0(x− t)

)
,

(3.9.32)

which is d’Alembert’s formula (2.1.10). 2



Chapter 4

Notes on the Laplace Transform.

In this chapter we briefly recall some basic results on the Laplace transform in IR.
Most of the material of this chapter is taken from the notes of J. Seiler, [8].

4.1 Definition and Basic Properties.

1. We start with the formal definition of the Laplace transform. Given a complex
number z, we denote by <(z), =(z), and z̄, respectively, the real part, the imaginary
part, and the conjugate of z.

Definition 4.1.1 1 ) A function f : IR>0 → Cl is said to be L-transformable if there
is σ ∈ IR>0 such that the function

x 7→ e−σx f(x) is in L1(0,+∞) ; (4.1.1)

we set
σf := inf{σ ∈ IR>0 | (4.1.1) holds} . (4.1.2)

2 ) The Laplace transform of a L-transformable function f is the function Lf : Cl →
Cl defined, on the half-plane

Cl f := {z ∈ Cl | <(z) > σf} , (4.1.3)

107
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by

[Lf ](z) :=
∫ +∞

0
e− zx f(x) dx . (4.1.4)

3 ) A continuous function f : IR≥0 → Cl is of exponential order σ > 0, if there are
M and T > 0 such that

|f(t)| ≤M eσ t (4.1.5)

for all t ≥ T .

Remarks. 1) The function Lf is indeed defined for <(z) > σf , since in this case

|e− zx| = e−x<(z) ≤ e−xσf , (4.1.6)

so that the integral in (4.1.4) converges.
2) The operator L is obviously linear over Cl ; more precisely, for all L-transformable
functions f and g, and all a ∈ Cl ,

L(f + a g) = Lf + aLg (4.1.7)

on the half-plane {z ∈ Cl | <(z) > max{σf , σg}.
3) If f is of exponential order σ ≥ σf , f is L-transformable, because for all σ̃ > σ,
the function e− σ̃(·) f is in L1(0,+∞). Indeed,∫ +∞

0
e− σ̃t |f(t)| dt =

∫ T

0
e− σ̃t |f(t)| dt+

∫ +∞

T
e− (σ̃−σ)t e−σt |f(t)| dt

≤
∫ T

0
|f(t)| dt+M

∫ +∞

T
e− (σ̃−σ)t dt (4.1.8)

=
∫ T

0
|f(t)| dt+ M

σ̃−σ e− (σ−σ)T ;

thus, the integral at the left side of (4.1.8) is finite. �

2. The following examples are fundamental for the sequel.

Example 4.1.1 Let a ∈ Cl . Then, for <(z) > <(a),

[L(ea(·))](z) =
1

z − a
. (4.1.9)

In particular, for a = 0,

[L 1](z) =
1

z
, <(z) > 0 . (4.1.10)



4.1. DEFINITION AND BASIC PROPERTIES. 109

Proof. By the definition (4.1.4),

[L(ea(·)](z) =
∫ +∞

0
e(a−z)x dx lim

m→+∞
ε→0

∫ m

ε
e(a−z)x dx

= lim
m→+∞
ε→0

(
e(a−z)m

a− z
− e(a−z) ε

a− z

)
.

(4.1.11)

Since
|e(a−z)m| = em<(a−z) → 0 as m→ +∞ (4.1.12)

because <(z) > <(a), from (4.1.11) it follows that

[L(ea(·))](z) =
− 1

a− z
, (4.1.13)

which is (4.1.9), and yields (4.1.10) for a = 0. 2

Example 4.1.2 Let ω ∈ IR. Then, for <(z) > 0,

[L(cos(ω(·)))](z) =
z

z2 + ω2
, [L(sin(ω(·)))](z) =

ω

z2 + ω2
. (4.1.14)

Proof. We recall the Euler formulas

cos(ω x) = 1
2

(ei ωx + e− i ωx) , sin(ω x) = 1
2i

(ei ωx − e− i ωx) . (4.1.15)

Then, by (4.1.9), with a = ± i ω, we find that

[L(cos(ω(·)))](z) =
1

2

(
1

z − i ω
+

1

z + i ω

)
, (4.1.16)

[L(sin(ω(·)))](z) =
1

2i

(
1

z − i ω
− 1

z + i ω

)
, (4.1.17)

from which (4.1.14) follows. 2

Example 4.1.3 Let k ∈ IN . Then, for <(z) > 0,

[L((·)k)](z) =
k !

zk+1
. (4.1.18)
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Proof. We proceed by induction on k. The case k = 0 is (4.1.10). Assuming (4.1.18)

true for some k ≥ 0, we compute

[L((·)k+1)](z) =
∫ +∞

0
e− zx xk+1 dx

=
[
− 1

z
xk+1 e− zx

]x=+∞

x=0
+ 1

z

∫ +∞

0
(k + 1) e− zx xk dx (4.1.19)

= 0 + 1
z

(k + 1) [L((·)k)](z) = k+1
z

k !
zk
,

form which (4.1.18) follows for k replaced by k + 1. 2

The following results are of immediate proof.

