The Banach fixed point theorem (Teorema di Banach-Caccioppoli)

Let (M, d) be a metric space, $\phi : M \to M$ and $z \in M$.

a) z is called a fixed point of ϕ if $\phi(z) = z$.

b) ϕ is called a strict contraction if

$$
\exists L \in [0,1) \quad \forall x, y \in M: \qquad d(\phi(x), \phi(y)) \leq L d(x, y).
$$

Theorem. Let (M, d) be complete and ϕ a strict contraction. Then ϕ has a unique fixed point. If $x_0 \in M$ is an arbitrary element of M and one defines (recursively) the sequence

$$
x_n = \phi(x_{n-1}),
$$

 $n = 1, 2, 3, ...$

then

$$
x_n\xrightarrow{n\to+\infty}z.
$$

Moreover, the following error estimates are valid:

- a) A-priori estimate: $d(x_n, z) \leqslant \frac{L^n}{1}$ $\frac{E}{1-L}d(x_1, x_0)$ for every n.
- b) A-posteriori estimate: $d(x_n, z) \leq \frac{L}{1-L} d(x_n, x_{n-1})$ for every n.

PROOF: There is at most one fixed point, since if $z = \phi(z)$ and $z' = \phi(z')$ then

$$
d(z, z') = d(\phi(z), \phi(z')) \leq L d(z, z'),
$$

hence $d(z, z') = 0$, i.e., $z = z'$. For the existence note that

$$
d(x_{k+1}, x_k) = d(\phi(x_k), \phi(x_{k-1}))
$$

\n
$$
\leq L d(x_k, x_{k-1}) = L d(\phi(x_{k-1}), \phi(x_{k-2}))
$$

\n
$$
\leq L^2 d(x_{k-1}, x_{k-2}) \leq \dots \leq L^k d(x_1, x_0).
$$

Then, for every indices $m > n$,

$$
d(x_m, x_n) \leq d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \ldots + d(x_{n+1}, x_n)
$$

$$
\leq \sum_{\ell=n}^{m-1} L^{\ell} d(x_1, x_0) \leq L^n \sum_{\ell=0}^{+\infty} L^{\ell} d(x_1, x_0) = \frac{L^n}{1-L} d(x_1, x_0).
$$

Since $L^n \xrightarrow{n \to +\infty} 0$ this shows that (x_n) is a Cauchy-sequence in M. Since M is complete, the sequence converges; call z its limit. Then, using the continuity of ϕ ,

$$
z \xleftrightarrow{n \to +\infty} x_{n+1} = \phi(x_n) \xrightarrow{n \to +\infty} \phi(z)
$$

shows that z is a fixed point of ϕ . Moreover,

$$
d(z, x_n) \xleftarrow{m \to +\infty} d(x_m, x_n) \leqslant \frac{L^n}{1 - L} d(x_1, x_0)
$$

shows the a-priori estimate. Similarly one finds the a-posteriori estimate: First one has

$$
d(x_m, x_n) \leqslant \sum_{\ell=0}^{m-n-1} d(x_{n+\ell+1}, x_{n+\ell}) \leqslant \sum_{\ell=0}^{m-n-1} L^{\ell+1} d(x_n, x_{n-1}).
$$

Passing to the limit $m \to +\infty$ yields

$$
d(z, x_n) \leqslant \sum_{\ell=0}^{+\infty} L^{\ell+1} d(x_n, x_{n-1}) = \frac{L}{L+1} d(x_n, x_{n-1}).
$$

This completes the proof.

An application: Initial value problems

Let $f : [a, b] \times \mathbb{R}^n \to \mathbb{R}^n$ be a continuous function satisfying the Lipschitz condition

$$
\left(\|f(t,x) - f(t,x')\| \leq C \|x - x'\| \quad \forall \ t \in [a,b] \quad \forall \ x, x' \in \mathbb{R}^n,
$$

with some constant $C \geq 0$. Let $x_0 \in \mathbb{R}^n$ and $t_0 \in [a, b]$ be fixed.

