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1 Distributions on open subsets of R”

What’s it about? Distributions are continuous functionals on certain
function spaces. They generalize the concept of function in the sense
that any locally integrable function can be identified with a distribution
and that many standard operations on functions extend to distributions.
For this reason, distributions are also called generalized functions. In a
certain sense, distributions even behave better than functions; for exam-
ple, any distribution can be differentiated as many times as one wishes
and the order of derivatives does not play any role. This makes distribu-
tions a natural environment for the investigation of partial differential
equations.

In the following, 2 € R"™ is an open set. We write K cc , if K is compact and K < €.

1.1 Test functions — the space Z()

The support of a continuous function f : R™ — C is the set

[suppf := closure of the set {z e R" | f(x) + O}J

1.1 Example a) f(z) = max{l — 22,0} = supp f = [—1,1].
b) f(z) =sinz = supp f = R.

1.2 Definition (Space of test-functions) We define

2(Q) = {¢p € €*(R™) | supp ¢ cc Q}.

2(9) is a subspace of the vector space of all functions R" — C, because

supp (¢ + ¢) S supp ¢ U supp 1, supp (A\¢) S supp¢ (A € C).

exp (W%J dx <1

0 dxl =1

Then p € 2(R™) with supp p = {z | |z| < 1}.
<

If 9 € Q and r > 0 such that By(xo) S Q, then ¢(x) := p((x — x0)/r) belongs to Z(Q)

with supp ¢ = By(xo). In particular, 2(2) + {0}.

1.3 Example Let p(x) = {

For the following definition recall the multi-index notation for partial derivatives: If o =
(a1, ...,a,) € Ny then

la| = |a1] + ... + |an], Opd(x) = 05! ... 05" d(x).
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Note that for C*-functions the order of application of the partial derivatives is irrelevant,
due to the theorem of Schwarz.

1.4 Definition On 2(Q) define the norms | - |;, 7 =0,1,2,... by

|6l := max [07¢(z)].

z€R”, |a|<j

1.5 Definition We say that a sequence (¢pi)r S Z(2) converges to ¢ € 2(R) if
i) there exists a set K cc § such that supp ¢ S K for every k,
k—+00

ii) |pr — @|; — 0 for all j =0,1,2,...

In this case we write ¢y, Lmai:N ¢ or klirn o = @. Note that then supp ¢ € K, too.
—+00

Note that ii) is equivalent to the uniform convergence in R™ of 03¢, to d¢¢ for every
a € Nj.

1.6 Lemma Let 8 € NI. If ¢p ~=%5 ¢ then 0Py, 22725 8.

ProOOF:  Use notation of Definition 1.5. Let L = |5].
i) ¢p =0 on O\K = %¢, = 0 on Q\K = supp d’¢y, S K for all k.
k—+00

ii) H&Bqﬁk - a6‘?Hj < | ox — <Z5Hj+L —— 0 for all j.

This finishes the proof. ]

1.2 Distributions — the space 2'(Q)

1.7 Definition A distribution (on ) is any linear map T : 2() — C which
is continuous in the following sense: For every convergent sequence (¢i)r S Z(2)
holds

lim T(¢) =T( lim o)

k——+00

(in short: ¢ — ¢ in D(Q) implies T(¢r) — T(p)). The set of all distributions on
Q is denoted by 7' ().

2'(Q2) is a subspace of the vector space of all linear maps 2(€2) — C.

1.8 Theorem (control estimates) For a linear T : 2(Q2) — C the following are
equivalent:
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a) Te 2'(Q)
b) For every K cc Q there exist a C = C(K) >0 and a j = j(K) € N such that

IT(9)| < CH¢HJ =C max 4|60‘¢(g;)| Y PEZ(Q),

2€R", | o] <j supp ¢S K*

PROOF:  b) = a): If ¢, > ¢ in Z(Q) as in Definition 1.5. Then

IT(6%) — T(D)| = [T(¢x — 6)| < Cllér, — o] 2252 0.

a) = b): Assume that b) does not hold. Thus there is a K cc Q and a sequence (¢g)x
with supp ¢ € K such that

IT(ox)| > kol VYE=1,2,...

Without loss of generality T(¢r) = 1 for every k (otherwise substitute ¢ by ¢y :=
¢r/T(¢r)). Then, given an arbitrary j € N,

k=j 1 s
A
Hence ¢ — 0 in 2(Q2), but T(¢x) = 1. This is a contradiction. -

Remark (and definition) If j in Theorem 1.8.b) can be taken independent of K,
we say that T has finite order. Then the smallest such j is called the order of T

1.9 Example (Functions as distributions) Write u € L] () if u is measurable on Q and
J |u(z)|dx < +o0 VK ccQ.
K

For such an u define

[Tuw) = [ w@owar,  oe @(m.’

This defines a distribution T, € 2'(Q). In fact, for K cc Q,

Tu(6)] < fK u(e)l[6()| dz < mas |6(x) fK ju(@)dz = Cilglo ¥ 57D

(in particular, T, has order 0). Distributions of this form are called regular distributions,
the function u is called the density of T,,. One can show that

T, =T, < u=v almost everywhere in ),

i.e., the density of a regqular distribution is uniquely determined (almost everywhere).
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Since the map u — T, gives a bijective correspondence between densities and regular
distributions, often one writes simply u instead of T,.

1.10 Example (d-distribution) Define § : Z(R"™) — C by

(3(¢) = ¢(0),  pe Z(R").

Then § is a distribution of order 0, since

6(@) = [o(O)] < llglo ¥V de2([RY).

