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1 Distributions on open subsets of Rn

What’s it about? Distributions are continuous functionals on certain
function spaces. They generalize the concept of function in the sense
that any locally integrable function can be identified with a distribution
and that many standard operations on functions extend to distributions.
For this reason, distributions are also called generalized functions. In a
certain sense, distributions even behave better than functions; for exam-
ple, any distribution can be differentiated as many times as one wishes
and the order of derivatives does not play any role. This makes distribu-
tions a natural environment for the investigation of partial differential
equations.

In the following, Ω � Rn is an open set. We write K �� Ω, if K is compact and K � Ω.

1.1 Test functions – the space DpΩq

The support of a continuous function f : Rn Ñ C is the set

supp f :� closure of the set tx P Rn | fpxq �� 0u.

1.1 Example aq fpxq � maxt1� x2, 0u ñ supp f � r�1, 1s.
bq fpxq � sinx ñ supp f � R.

1.2 Definition (Space of test-functions) We define

DpΩq �  
ϕ P C8pRnq | suppϕ �� Ω

(
.

DpΩq is a subspace of the vector space of all functions Rn Ñ C, because

supp pϕ� ψq � suppϕY suppψ, supp pλϕq � suppϕ pλ P Cq.

1.3 Example Let ρpxq �
#
exp

�
1

|x|2�1

	
: |x|   1

0 : |x| ¥ 1
.

Then ρ P DpRnq with supp ρ � tx | |x| ¤ 1u.
If x0 P Ω and r ¡ 0 such that Brpx0q � Ω, then ϕpxq :� ρppx � x0q{rq belongs to DpΩq
with suppϕ � Brpx0q. In particular, DpΩq �� t0u.

For the following definition recall the multi-index notation for partial derivatives: If α �
pα1, . . . , αnq P Nn

0 then

|α| � |α1| � . . .� |αn|, Bαxϕpxq � Bα1
x1
. . . Bαn

xn
ϕpxq.
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Note that for C8-functions the order of application of the partial derivatives is irrelevant,
due to the theorem of Schwarz.

1.4 Definition On DpΩq define the norms } � }j, j � 0, 1, 2, . . . by

}ϕ}j :� max
xPRn, |α|¤j

|Bαxϕpxq|.

1.5 Definition We say that a sequence pϕkqk � DpΩq converges to ϕ P DpΩq if
iq there exists a set K �� Ω such that suppϕk � K for every k,

iiq }ϕk � ϕ}j kÑ�8ÝÝÝÝÑ 0 for all j � 0, 1, 2, . . .

In this case we write ϕk
kÑ�8ÝÝÝÝÑ ϕ or lim

kÑ�8
ϕk � ϕ. Note that then suppϕ � K, too.

Note that iiq is equivalent to the uniform convergence in Rn of Bαxϕj to Bαxϕ for every
α P Nn

0 .

1.6 Lemma Let β P Nn
0 . If ϕk

kÑ�8ÝÝÝÝÑ ϕ then Bβϕk kÑ�8ÝÝÝÝÑ Bβϕ.

Proof: Use notation of Definition 1.5. Let L � |β|.

iq ϕk � 0 on ΩzK ñ Bβϕk � 0 on ΩzK ñ supp Bβϕk � K for all k.

iiq }Bβϕk � Bβϕ}j ¤ }ϕk � ϕ}j�L
kÑ�8ÝÝÝÝÑ 0 for all j.

This finishes the proof.

1.2 Distributions – the space D 1pΩq

1.7 Definition A distribution pon Ωq is any linear map T : DpΩq Ñ C which
is continuous in the following sense: For every convergent sequence pϕkqk � DpΩq
holds

lim
kÑ�8

T pϕkq � T
�

lim
kÑ�8

ϕk

	
pin short: ϕk Ñ ϕ in DpΩq implies T pϕkq Ñ T pϕqq. The set of all distributions on
Ω is denoted by D 1pΩq.

D 1pΩq is a subspace of the vector space of all linear maps DpΩq Ñ C.

1.8 Theorem (control estimates) For a linear T : DpΩq Ñ C the following are
equivalent:
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aq T P D 1pΩq
bq For every K �� Ω there exist a C � CpKq ¥ 0 and a j � jpKq P N such that

|T pϕq| ¤ C}ϕ}j � C max
xPRn, |α|¤j

|Bαϕpxq| @ ϕPDpΩq,
suppϕ�K.

Proof: bq ñ aq: If ϕk Ñ ϕ in DpΩq as in Definition 1.5. Then

|T pϕkq � T pϕq| � |T pϕk � ϕq| ¤ C}ϕk � ϕ}j kÑ�8ÝÝÝÝÑ 0.

aq ñ bq: Assume that bq does not hold. Thus there is a K �� Ω and a sequence pϕkqk
with suppϕk � K such that

|T pϕkq| ¡ k}ϕk}k @ k � 1, 2, . . .

Without loss of generality T pϕkq � 1 for every k potherwise substitute ϕk by ψk :�
ϕk{T pϕkqq. Then, given an arbitrary j P N,

}ϕk}j
k¥j¤ }ϕk}k   1

k
kÑ�8ÝÝÝÝÑ 0.

Hence ϕk Ñ 0 in DpΩq, but T pϕkq � 1. This is a contradiction.

Remark (and definition) If j in Theorem 1.8.bq can be taken independent of K,
we say that T has finite order. Then the smallest such j is called the order of T .

1.9 Example (Functions as distributions) Write u P L1
locpΩq if u is measurable on Ω and»

K
|upxq| dx   �8 @ K �� Ω.

For such an u define

Tupϕq :�
»
Ω
upxqϕpxq dx, ϕ P DpΩq.