Picard-Lindelöf Theorem (global version). With the previous notation, there exists a unique solution $x \in C^1([a, b], \mathbb{R}^n)$ of the initial value problem

$$
x'(t) = f(t, x(t)), \qquad x(t_0) = x_0. \tag{1}
$$

П

Proof: By the main theorem of calculus, being a continuously differentiable solution of (1) is equivalent to being a continuous solution of the integral equation

$$
x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.
$$
 (2)

Now let $M := C([a, b], \mathbb{R}^n)$ and define a metric on M by

$$
\mathbf{d}(g,h) = \max_{a \leq t \leq b} e^{-(C+1)|t-t_0|} \|g(t) - h(t)\|.
$$

Recall that the standard metric on M is given by

$$
d(g, h) = \max_{a \le t \le b} \|g(t) - h(t)\|.
$$

Since

$$
e^{-(C+1)(b-a)} \le e^{-(C+1)|t-t_0|} \le 1 \quad \forall \ t \in [a, b],
$$

d and **d** are equivalent metrics on M. Hence (M, d) is a complete metric space.

Now we consider the map $\phi : M \to M$ defined by

$$
[\phi(g)](t) = x_0 + \int_{t_0}^t f(s, g(s)) ds, \qquad t \in [a, b].
$$
 (3)

We shall show below that ϕ is a strict contraction on (M, d) with constant $L = \frac{C}{C+1} < 1$. Hence there exists a unique fixed point of ϕ in M. This fixed point is the unique solution of (2) and thus of (1) .

Let us assume for simplicity that $t_0 = a$ (the general case works analogously); thus $|t-t_0|$ $t - a$ for all $t \in [a, b]$. Then

$$
\begin{aligned} |[\phi(g)](t) - [\phi(h)](t)| &= \Big| \int_a^t f(s, g(s)) - f(s, h(s)) \, ds \Big| \\ &\le C \int_a^t |g(s)) - h(s)| \, ds \\ &= C \int_a^t e^{(C+1)(s-a)} e^{-(C+1)(s-a)} |g(s)) - h(s)| \, ds \\ &\le C \mathbf{d}(g, h) \int_a^t e^{(C+1)(s-a)} \, ds \\ &\le C \mathbf{d}(g, h) \frac{1}{C+1} e^{(C+1)(s-a)} \Big|_{s=a}^{s=t} \\ &= \frac{C}{C+1} \mathbf{d}(g, h) \Big(e^{(C+1)(t-a)} - 1 \Big) \\ &\le \frac{C}{C+1} \mathbf{d}(g, h) e^{(C+1)(t-a)}. \end{aligned}
$$

Multiplying from the left with $e^{-(C+1)(t-a)}$ and the passing to the maximum over $t \in [a, b]$ yields

$$
\mathbf{d}(\phi(g), \phi(h)) \leqslant \frac{C}{C+1} \mathbf{d}(g, h)
$$

П

for arbitrary $q, h \in M$.

Example. Let us consider the initial value problem

$$
x'(t) = x(t),
$$
 $x(0) = 1.$

Here $n = 1$ and $f(t, x) = x$. Obviously f satisfies the Lipschitz condition on every interval $[-a, a]$ with constant $C = 1$. The map ϕ from (3) becomes

$$
[\phi(g)](t) = 1 + \int_0^t x(s) ds.
$$

Let us calculate the sequence of functions (g_n) defined by

$$
g_0 \equiv 1, \quad g_n = \phi(g_{n-1}).
$$

We have $% \left\vert \left(\mathcal{A}\right\vert \right)$

$$
g_1(t) = 1 + \int_0^t 1 ds = 1 + t,
$$

\n
$$
g_2(t) = 1 + \int_0^t 1 + s ds = 1 + t + \frac{t^2}{2},
$$

\n
$$
\vdots
$$

\n
$$
g_n(t) = 1 + \int_0^t g_{n-1}(s) ds = 1 + t + \frac{t^2}{2} + \dots + \frac{t^n}{n!}.
$$

Therefore

$$
g_n(t) = \sum_{k=0}^n \frac{t^n}{n!} \xrightarrow{n \to +\infty} \sum_{k=0}^{+\infty} \frac{t^n}{n!} = e^t.
$$

Hence $x(t) = e^t$ is the unique (on \mathbb{R}) solution of the initial value problem.