§ is not a reqular distribution: Assume there would exist a v € Li (R™) with § =T, i.e.,

6(0) = f (s dr Y gE IR,

Let ¢ = ep with p as in Example 1.3. Then ¥ € Z(R™) with ¥(0) = 1 and suppy < B
with some ball B centered in 0. Define ¢ € D(R™) by ¢i(x) = (kx). Then

1= 60) = 010 = [ a@)on@)d = [ ulwhonta)de 250

B

n

due to the dominated convergence theorem (note that u(x)dy(x) Limas:Ny) for each x £ 0
and that |u(z)pr(z)| < |9|lw|u(z)| € LY(B)). Hence 1 = 0, which is a contradiction.

Similarly, given zg € R", one defines the delta-distribution d,, centered in xy by
Ozo (@) := d(w0), ¢ € D(R");
again it is a distribution of order 0 which is not regular.

1.11 Example The function x — % does not belong to LIIOC(R), hence does not define a
reqular distribution on R. However,

— i ()
To)= g | E7 ¢€@<R>’

1

defines T € 2'(R). One writes also pv-— =T (pv stands for principal value).
x

In fact, by Taylor expansion, ¢p(x) = ¢(0) + xry(x) with ry € € (R). Then

1
T(6) - X s [ X g~ 1)+ [ roeas
R\[-1,1] 0TI N[l 7 -1
since e 1
J 9(0) dx:qﬁ(O)(J 1dx—|—J 1d:c) =0,
[L1\[ec] & -1 e T
and where
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defines a regular distribution. Moreover,

= 2B 0O e ) < max|#©)] < ok, o€ D(R);

[r(z) . max

hence S € 2'(R) con |S(p)| < [Pl for all ¢. Thus T =T, + S is a distribution of order 1.

1.3 Multiplication of distributions with smooth functions

Let u € L} () and a € €°(2). Then T, and Ty, are regular distributions and

Tou(6) = f a(a)u(x)d(x) dx = T(ag).

Q

Note that on the right-hand side we can substitute 7}, by an arbitrary distribution 7'.

1.12 Theorem (and definition) Let a € €°(Q) and T € 2'(Q). Then

(aT)(¢) =T(ag), ¢ 2(V),

defines a distribution aT € 2'(Q).

For this result one needs to verify that ¢ — ¢ in 2(Q) implies a¢yp — a¢ in 2(2). The
proof is based on Theorem 1.7 in combination with the product rule for the derivatives
0%(ag); we skip the details.

1.4 Differentiation of distributions

Let u € €*(R). Then T, and T, are regular distributions. It is natural to call T,s the
derivative of T,,. Observe that

+00
To(0)= | (@)ol)da

—Q0

T=+00 +o© , ,
—J u(z)p' (x) de = =T, (¢") Ve Z(R).

While T,/(¢) makes sense only if u is differentiable, the expression —T,(¢') makes sense
for any function » and, much more, we can substitute T, by an arbitrary distribution 7.
This leads us to define 7" : Z(R) — C by

T'(¢)=-T(¢), o€ 2(R).

This idea extends to partial derivatives and distributions on € in the following way:
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1.13 Theorem (and definition) Let T' € 2'(Q) and o € Nj. Then

(0°T)(¢) = (=1)*IT(2°¢),  de 2(Q)
defines the distribution 0°T € 2'(Q).

The proof that ¢*T is a distribution is one of the homeworks.

Thus every distribution has derivatives of arbitrary order. Note that if T' = T, is a regular
distribution with u € CN(Q) then 0%T, = Tja,, for every a with |a] < N.

0 : 0
1.14 Example Let h(x) = ) v 0 be the so-called Heavyside-function. It defines the
T >
reqular distribution Ty,. Then, for every ¢ € Z(R),
o9
(T)(6) = ~Ti(@) = = | h)ef(w)da
—Q0
0 , =400
| @ = o] = 010 = dto)

Thus the derivative of T}, coincides with the §-distribution.

1.15 Theorem Let u € L}

loc

(R) be of the form

u(m):{v(x) TEZI0 e M [y, +0)), we E (=0, z0]),
w(z) :x <z

Note that

o(zo) — w(eo) = u(ag) — u(ey) = lim u(z) - lim u(x)

s the “height of the jump” that u makes in xg.

The proof of the previous theorem is one of the homeworks. The theorem easily extends
to functions with more than one point of discontinuity:

1-22 1-1<a2<1
1.16 Example Let u(z) = |22 — 1| = ) v r
=1 :z|>1

First derivative: (T,) = Ty, u(x) =

-2z -l<xz<l1
2 x| >1



1.5 Convolution

~ -2 —l<ax<l
Second derivative: (T,,)" = (Ty)" = Ts + 401 + 401, u(zr) = {2 ] f
Ll >

Third derivative: (T,)" = (T3)" + 467 — 40" = 401 — 401 + 407 + 40 ;.

1.5 Convolution

For (suitable) functions f, g : R™ — C define the convolution

f+g:R" —C, (f+g)(z) = - flx —y)g(y) dy = - fW)g(x —y)dy.

1.17 Theorem Let f € LP(R"), g € LI(R™). If r satisfies § + ¢ = 1+ 1 then
fxgeL'(R"),

r®n) < | fller@e) 9] La@ny-

|f+g
In particular: If f,g € L*(R™) then f+ge LY(R™) and ||f * 9|2 < |fln:llgllz:-

PROOF:  Let us only consider the case p = ¢ =1 = 1. Then
[t o@lds = [| [ 16 = vawyas|as < ([ 176 = o) dyes
- [| 1@ =gt ded = | ( [ 176~ ldz) ot dy
- [ ([1r@1dz) 1ty = 171119l
where interchanging the order of integration is justified by Fubini’s theorem.