Proposition 4.1.1 Let f be L-transformable, a ∈ Cl , and n ∈ IN . Then,

[L(ea(·) f)](z) = [Lf ](z − a) , <(z − a) > σf , (4.1.20)

dn

dzn
[Lf ](z) = (−1)n [L((·)n f)](z) , <(z) > σf . (4.1.21)

Conversely, if f ∈ Cm([0,+∞[→ Cl ), and f and all its derivatives f (k), 1 ≤ k ≤ m,
are of exponential order σ > σf , then, for 1 ≤ k ≤ m,

[L(f (k))](z) = zk [Lf ](z)−
k∑
i=1

f (i−1)(0) zk−i , <(z) > σ . (4.1.22)

Proof. 1) We compute

[L(ea(·) f)](z) =
∫ +∞

0
e− zx (eax f(x)) dx

=
∫ +∞

0
e− (z−a) f(x) dx .

(4.1.23)

2) Similarly,
dn

dzn
[Lf ](z) =

dn

dzn

∫ +∞

0
e− zx f(x) dx

=
∫ +∞

0
(−x)n e− zx f(x) dx ,

(4.1.24)
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from which the first two claims follow.

3) We first note that each function f (k), 0 ≤ k ≤ m, is L-transformable, as seen in
the third remark after definition 4.1.1. We prove (4.1.22) by induction on k.
i) For k = 1, we compute that

[L(f ′)](z) =
∫ +∞

0
e− zx f ′(x) dx

=
[
e− zx f(x)

]x=+∞

x=0
+
∫ +∞

0
z e− zx f(x) dx .

(4.1.25)

Now, we realize that, since f is of exponential order σ, for large enough x (determined
by (4.1.5)) we can estimate

|e− zx f(x)| = e−x<(z) |f(x)|

= e−x(<(z)−σ) e−xσ |f(x)| ≤M e−x(<(z)−σ) ;
(4.1.26)

thus, since <(z) > σ,

e− zx f(x)→ 0 as x→ +∞ . (4.1.27)

Hence, we obtain from (4.1.25) that

[L(f ′)](z) =
∫ +∞

0
z e− zx f(x) dx− f(0) , (4.1.28)

which is (4.1.22) for k = 1.
ii) Similarly, if 1 ≤ k ≤ m− 1,[

L(f (k+1))
]

(z) =
∫ +∞

0
e− zx f (k+1)(x) dx

=
[
e− zx f (k)(x)

]x=+∞

x=0
+
∫ +∞

0
z e− zx f (k)(x) dx

= − f (k)(0) + z
[
L(f (k))

]
(z) (4.1.29)

= z zk [Lf ](z)−
k∑
i=1

f (i−1)(0) zk−i − f (k)(0)

= zk+1 [L](z)−
k+1∑
i=1

f (i−1)(0) zk+1−i ,

which is (4.1.22) for k replaced by k + 1. 2
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4.2 The Inverse Laplace Transform.

We proceed to give a formal definition of the inverse Laplace transform of a holo-
morphic function.

1. We start by observing that, given a L-transformable function f , σ > σf , and
τ ∈ IR,

[Lf ](σ + i τ) =
∫ +∞

0
e−x (σ+i τ) f(x) dx =

∫ +∞

0
e− i xτ (e−xσ f(x)) dx ; (4.2.1)

thus, defining f̃ : IR→ IR by

f̃(x) :=

 0 if x < 0 ,

f(x) if x > 0 ,
(4.2.2)

and noting that the function x 7→ e−σxf̃(x) is in L1(IR) (because σ > σf ), we can
write

[Lf ](σ + i τ) =
∫ +∞

−∞
e− i xτ (e−xσ f̃(x)) dx =

√
2π [F(e−σ(·) f̃)](τ) . (4.2.3)

For fixed σ > σf , define
gσ(τ) := [Lf ](σ + i τ) . (4.2.4)

Then, if gσ ∈ L1(IR), (4.2.3) yields the formal identity

e−σx f̃(x) =
[
F−1

(
1√
2π
gσ
)]

(x)

= 1√
2π

1√
2π

∫ +∞

−∞
ei τx gσ(τ) dτ (4.2.5)

