The Banach fixed point theorem (Teorema di Banach-Caccioppoli)
Let (M, d) be a metric space, ¢ : M — M and z € M.
a) z is called a fixed point of ¢ if ¢(z) = z.

b) ¢ is called a strict contraction if

(3Lel0,)) YaoyeM:  d@@),¢y) < Ld(z,y) ]

Theorem. Let (M,d) be complete and ¢ a strict contraction. Then ¢ has a unique
fized point. If xg € M is an arbitrary element of M and one defines (recursively)
the sequence

T = O(Tp_1), =128 000,

then
n——+0oo0
Ty ——— 2.

Moreover, the following error estimates are valid:

n

1-L

a) A-priori estimate: — d{xp,z) < d(z1,x0) for every n.

b) A-posteriori estimate: — d(zy,z) < ﬁd(azn,xn,l) for every n.

PROOF: There is at most one fixed point, since if z = ¢(2) and 2’ = ¢(2’) then
d(z,2") = d(¢(2), ¢(2)) < Ld(z,7"),

hence d(z,2') = 0, i.e., z = 2. For the existence note that

d(vg 11, 2) = d(d(wr), (Tr-1))
< Ld(zp, v 1) = Ld(p(zr1), ¢(xr2))
< LPd(zp_1, 2p—2) < ... < L¥d(x1, z0).

Then, for every indices m > n,

AT, Tn) < d(Tm, Tm—1) + d(Tm—1,Tm—2) + ... + d(Tpt1, Tn)

m—1 400 "
< Lfd(zy,z0) < L™ LUd(zy, x0) = d(z1, xo).
; (21, 20) Z;] (21, 20) = T — d(@1, 20)

Since L™ =%, 0 this shows that () is a Cauchy-sequence in M. Since M is complete,
the sequence converges; call z its limit. Then, using the continuity of ¢,

2 8250 i = o) BT 6(2)



shows that z is a fixed point of ¢. Moreover,

LTL
1-L

d(Z,xn) AR d($m7$n) < d(iUl’on)

shows the a-priori estimate. Similarly one finds the a-posteriori estimate: First one has

m—n—1 m—n—1
d(xnu xn) < Z d(anrerlv anr@) < Z LZ+1 d(x’m xn—l)'
£=0 £=0

Passing to the limit m — +00 yields

+o0 L
d(z,zn) < ;}L“l d(Zn, Tno1) = md(ﬂfml’n—l)-

This completes the proof.
An application: Initial value problems

Let f :[a,b] x R™ — R™ be a continuous function satisfying the Lipschitz condition

(1ft) = f(t.2)| < Cle | Vie[ab] VYo' eR"]

with some constant C' > 0. Let g € R™ and to € [a, b] be fixed.

Picard-Lindel6f Theorem (global version). With the previous notation, there
exists a unique solution x € C*([a,b],R™) of the initial value problem

' (t) = f(t,z(t)), x(to) = xo. (1)

PROOF: By the main theorem of calculus, being a continuously differentiable solution of
(1) is equivalent to being a continuous solution of the integral equation

t
x(t) = zo + t f(s,z(s)) ds. (2)

Now let M := C([a,b],R™) and define a metric on M by

d(g,h) = max e OVl g1y — n(t)].

a<t<b

Recall that the standard metric on M is given by

d(g,h) = max |g(t) — h(t)].

a<t<b

Since
67(04—1)(1)*(1) < 67(C+1)‘t7t0| < 1 Vte [aa b]7

d and d are equivalent metrics on M. Hence (M, d) is a complete metric space.



Now we consider the map ¢ : M — M defined by

t

[0()](t) = xo+ | [ls,9(s))ds,  telab]. (3)

to

We shall show below that ¢ is a strict contraction on (M, d) with constant L = CLH <1
Hence there exists a unique fixed point of ¢ in M. This fixed point is the unique solution
of (2) and thus of (1).

Let us assume for simplicity that to = a (the general case works analogously); thus [t—tg| =

t —a for all t € [a,b]. Then

[6(9)1(1) = [e(M]@D)] = f f(s,9(s)) = f(s,h(s)) ds

t
< [ los)) - ns)lds
t
_ CJ ((CHD— )~ (CHDa) | g(5)) — fo(s)| ds

t
< Cd(g,h) J ((CH(5—a) g

1
C+1

d(g, h) (e(CJrl)(tfa) _ 1)

C+1)(s—a)|*="

< Cd(g,h) el

C

T+l
C

C+1

S=a

< d(g, h)eCTDE=a),

Multiplying from the left with e (¢+1(¢-4) and the passing to the maximum over t € [a, b]
yields
C
< -
C+1

for arbitrary g,h € M. ]

d(¢(g), ¢(h)) d(g, h)

Example. Let us consider the initial value problem

Here n = 1 and f(¢,x) = x. Obviously f satisfies the Lipschitz condition on every interval
[—a,a] with constant C' = 1. The map ¢ from (3) becomes

t
(@0 =1+ | als)ds.

0

Let us calculate the sequence of functions (g,) defined by

=1 g,= ¢(gnfl)~



We have
t
g1(t) =1+J lds =1+t,

t 2
t
g2(t)=1+f l+sds=1+t+ =,

0 2

t t2 "
gn(t)=1+f gn-1(s)ds=14+t+ —+...+ —.

0 2 7'1,'

Therefore

)= Y o
[

T
L, S
—_ — =e".
n!
k=0

k
Hence x(t) = €' is the unique (on R) solution of the initial value problem.