Let T, € 2'(R™) be a regular distribution and ¢ € Z(R™). Then

(wr6)@) = | o —9)dy=Tu(0w - ), s

This observation leads to the following;:

1.18 Theorem (and definition) Let T € Z'(R™) and ¢ € Z(R"). Then
fl@):=T(¢(x~")), wzeR",
defines a function f € € (R") with
0°f(z) = (°T)(¢(z —-)) = T((0°¢) (= — 1))

We write T = ¢ := [ and call T * ¢ the convolution of T with ¢.
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1.19 Example 0 = ¢ = ¢ for all p € D(R"), since
(0 ¢)(x) =6(p(x —) = p(x —0) = p(x)  VazeR"

One can also define the convolution of two distributions, when at least one of them has
compact support — we shall not enter into details here. You may try to guess the definition
by rewriting T4, (¢) in terms of T, and T, and where T, and T, can be substituted by
general distributions.

1.6 Distributions and partial differential equations

A differential operator A = > a,0¢ with constant coefficients a, € C induces a map
|a|<m

A: PR — Z'R"), AT = ) a,0°T.

|al<m

Note that, by definition of the distributional derivative,

AT(¢) = T(A'¢),  A':= > (=D)"aqds.

|a|<m

Given a distribution S € Z'(R") we may ask whether there exists a solution 7' € 2'(R"™)
of the partial differential equation AT = S, i.e.,

T(A'9)=S(¢) VoeIR").

1.20 Example The Laplacian or Laplace operator on R™ is A := 6:%1 +...+ 831. Note
that A = A.

1.21 Definition A distribution E € 9'(R™) is called a fundamental solution of A
if AE = 6.

The importance of the fundamental solution lies in the following: Given ¢ € 2(R"™), let
u := F x ¢. Then, by Theorem 1.18 and Example 1.19, u € ¥*(R") and

Au=A(E @) = (AE)x ¢ =0 = ¢ = ¢.

In other words,

[u = F = ¢ is a solution of the pde Au = qb.J

1.22 Theorem (Malgrange-Ehrenpreis) Every differential operator A £ 0 with
constant coefficients has a fundamental solution.
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1.23 Example The Laplacian A = 6% + ... + 02 has fundamental solution E = T, with

B i _ T 1
o) = gplnlel (=2, €)= G A

= 3).
5 (n>3)

Then, for ¢ € 2(R™), a solution of Au = ¢ is the function u = e = ¢, i.e.,

u(x) = (2 — n)2mn/2 JRn z — g2 dy (n = 3).

1.24 Example Let A = a% + b% + ¢, a F 0, be a second order differential operator on
R. Let v e €F(R) be the unique solution of the homogeneous initial value problem

av” +bv' + cv =0, v(0) =0, +'(0) =1/a.

v(iz) x>0

. Then the regular distribution T, is a fundamental
0 <0

Define u on R by u(zx) = {

solution of A.

PrROOF:  Apply Theorem 1.15. Since u is continuous in zg = 0,

V() x>0

(L)' =T, iz) = {0 cx <0

Now @ has a jump of height 1/a in z¢ = 0, hence

V() x>0

1 ~
Tuﬂz TaIZTz—i-*(S, u = .
(T = (T =T+ 25, ) {0 o

Hence
AT, = a(T,)" +0(T) + Ty =Tz + b+ cu+6 =19

since
av”(z) + o' (x) +ev(x) x>0 0

ati(z) + bii(z) + cu(z) = {O .

This completes the proof. [ |
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2 The Fourier transform and tempered distributions

What’s it about? The Fourier transform is an important tool in the
analysis of partial differential equations. First it is defined for integrable
functions. To extend the Fourier transform from functions to distribu-
tions one needs to introduce a new class of distributions, the so-called
tempered distributions. They are continuous functionals on a new space
of functions, the so-called rapidly decreasing functions.

2.1 The Fourier transform on L!-functions

For f € L'(R") define the Fourier transform of f by

FENEO = O = | e wdn,  cerr,

where 2§ =z - & = x1&1 + ... + &, is the inner-product of x with &.

2.1 Lemma The following assertions are true:

b) If f € LX(R") then f € €(R") and lLim f(¢) =

|§| >+

a) F: LYR") — L®(R") is linear and continuous with operator-norm |F| <1

b) is the so-called Theorem of Riemann-Lebesgue.
PrROOF: Let f e L'(R™). Then

Fr©I=]| e i@l < [ e r@lde= [ 15@)]de= 17,
Rn R7 N—— Rn
=1
ie., |Ffloe <||f|p1. This shows a). For b) let § — £. Note that
e @) < [f@)] e LNEY k.

Hence, by Lebesgue’s dominated convergence theorem,

flan = | e pla)da 2 | e (o) do = fie)

n

The proof on the limit will be omitted here.

2.2 Lemma Let f,g e L'(R"). The following assertions are true:

e

o Fra=F3 f Qs = | (et i




2.2 Rapidly decreasing functions — the space . (R™)

PrROOF:  a) Note that e ¢ = ¢~ #=~¥)¢e=¢ By Fubini’s theorem we thus obtain
F(29)© = [ ( | 1 = nigtw) dy) da
= [ e gt f e VS f o — y) da) dy
= [emg( [ s ) dy = F©)-(0)
b) Again Fubini’s theorem gives
| Fos@de= [ ([e=swz)ate) ae
- [ (e o0 de) sy o = [ gtars(e) as
This finishes the proof.

2.2 Rapidly decreasing functions — the space . (R")

2.3 Definition Let .#(R"™) be the space of all functions ¢ € € (R"™) satisfying

lolvy:= sup  |aP%p(x)| <+0 VN eN.
2eR™, a|+[8|<N

A sequence (i) < 7 (R™) is said to converge to p € L (R™) if

lok — @lvy =220 ¥ N eN.