= 1
2π

∫ +∞

−∞
ei τx [Lf ](σ + i τ) dτ ,

from which, restricting to x > 0,

f(x) = 1
2π

∫ +∞

−∞
e(σ+i τ)x [Lf ](σ + i τ) dτ , (4.2.6)

for σ > σf . We interpret the integral at the right side of (4.2.6) as a line integral for
the function

Cl 3 z 7→ ezx [Lf ](z) ∈ Cl , (4.2.7)
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over the vertical line

γσ := {z ∈ Cl | <(z) = σ} , σ > σf . (4.2.8)

Since this line can be parametrized by

z = z(τ) = σ + i τ , −∞ < τ < +∞ (4.2.9)

(that is, σ is fixed, and the parameter τ varies in all of IR), and d
dτ
z(τ) = i, it follows

from (4.2.6) that, if x > 0,

f(x) =
1

2πi

∫
γσ

ezx [Lf ](z) dz . (4.2.10)

We point out explicitly that identity (4.2.10) holds, irrespective of the value of σ, as
long as σ > σf (see, e.g., Brown and Churchill, [2, ch. 7, sct. 66]).

2. A first consequence of (4.2.10) is that the Laplace transform is injective. More
precisely, assume that f and g are L-transformable, and Lf = Lg on some vertical
line (4.2.8) with σ > max{σf , σg}. Then, by (4.2.10) and the linearity of L,

f(x)− g(x) =
1

2πi

∫
γσ

ezx ([Lf ](z)− [Lg](z)) dz = 0 ; (4.2.11)

that is, f coincides with g almost everywhere in [0,+∞[.

3. Identity (4.2.10) suggests the following

Definition 4.2.1 Let σ ∈ IR, and g : Cl → Cl be analytic on the half-plane <(z) >
σ. The inverse Laplace transform of g is the function g̃ : IR≥0 → Cl defined by

g̃(x) :=
1

2πi

∫
γσ

ezx g(z) dz , (4.2.12)

where γσ is the vertical line defined in (4.2.8). We set g̃ =: L−1g. 1

Example 4.2.1 Let a ∈ Cl , n ∈ IN , and

g(z) =
1

(z − a)n+1
. (4.2.13)

Then,

[L−1g](x) =
xn

n !
eax , x ≥ 0 . (4.2.14)

1Note the analogy between definitions (4.1.4) and (4.2.12) with definitions (3.1.1) and (3.3.2)
of the Fourier transform and its inverse.
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Proof. 1) By (4.1.20) of proposition 4.1.1, and (4.1.18) of example 4.1.3,[
L
(
ea(·) (·)n

)]
(z) = [L(·)n](z − a) =

n !

(z − a)n+1
= (n !) g(z) . (4.2.15)

Thus, we formally have that

[L−1g](x) =
1

n !

[
L−1

(
L(ea(·) (·)n)

)]
(x) =

1

n !
eax xn , (4.2.16)

which is (4.2.14).

2) A rigorous justification of (4.2.14) can be given with the help of Cauchy’s integral
formula ∫

γ

f(z)

(z − z0)n+1
dz =

2πi

n !
f (n)(z0) , (4.2.17)

in which f is analytic in a domain Ω ⊆ Cl , γ ⊂ Ω is a closed, piecewise smooth
contour, described counterclockwise, and z0 is interior to the region bounded by γ.
To see this, for σ and τ > 0 we consider the perimeter γσ,τ of the square of center
a = α+i β and vertices (α−σ, β−τ), (α+σ, β−τ), (α+σ, β+τ), and (α−σ, β+τ).
Then, by (4.2.17) with f(z) = e(z−a)x and z0 = a,∫

γσ,τ

e(z−a)x

(z − a)n+1
dz =

2πi

n !

[
dn

dzn
e(z−a)x

]
z=a

=
2πi

n !
xn . (4.2.18)

Letting σ → 0 and τ → +∞, we deduce from (4.2.18) that

1

2πi

∫
γα

e(z−a)x

(z − a)n+1
dz =

xn

n !
, (4.2.19)

from which, by (4.2.12) with σ = α,

[L−1g](x) =
1

2πi

∫
γα

ezx

(z − a)n+1
dz = eax

xn

n !
, (4.2.20)

which is (4.2.14). 2

4.3 Applications to ODEs.

1. One of the main reasons why the Laplace transform plays such an important role
in the study of ODEs is that, as seen in part (3) of proposition 4.1.1, it transforms
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differentiation into multiplication, up to a polynomial. More precisely, consider a
polynomial