2.4 Example The Gaussian p(x) = exp(—|z|?) is rapidly decreasing.

2.5 Remark Let us define

= Lyt -l o e E.

to convergence in the above defined sense.

One can show that d defines a metric on . (R"™) and that (¥ (R™),d) is a complete
metric space. Moreover, convergence of a sequence (pg)r in the metric is equivalent

2.6 Lemma 2(R") c ./ (R") < LP(R"™) for every 1 < p < 4o

Proor: If ¢ € 2(R") then 2°0%¢ belongs to Z(R™) and thus is bounded on R".
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Let ¢ € Z(R™). Then, for every N € N,

ol = | @l e | R o e (2.1)

|z[=>1

If 7, is the measure of the unit-ball then

f [P(@)[P da < 7 max (@) < 7l Pl
|lz|<1 z[<1

ES

Since |z|?N = (2 + ... + 22)N = 2i81<2N cn P with certain constants ey g, the second
integral in (2.1) can be estimated by

n | ol PP el
|z|=1

with a certain costant cy. Introducing polar coordinates,

N o N
J || 72V = m’nj r2Nppn=1 gy
|z|=1 1

This integral is finite if we choose N € N such that n — 1 — 2Np < —1, i.e., N > n/2p.
Summing up, there exist constants Cy such that

n
lelis < Cnleleny  YeesR") VN> % (2.2)

This shows the claim. [ ]

Note that (2.2) implies that the convergence ¢ — ¢ in .(R™) implies convergence of the
sequence in LP(R™).

2.7 Theorem If1 < p < +w then Z(R™) is a dense subset of LP(R™), i.e.,

Ve LP®R™) 3 (pp)kc 2RY) : ok — fllw 2225250,

2.8 Definition Let X be a normed vector-space or X = Z(R"). A linear map

T : . 7(R"™) — X is said to be continuous if for every convergent sequence (¢x)k <
< (R™) holds

i T ,=T(1' )
G Tlew) = T lim o

2.9 Theorem The following identities hold for all ¢ € #(R™) and all o € Ny :

02p(€) = o), (o)l dzop(e) = 923(¢).

The Fourier transform induces a continuous map F : ./ (R") —» L (R").
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PrOOF: By induction, it suffices to show both equations for |a| = 1 only. Using inte-
gration by parts,

Too(E) = j ¢ (0, o) () dr = — f (2, ") () di = i€; f e " p(x) dr = it; ().

For the second equation note that
O¢; 0(&) = 0k, Je”gap(x) dx = f(&gjemg)cp(:r) dr = — Je”’gixjw(m) de = —i7;9(8).

For the continuity first note that (2.2) yields

1806 < f p(@)|dz = [l < Collnsz), € R,

R”
with a suitable constant Cy. Therefore
12l 0y < Collelnra)-
By induction, using the two rules, one then shows that
1Zlv) < ONl@l(N4nsay  VoeL(R") VNeN. (2.3)

Hence ¢ € . (R") implies ¢ € .Z(R") and ¢ — ¢ in /(R") implies ¢ — ¢ in S (R").
|

2.10 Theorem Z2p(x) = (2m)"o(—2) for every ¢ € #(R™). In particular, the
Fourier transform F : . (R") — #(R") is bijective with inverse F ' given by

~

(FW)(z) = P(z) = (@) " f TP (€) d.

n

PrROOF:  Let f(z) := (2m)~"/2e~1#I*/2. Note that | |11 (mn) = 1.
Stepl: We show that f(f) = (2m)"2f(£).
Proof for n = 1 (the general case is a homework): Let u(z) = e=*"/2. Then
W(z) = —ze™ " = —gu(z),  u(0) =1,
and
¥(€) ¥ —izu(e) = iw(§) ¥ 6a(g) = —€a(e),
(0) = J+OO e~ dy = /2.
—w

S

Thus both u and u/+/27 are solutions of the initial value problem

y'(t) = —ty(t),  y(0)=1.
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Since the solution of this initial problem is unique, we have u = u/+/27.

2. Step: Let f.(x) = e " f(x/e). Then {f:}c>0 is an approximate identity (see the first
part of the lecture) and

—

Fe)(€) = @m)" 2 f.(€).

Therefore,

m) R F () = lim [ )PE) s = im | Pl l(E)de

2 () lim | L()ple —y)de = (2n) ()

e—0

3. Step: For the second claim define the operator R : .Z(R") — #(R") by (Rgp)( ) =
(277) @©(—x). Then .#2 = R. Obviously, R is bijective with inverse given by (R '¢)(z) =
( 1) "p(—x). Hence (R™\.%)# = R7'.%2 =id = 2R~ = (ﬂR_l). This shows that

7 has a left- and a right-inverse, hence is bijective with .# ! = R~1.%. ]

2.11 Theorem (Parseval’s formula) For arbitrary o,y € .7 (R"),

(@, J)LQ(R”’) = (27T)n(80>w)L2(R”)7 H@HLQ(R") = (QW)N/QHWHL?(R”)-

Proor:  First note that

06 = f ety () di = jemﬁwdas — 2m)"(F D)0,

Thus, due to Lemma 2.2.b),

~

(@, 9) g2y = J B(E)0(€) dé = J o(€).F(F D)) de
— (2" f SEVT(E) dE = (2m)"(0, ) 2 gany.

For the norm, apply this with ¢ = . |

2.12 Theorem (Plancherel’s theorem) Let A := (27) "/2.%. Then A : .¥(R") —
S (R™) extends to a unitary isomorphism A : L2(R") — L?(R"), i.e., AA* = A*A =
id on L?(R"™).

Proor: By Parseval’s formula,

(Ap, Ap) 2 = @m) (B, 0) 2 = (9 )2 V.0 € S(RY). (2.4)

In particular,
lA@l2 = el Ve s (RY).
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Let f € L?(R™). Then there exists (¢p)r < -7 (R") with ¢ — f in L?(R"). Then (Apg)k
is a Cauchy sequence in L?(R"), since

lApr — Apdllze = [|A(er — o)lz2 = llor — @ellz2-
Hence (Agy)r converges in L2(R™) and we define

Af:= lim Apyg

k— 400

(homework: Af does not depend on the choice of the sequence (pg)x). Note that
Afls = lim JAgelzs =l fioulze = 1flzs
—+00

Hence A extends to a bounded operator in L?(R™) with operator-norm equal to 1.

Now let B = (2n)"2.Z 1 . .Z(R") - (R"). Then B is the inverse of A4 : .7(R") —
Z(R™). Hence substituting ¢ and ¢ in (2.4) by By and B1), respectively, we find

(BSO?BT/})LQ = (%w)LQ v 9071/} € y(Rn)

Repeating the above argument, B extends to a bounded operator B : L2(R") — L?(R").

If (op)r < - (R™) converges in L2(R") to f, then (Byy), < (R") converges in L?(R")
to Bf. It follows
ABf = lim AByp, = lim @ = f
k—+o00 k——+o00

and analogously BAf = f. This means that B = A~! as operators L?(R") — L?(R").

Next let ¢,1 € L2(R™) and (o), (Vr)r < L (R™) with ¢, — f and 9, — g in L2(R").
Then

(Ap, AY) 2 = hm (AQOk,AW)B = khm (ks V)2 = (0,9) 12

This implies A*A = 1. Since A is invertible it follows A* = A~ ie., A is unitary. ]

2.13 Remark Let X,Y be a Banach spaces and D < X be a dense subspace.
Assume that T : D — 'Y is linear and

|Tzly < Mz|x VxeD

with some constant M = 0. Then there exists a unique T e Z(X,Y) such that
Tz =Tz for all x € D. In fact,

Tx:= lim Taxp,
k—+

where (z) < D is an arbitrary sequence converging to x.
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2.3 Tempered distributions — the space .//(R")

We define the space of tempered distributions

‘Y’(R”) = {T : Z(R") - C| T linear and continuous},

where continuity refers to Definition 2.8, i.e., ¢ — ¢ in . (R") implies T'(¢x) — T(¢).

2.14 Theorem For a linear map T : /(R™) — C the following are equivalent:
a) T e S'(R")
b) There exist an N € Ny and a C = 0 such that

T(o)| < C =C Boe Y o e . Z(RM).
1T () loll vy %Rn’r‘gﬁf‘ﬂwlx o(z)| @ (R™)

PROOF:  Similar to the proof of Theorem 1.8. |

The basic concepts of distributions seen before can be adapted to tempered distributions:

e Regular tempered distributions: Those T' € ./(R™) of the form
T() = | u@e@)dn,  pe s @),

1
where u e L; .

u the density of T" and write T' = T,.

(R™) is a function such that 11‘(;),\, € LY(R™) for some N = 0. We call

Example: If v € LP(R™) for some 1 < p < 4 then u defines a regular tempered
distribution. u(x) = €* does not define a regular tempered distribution.

e Differentiation: If 7' € .#/(R™) and « € Njj define 0°T € ./(R"™) by

P T(p) = ()T (%)  pe L (R").

e Multiplication with functions: If T e ./(R™) and a € €*(R") one can define aT €
' (R™) by
aT(gp) = T(a90)7 pEe y(Rn),

provided a is of tempered growth, i.e.,

VaeN! IN=N(a)=0: sup|0%(z)||z]™ < 4oo.

||=1

The condition of tempered growth is necessary to ensure that ay belongs to . (R™).

Example: a(z) = €*

tempered growth.

is not of tempered growth. Instead, any polynomial is of
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e Convolution: Let T € Z'(R"). If p € .(R"™) then
(T p)(x) =T(px—-),  zeR",

defines a function T = ¢ € € (R™) of tempered growth.

The main motivation for introducing tempered distributions is, however, the Fourier trans-
form. Note that for f € L'(R") and ¢ € ./ (R")

:ff(x) d:c_ff ) dz = Tp(P).

Therefore, for T € . (R"), we define FT =T by

T(p) =T, ¢ecs®"]

Since F : S (R") —» S (R") and T : #(R") — C are continuous, T = ToF:sR")—C
is continuous too, i.e., T' € .#/(R™). Analogously one defines F~!T =T € .#/(R") by

T(0) =T(3), pes®)]

By construction, the following result is obvious:

2.15 Theorem The Fourier transform F : ' (R") — '(R™) is bijective with
inverse F~1 : ' (R") — Z'(R").

2.16 Example The Fourier transform 6 e S (R) is a regular distribution given by
50(e) = (~1)*8() = o p(0) = [ (i0)"p(z) dr = T, ()

with the polynomial pi(x) = (ix)*.

2.17 Theorem Let f € L'(R") with f € L'(R"). Then

flz) =(@2m)™" Je“ff(g) d¢ for almost all x € R™.

PrROOF:  Let g(x) be the expression on the right-hand side. Note that |g(z)| < HfHLl for
every x, i.e., g is bounded. Now

Ty(p) @“®w=%@=ﬁ° JM )dr) de

In particular,
Ty(¢) = Ty(¢)  Voe Z(R").
Hence f(z) = g(z) almost everywhere by Example 1.9. ]
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2.4 Distributions and partial differential equations (II)

2.18 Lemma The rules in Theorem 2.9 do not only hold for ¢ € Z(R™) but for
arbitrary tempered distributions.

To proof this lemma is part of the homeworks.