P (λ) = λn + a1 λ
n−1 + · · · + an−1 λ+ an (4.3.1)

with coefficients ai ∈ Cl , of real variable λ, and the associated ordinary differential
operator of order n

P (D) := Dn + a1D
n−1 + · · · + an−1D + an , (4.3.2)

where D := d
dt

. Let y ∈ Cn([0,+∞[→ Cl ). Then, by the linearity of the Laplace
transform, and a repeated application of (4.1.22),

L(P (D) y)(z)

= [L(y(n))](z) + a1 [L(y(n−1))](z) + · · ·+ an−1 [L(y ′)](z) + an [Ly](z)

= zn [Ly](z)− y(0) zn−1 − y ′(0) zn−2 − · · · − y(n−1)(0)

+ a1

(
zn−1 [Ly](z)− y(0) zn−2 − y ′(0) zn−3 − · · · − y(n−2)(0)

)
+ · · · · · · (4.3.3)

+ an−1 (z [Ly](z)− y(0)) + an [Ly](z)

= P (z) [Ly](z)−
n∑
k=1

pk z
n−k ,

where the coefficients pk are defined by

pk :=
k∑
i=1

y(k−i)(0) ai−1 , with a0 := 1 . (4.3.4)

For example, when n = 2, let

P (λ) = λ2 + a1 λ+ a2 . (4.3.5)

Then,
P (D) y = y ′′ + a1 y

′ + a2 y , (4.3.6)

so that

[L(y ′′ + a1 y
′ + a2 y)](z) =

(
z2 [Ly](z)− y(0) z − y ′(0)

)
+ a1 (z [Ly](z)− y(0)) + a2 [Ly](z) (4.3.7)

= (z2 + a1 z + a2) [Ly](z)− (y(0) z)− (y ′(0) + a1 y(0)) .
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This is (4.3.3) for n = 2, with

p1 = y(0) a0 = y(0) , p2 = y ′(0) a0 + y(0) a1 = y ′(0) + y(0) a1 . (4.3.8)

2. We apply the previous observation to formally solve the initial value problem y(n) + a1 y
(n−1) + · · ·+ an−1 y

′ + an y = f ,

y(0) = y0 , y
′(0) = y1 , · · · , y(n−1)(0) = yn−1 ,

(4.3.9)

where f is a given L-transformable function, and the n numbers y0 , . . . , yn−1 are
the given initial values for the unknown y. Proceeding formally, we take the Laplace
transform of all terms of (4.3.9); by (4.3.3), the initial-value problem is then equivalent
to the algebraic equation

P (z)u = [Lf ](z)−
n∑
k=1

qk z
n−k (4.3.10)

in the unknown u := [Ly](z), in which the complex variable z plays the role of a
parameter, and, in analogy with (4.3.4),

qk :=
k∑
i=1

yk−i ai−1 , a0 = 1 . (4.3.11)

Equation (4.3.10) has the solution

u =
1

P (z)

(
[Lf ](z) +

n∑
k=1

qk z
n−k

)
=: u(z) , (4.3.12)

from which one then hopes to obtain the solution of (4.3.9), by determining the
inverse Laplace transform

y(t) = [L−1u](t) =
[
L−1

(
Q
P

)]
(t) +

[
L−1

(
Lf
P

)]
(t) , (4.3.13)

where

Q(z) :=
n∑
k=1

qk z
n−k . (4.3.14)

To proceed from (4.3.13), it is useful to recall the following result on the Laplace
convolution of two functions f and g, defined for x > 0 by

[f ∗ g](x) :=
∫ x

0
f(x− y) g(y) dy . (4.3.15)
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Proposition 4.3.1 1 ) Let f and g be L-transformable. Then, on the half-plane
<(z) > max{σf , σg},

L(f ∗ g) = [Lf ] [Lg] . (4.3.16)

2 ) Conversely, if F and G are Laplace transforms,

L−1(F G) = [L−1F ] ∗ [L−1G] . (4.3.17)

The proof of proposition 4.3.1 is similar to that of the analogous proposition 3.4.1
on the Fourier transform. In particular, the last term of the formal solution (4.3.13)

can be written as
L−1

(
Lf
P

)
= f ∗ L−1

(
1
P

)
. (4.3.18)

3. The process described above is particularly easy to implement when n = 2 (even
though, admittedly, the standard methods of solutions yield the solutions more
readily). We illustrate this by means of a few examples, all taken from Seiler, [8].