Let A= > an0% be a differential operator with constant coefficients. Set
la|<m

|a|<m

a(§) := Z aq (&) (the so-called symbol of A). |

Note that a is a polynomial, hence is of tempered growth. Then, for T' € ./(R"), we have

AT = Z aaﬁfo‘?: Z aailo“fafzaf,

|al<m |a|<m

or, equivalently,

(AT = 77(aT).|

Suppose now that a has no zeros. Then 1/a is of tempered growth and

a

‘AT:S — T=9—1(1§)’

gives a unique solution for the pde AT = S for arbitrary S € .7/(R").

2.19 Example Let A = 02 + ...+ 02 be the Laplacian and \ € C\(—o0,0] arbitrary. The
symbol of A= X — A is

a() = A= (=&l —... &) = A+ [¢]
In particular, a(§) £ 0 for all £&. Hence
A=A SR — (R, A € C\(—o0, 0],

is bijective with inverse given by

(A —A)Lg = 7 (A+1||2§)

The idea of this approach is that properties of a differential operator A can be read of
from its symbol. This approach can be extended also to differential operators with variable
coefficients, i.e., A = >, aqn(2)0%, and leads to the theory of pseudodifferential operators.

|o]<m
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2.20 Remark (Sobolev (or Bessel potential) spaces) In this remark we write shortly
[ =T} for reqular distributions. For k € Ny we say

feHYR") : <= 0%f e L*(R") for all |a| < k

(where the derivatives are understood in the distributional sense, i.e., for every such
a the distribution 0Ty is a regular distribution whose density is an L2-function).
The spaces HY(R™) can be considered as a substitute of the classical spaces C*(R™)
of k-times continuously differentiable functions.

For s € R we define

Hi(R") := {T e S'(RY) | Z7H(1 + [¢2)/°T) e L2(R”)}.

Recalling Parseval’s theorem (f € L?>(R") <= fe L?(R™)) it is meaningful to
define the norm

IT] gy = 17 (1 + 1ER2T) | p2ny = (1 + €122 T 12 (gn,-

This makes H5(R™) a Banach space (even a Hilbert space). One can show that in
case s = k the two definitions are equivalent.
If A is a differential operator of order m with constant coefficients, then

A Hi(R") — HE™(R"),  seR,

is a continuous map; it is an isomorphism if the symbol a(§) of A has no zeros.
Similarly, substituting L*(R™) by LP(R"), 1 < p < 400, one can define Banach
spaces H]’; (R™) and H,(R™). The above statements remain valid.

The following example shows an application of the Fourier transform to so-called boundary
value problems.

2.21 Example Let R""! = {(z,t) |z € R", t > 0} be a half-space. Given f € #(R") we
want to find a function u which satisfies

(A, + 0P u(z,t) =0 VzeR" Vit>0,
u(z,0) = f(z) VzeR"

Let us proceed with some formal computations. Define
W6D) = (Famgn) (€)= [ e uto, 1) da

Applying the Fourier transform in x to the above equations yields

atzv(ga t) - |§|2’U(§, t)
v(¢,0)

0 VéEeR" V>0,
(€) VEeR™

>
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For each fixed € € R™ this is an ODE having the two solutions
vi (&) = F©O, v (1) = (e 1!

We choose v(€,t) = v_(&,t) so that we can apply the inverse Fourier transform. In fact,
defining
Pi(x) := fgim(e_|5|t)(x) (Poisson kernel)

we have

—

(Foosgu) (6:1) = v-(6,1) = PO F(©) = P+ ](€),
and therefore u(x,t) = (P; = f)(z). One can show that

Py(x) = Cutl(z, )] "

with some constant Cy,. Hence we find the solution formula

u(z,t) = (Px )(z) = C, j wf(y) dy.
J

2.5 The Heisenberg uncertainty principal

2.22 Theorem Let p € L (R) and xg,& € R. Then

[l 72y < \/z I{z = zo)o(z) | L2®) (€ — £0)P(E)]| L2(m)-

Proor: 1. Step: Let first g = & = 0. Then integration by parts yields

lolfaqe) = [ e@P@ de = - [[oew) (@) do = = [ ale' + 7) (@) da
=-2 JxRe (¢'(2)p(x)) d
Taking the modulus and applying Cauchy-Schwarz inequality yields
lolBqey < 2 [ loo(@) /(@) do < 2mo(a) ol ey
The claim then follows from
Varlel g = 176 ) = 168]2e)-

2. Step: Define ¢(z) = e~ p(x + 2¢) and calculate that ¥l L2®)y = ll¢lz2(r) and

le (@) 2@y = (= = 20)e(@) 2@y, 160 2@y = 16 — £0) () | 2wy-
Apply the estimate of Step 1 to . [ |

We conclude this section by stating the following result due to Amrein and Berthier:
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2.23 Theorem Let E,F < R be two sets of finite measure. Then there exists a
constant C' = 0 such that

1£ 2y < C(1f | L2y + HJ?HLQ(R\F)) V f e L*(R).

In particular, if both f and f have compact support then f = 0.
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3 The Laplace transform

What’s it about? The Laplace transform is a useful tool in the anal-
ysis of ordinary differential equations. We discuss basic properties and
applications to initial value problems of the form

y(") (x) —i—an,ly("*l) () +...+a1y/ (x) +aoy(z) = b(z), x>0, (3.1)
with initial conditions
y(0) =yo, Y0 =y, ... y"(0) =y, 1, (3.2)

where n = 1. For simplicity we shall mainly focus on the case of order
n=2.

3.1 Definition and basic properties

3.1 Definition A function f : (0,00) — C is called L-transformable if there exists
a o € R such that
x> e %f(x) e LY((0,4x)). (3.3)

In this case, we set
oy :=inf{oc € R | o satisfies (3.3)}.

The Laplace transform of f, denoted by Lf, is then defined as
+o0

(Lf)(s) = (Lf(x))(s) = J e " f(x)dx, Res > oy.

0

Note that Lf is defined on the half-plane {s € C | Re s > o}, since |e™5%| = e~@Res,

3.2 Example Let a e C. Then

+oo ads (a=s)z \p—p 1
(Le®)(s) = J ela=9)2 gz = iy & = , Res > Rea,

0 b+ a— 8 lz=0 Ss—a

since |e(a9)2| = eRela—s)z 2590, hided Re s > Rea.
3.3 Example Let we R. Then
1 WL —iwT : 1 WL — WL
cos(wz) = 5 (e +e ), sin(wzx) = % (e —e )

Using the previous example with a = +iw we find

S w

(Leos(@n))(s) = 5, (Lsinwn)(s) = 5oy Res> 0.’
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3.4 Example Let k€ N. Then, for Res > 0,

40 k =400 e) k k
(La®)(s) = J ek dy = — T em5 —i—J etk gy = 2 (LY (s).
0 s =0 0 S s
=0
By iteration we conclude
E! k!
‘(L’:):k)(s) = S—k(ﬁl)(s) = Res > 0.

3.5 Lemma Let f and g be L-transformable and a,b e C. Then:
a) L(af +0bg) = a(Lf) +b(Lyg) on the half-plane Re s > max(oy,0y),
b) (Le f(x))(s) = (Lf)(s —a) on the half-plane Res > o¢ + Rea,
n dn

c) (Lx" f(x))(s) = (1) @(Ef)(s) on the half-plane Re s > oy.
PROOF:  a) is obvious.
+00 0
b) (L @) () = [ e e oy = [ ) da = (£1)(s— o
0 0
dn dr +00 +o0
¢) S (L) =22 ) e f(z)dr = L (—z)"e™" f(x) dz = (=1)"(Lz" f(z))(s). m
3.2 The inverse Laplace transform
Note that if 0 > o, then
‘(Ef)(ff +iT) = JO e (e f()) dw = [F (™7 f)I(7),

where f is the function that is equal to 0 on (—00,0) and coincides with f on (0, +00). From
this and the known injectivity of the Fourier transform, one obtains the injectivity of the
Laplace transform: If f and g are L-transformable and their Laplace transforms coincide
on some vertical line in the complex plane, then f = ¢ almost everywhere. Moreover, if
7+ (Lf)(0 + iT) belongs to L'(R), by Theorem 2.17 one recovers the function f:

+ao
f(@) = & (F (Lo + i) (@) = — f (O£ (o + iy dr, 3> 0.

2 J_
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The previous result suggests to define, for suitable functions F' holomorphic for Re s = o,

1 04100
‘ (L71F)(z) = eSTF(s)ds. !

2mi g—100

The “art” in using the Laplace transform is to recognize whether a function F' belongs to
the range of £ and to calculate the inverse £ 'F. To this scope one often uses techniques
from complex analysis (like the residue theorem). Some examples can be also found by
elementary calculations:

1 !
W with n € N and a € C. Using (Lx")(s) = " we
s—a

n!

find (Le*x™)(s) = W. Thus

‘ (5_1(3—1(1)11>(f") = (;— 1)!61”5‘}

3.6 Example Sei F(s) =

3.3 Laplace transform and convolution

The (Laplace-)convolution f * g of suitable functions f, g : (0, 400) — C is defined by

‘(f xg)(x) 1= f flx—ygly)dy, x>0,

3.7 Theorem If f and g are L-transformable, then

L(f*g)=(Lf)(Lg)

on the half-plane Re s > max(or,0,)). If F' and G are Laplace transforms, then
f0g

L YFG) = (L7'F)« (£71@).

3.4 Application to initial value problems

The following theorem describes the key property of the Laplace transform which is used
in the analysis of initial value problems.

9If v : I — C is a C''-function on an interval I and f is defined on ~(I), the integral of f along v is

L f(s)ds = f FG() () dr.

o+100
Then J = f with y(1) = o + i1, T€R.

o—1i00 ¥
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3.8 Theorem Let f € €N([0, +0)) such that f and all its derivatives are L-
transformable. Then the following is true:

(L1D)s) = SHENE) - 3 FEDO 5, Res > ay.

k=1
Proor:  First note that
(L)) = [ e =g | se ey do = S(E0)() - £(0)
0 = 0

Then

(Lf")(s) = s(LF)(s) = F/(0) = s(s(LF)(s) = f(0)) = f'(0) = (L) (s) = £(0)s — f(0).

This procedure can be iterated. [ |

Now consider the initial value problem

[y"(a:) +a1y'(z) + agy(x) = b(z),  y(0) =50, y'(0) = yl'] (3.4)

Applying the Laplace transform, this is equivalent to

s*(Ly)(s) = y(0)s — ' (0) + a1 (s(Ly)(s) — £(0)) + ao(Ly)(s) = (Lb)(s)
hence to
(s° + a1s + ao)(Ly) (s) — (yos + y1 + aryg) = (L)(s).
[ S -
=:P(s) =:Q(s)
P is called the characteristic polynomial of the ode. Solving for Ly, we find

(et = ALLENS) _ Q) (L0 55)

This identity determines y uniquely due to the injectivity of £ mentioned above. By
applying the inverse Laplace transform we obtain a formula for the solution of (3.4):

0= (L)) - (B + (- )0

(3.6)

Using a partial fraction decomposition (note that the degree of @ is smaller than that of
P), both inverse Laplace transforms can be calculated.