Example 4.3.1 Consider the homogeneous initial-value problem y ′′ − 2 y ′ − 8 y = 0 ,

y(0) = 1 , y ′(0) = 2 .
(4.3.19)

From (4.3.14) and (4.3.11), we first determine

Q(z) = q1 z + q2 = y0 1 z + (y1 1 + y0 a1) = z + (2 + (−2)) = z ; (4.3.20)

thus, by partial fractions decomposition,

Q(z)

P (z)
=

z

z2 − 2z − 8
=

1

3(z + 2)
+

2

3(z − 4)
. (4.3.21)

Then, we refer to the solution formula (4.3.13): recalling (4.2.13) of example 4.2.1,
with n = 1 and a = −2, a = 4, we obtain

y(t) =
[
L−1

(
Q
P

)]
(t)

= 1
3

[
L−1

(
1

(·)+2

)]
(t) + 2

3

[
L−1

(
1

(·)−4

)]
(t) (4.3.22)

= 1
3

e− 2t + 2
3

e4t .

The reader is encouraged to verify that this solution is correct, and coincides with
the one obtained with the characteristic equation method. 2
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Example 4.3.2 Consider the non-homogeneous initial-value problem y ′′ − 2 y ′ + 2 y = f(t) ,

y(0) = 2 , y ′(0) = 3 .
(4.3.23)

In this case,

P (λ) = λ2 − 2λ+ 2 = (λ− (1 + i)) (λ− (1− i)) ,

Q(z) = q1 z + q2 = 2 z + (3 + 2(−2)) = 2 z − 1 .
(4.3.24)

Again by partial fractions decomposition,

Q(Z)
P (z)

=
(
1− i 1

2

)
1

z−(1+i)
+
(
1 + i 1

2

)
1

z−(1−i) , (4.3.25)

1
P (z)

= 1
2 i

(
1

z−(1+i)
+ 1

z−(1−i)

)
; (4.3.26)

consequently, [
L−1

(
Q
P

)]
(t) =

(
1− i 1

2

) [
L−1

(
1

z−(1+i)

)]
(t)

+
(
1 + i 1

2

) [
L−1

(
1

z−(1−i)

)]
(t)

=
(
1− i 1

2

)
e(1+i) t +

(
1 + i 1

2

)
e(1−i) t (4.3.27)

= et
(
(eit + e− it) + i

2
(e− it − eit)

)
= et (2 cos t+ sin t) .

This is the solution to the homogeneous problem, corresponding to (4.3.23) when
f = 0. Next, from (4.3.26),[

L−1
(

1
P

)]
(t) = 1

2 i

(
e(1+i) t − e(1−i) t

)
= et sin t ; (4.3.28)

thus, by (4.3.18), [
f ∗ L−1

(
1
P

)]
(t) =

∫ t

0
f(s)

[
L−1

(
1
P

)]
(t− s) ds

=
∫ t

0
f(s) et−s sin(t− s) ds .

(4.3.29)
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In conclusion, the solution to the initial-value problem (4.3.23) is

y(t) = et
(

sin t+ 2 cos t+
∫ t

0
b(s) e−s sin(t− s) ds

)
. (4.3.30)

Again, the reader is encouraged to verify that this solution is correct, and coincides
with the one obtained with the characteristic equation method. 2

Example 4.3.3 Consider the non-homogeneous initial-value problem y ′′ + 2 y ′ + 5 y = e− t sin t ,

y(0) = 0 , y ′(0) = 1 .
(4.3.31)

In this case, Q(z) = 1 and, recalling (4.1.20) and the second of (4.1.14),

[L(e− (·) sin)](z) = [L(sin)](z + 1) = 1
(z+1)2+1

; (4.3.32)

thus, from
(z2 + 2 z + 5) [Ly](z)− 1 = 1

(z+1)2+1
, (4.3.33)

obtained by taking the Laplace transform of all terms of (4.3.31), we find that

[Ly](z) =
z2 + 2 z + 3

(z2 + 2 z + 2)(z2 + 2 z + 5)

=
1

(s+ 1)2 + 1
+

2

3((s+ 1)2 + 4
.

(4.3.34)

Consequently,

y(t) =
1

3

[
L−1

(
1

(1 + (·))2 + 1

)]
(t) +

1

3

[
L−1

(
2

(1 + (·))2 + 4

)]
(t)

=
1

3
e− t (sin t+ sin(2 t)) .

(4.3.35)

Once more, the reader is encouraged to verify that this solution is correct, and
coincides with the one obtained with the characteristic equation method. 2

This concludes our brief presentation of the Laplace transform techniques for solving
initial-boundary value problems for ODEs. We mention that the same techniques
can be used, in a straightforward way, to solve initial-value problems for systems of
ODEs (see, e.g., [8, ex. 3.12]).
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