3.9 Example (Partial fraction decomposition) Let P(s) = (s — Xo)(s — A1) with Ao F A1.

Then
Q(s) a b (a+b)s — a1 —b)g

P(s) s—X s—X  (s=MX)(s—X\1)
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with coefficients

Q(s) Q(Xo) Q(s) QA1) |

a = = b:

S — )\1 s=MXo )\0 — )\17 S — )\0 s=A1 /\1 )\0

alternatively, a and b are the unique solutions of the linear system

a+ b=y, —aX1 —bXyg = y1 + a1yo.

3.10 Example Consider the problem
y'(@) =2/ (x) = 8y(z) =0, y(0) =1, ¢'(0)=2
(note that b(z) = 0). In this case,
P(s) = 5% — 25 — 8 = (s +2)(s — 4), Q(s) = s.
By partial fraction decomposition:

Q(s) s a b

Ps) (5+2)(s-4) 512 s-4

with
_ s _1 __S _2
T s —4ls——2 3 54 2le=4 3
Therefore
(1@ Y= 20,4 1 S R
y(x)_(ﬁ P)(x)_3(£ s+2)(x)+3(£ s—4>($)_36 tae

3.11 Example Consider the problem
y'(@) =29 (2) + 2y(x) = b(z),  y(0) =2, '(0)=3.
In this case,
P(s)=s—254+2=(s—(14+i)(s—(1—1), Q(s)=2s—1.

We decompose

2s—1 a N b
P(s) s—(1+i) s—(1—1)
with
2s — 1 142 i 2s—1 1—2i i
aqQ = ——"——= = - = 1 - =, = ——— = - = 1 —|— —.
s—(1—1i)ls=1+: 20 2 s—(1+1d)ls=1- —2i 2
Therefore,

(3w

() (e )
(1 ) (+i)z (1+ 2) (1—i)a :ex((ei:v_i_efix)_i_%(efix_eix))
e

(2 cos x + sin x)
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Note that this function solves the above problem in case b(x) = 0. Moreover

P(s)  2i\s—(1+i) s—(1—4)/
(Efl 1 )( e+ _ J(1=i)x el i
— J\T

.
= - =e - = e¥sinzx.
P 21 21

We obtain

xT

<b * £71%> () =€" Jo b(y)e Ysin(x — y) dy.

Summing up, the solution is

X

y(z) = e"sinx + €” J b(y)e Y sin(z — y) dy.

0
In case the coefficients of the ode and all initial values are real numbers one may employ
the real partial fraction composition:
3.12 Example Consider the problem

v (x) + 2y (z) + 5y(z) = e *sinz, y(0) =0, ¢/(0)=1.

Applying the Laplace transform we find

1 s2+25+3
e (¥ = .
(s+1)24+1’ e (L)) (s2+2s5+2)(s? +2s +5)

(s> + 25 + 5)(Ly)(s) — 1 =

The identity
s2+25s+3 As+ B Cs+D

= +
(2425 +2)(s2+25+5) s2+25+2 s2+2s5+5

leads to the linear system

A+C=0
2A+B+2C+D=1
5A+2B+2C+2D =2
5B + 2D =3,

which has the unique solution A =C =0, B=1/3 and D = 2/3. We find that

v@ = (27 5 N+ (275 2w

s2 425+ 2 s2+2s+5
1 1

B G P ey [ R e [

1
= ge_x(sinw + sin(2x)),
where the last identity holds due to Example 3.3 and Lemma 3.5.b).

The final example shows an application of the Laplace transform to systems of ode.
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3.13 Example We want to solve the (first order) system

Y1 () + 2y5(x) — 3y2(x) = 12"
yi () — yp(z) — 6y1(z) = 6
y1(0) = y2(0) =0

We need to find the two functions y1 and ys. Applying L to both

S(Ly1)(s) + (25 = 3)(Ly2)(s) = 12 i 1
1

(s = 6)(Ly1)(s) — s(Lya2)(s) =6,

which in matrix notation becomes

(.26 =) (e <o ().

g

=:A(s)

The inverse of A(s) is

equations yields

40 = gy o 1)

Together with a partial fraction decomposition we find

1 1 1 7T 1 1

(Lyl)(s)zis—l_33—2+§s—3_8

1 7 1 5 1
(£y2)(s)_6s—2_§5—3_§s—1'

Applying L™ results in

1 7
yi(z) = §ez — 3% 4 §€3I -1, ya(z) = 6 —

3.5 Higher order equations

The solution formula (3.6) remains valid for the general case, i.e.,

case the characteristic polynomial is

n—

(3.1) and (3.2). In this

1

P(s) =s"+ n 18" P+ 4+ ais+ag=s"+ Z apst,
=0

while

Now assume that
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is an arbitrary

with its pairwise different zeros A1, ..., A\ € Cand ¢4 +... + £, = n. If q(s)
= 1), then

polynomial of degree at most n — 1 (in particular, ¢(s) = Q(s) or ¢(s)
q(s) _ i i Cij
P(s) A=A

with suitable coefficients ¢;; € C (which are determined by a system of linear equations).
The inverse Laplace transform can be found by using Example 3.6.

In case all coefficients ag, ..., a,_1 and all initial values yg, ..., y,_1 are real numbers one
can use real partial fraction decomposition. In this case ¢(s)/P(s) can be written in the

form
m n;

q(s) =i£2 Gy aijs +bij
P(s) oo (s—oi) (s? + pijs + ¢ij)7

i=1j=1

where all involved coefficients are real numbers, and the involved second order polynomials
do not have real zeros. Again, the inverse Laplace transform can be calculated explicitly.