This defines a distribution Tu P D 1pΩq. In fact, for K �� Ω,

|Tupϕq| ¤
»
K
|upxq||ϕpxq| dx ¤ max

xPRn
|ϕpxq|

»
K
|upxq| dx � CK}ϕ}0 @ ϕPDpΩq,

suppϕ�K

pin particular, Tu has order 0q. Distributions of this form are called regular distributions,
the function u is called the density of Tu. One can show that

Tu � Tv ðñ u � v almost everywhere in Ω,

i.e., the density of a regular distribution is uniquely determined palmost everywhereq.
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Since the map u ÞÑ Tu gives a bijective correspondence between densities and regular
distributions, often one writes simply u instead of Tu.

1.10 Example (δ-distribution) Define δ : DpRnq Ñ C by

δpϕq � ϕp0q, ϕ P DpRnq.

Then δ is a distribution of order 0, since

|δpϕq| � |ϕp0q| ¤ }ϕ}0 @ ϕ P DpRnq.
δ is not a regular distribution: Assume there would exist a u P L1

locpRnq with δ � Tu, i.e.,

ϕp0q �
»
Rn

upxqϕpxq dx @ ϕ P DpRnq.

Let ψ � eρ with ρ as in Example 1.3. Then ψ P DpRnq with ψp0q � 1 and suppψ � B
with some ball B centered in 0. Define ϕk P DpRnq by ϕkpxq � ψpkxq. Then

1 � ψp0q � ϕkp0q �
»
Rn

upxqϕkpxq dx �
»
B
upxqϕkpxq dx kÑ�8ÝÝÝÝÑ 0

due to the dominated convergence theorem pnote that upxqϕkpxq kÑ�8ÝÝÝÝÑ 0 for each x �� 0
and that |upxqϕkpxq| ¤ }ϕ}8|upxq| P L1pBqq. Hence 1 � 0, which is a contradiction.

Similarly, given x0 P Rn, one defines the delta-distribution δx0 centered in x0 by

δx0pϕq :� ϕpx0q, ϕ P DpRnq;
again it is a distribution of order 0 which is not regular.

1.11 Example The function x ÞÑ 1
x does not belong to L1

locpRq, hence does not define a
regular distribution on R. However,

T pϕq :� lim
εÑ0�

»
Rzr�ε,εs

ϕpxq
x

dx, ϕ P DpRq

defines T P D 1pRq. One writes also pv-
1

x
:� T ppv stands for principal valueq.

In fact, by Taylor expansion, ϕpxq � ϕp0q � xrϕpxq with rϕ P C8pRq. Then

T pϕq �
»
Rzr�1,1s

ϕpxq
x

dx� lim
εÑ0�

»
r�1,1szr�ε,εs

ϕpxq
x

dx � Tupϕq �
» 1

�1
rϕpxq dx

since »
r�1,1szr�ε,εs

ϕp0q
x

dx � ϕp0q
� » �ε

�1

1

x
dx�

» 1

ε

1

x
dx

	
� 0,

and where

upxq :�
#
0 : |x| ¤ 1

1{x : |x| ¡ 1
P L1

locpRq
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defines a regular distribution. Moreover,

|rϕpxq| �
���ϕpxq � ϕp0q

x

��� � |ϕ1pξxq| ¤ max
ξPRn

|ϕ1pξq| ¤ }ϕ}1, ϕ P DpRq;

hence S P D 1pRq con |Spϕq| ¤ }ϕ}1 for all ϕ. Thus T � Tu�S is a distribution of order 1.

1.3 Multiplication of distributions with smooth functions

Let u P L1
locpΩq and a P C8pΩq. Then Tu and Tau are regular distributions and

Taupϕq �
»
Ω
apxqupxqϕpxq dx � Tupaϕq.

Note that on the right-hand side we can substitute Tu by an arbitrary distribution T .

1.12 Theorem (and definition) Let a P C8pΩq and T P D 1pΩq. Then

paT qpϕq � T paϕq, ϕ P DpΩq,

defines a distribution aT P D 1pΩq.

For this result one needs to verify that ϕk Ñ ϕ in DpΩq implies aϕk Ñ aϕ in DpΩq. The
proof is based on Theorem 1.7 in combination with the product rule for the derivatives
Bαpaϕq; we skip the details.

1.4 Differentiation of distributions

Let u P C 1pRq. Then Tu and Tu1 are regular distributions. It is natural to call Tu1 the
derivative of Tu. Observe that

Tu1pϕq �
» �8

�8
u1pxqϕpxq dx

� upxqϕpxq
���x��8
x��8loooooooomoooooooon

�0

�
» �8

�8
upxqϕ1pxq dx � �Tupϕ1q @ ϕ P DpRq.

While Tu1pϕq makes sense only if u is differentiable, the expression �Tupϕ1q makes sense
for any function u and, much more, we can substitute Tu by an arbitrary distribution T .
This leads us to define T 1 : DpRq Ñ C by

T 1pϕq � �T pϕ1q, ϕ P DpRq.

This idea extends to partial derivatives and distributions on Ω in the following way:
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1.13 Theorem (and definition) Let T P D 1pΩq and α P Nn
0 . Then

pBαT qpϕq � p�1q|α|T pBαϕq, ϕ P DpΩq

defines the distribution BαT P D 1pΩq.

The proof that BαT is a distribution is one of the homeworks.

Thus every distribution has derivatives of arbitrary order. Note that if T � Tu is a regular
distribution with u P CN pΩq then BαTu � TBαu for every α with |α| ¤ N .

1.14 Example Let hpxq �
#
0 : x   0

1 : x ¡ 0
be the so-called Heavyside-function. It defines the

regular distribution Th. Then, for every ϕ P DpRq,

pThq1pϕq � �Thpϕ1q � �
» 8

�8
hpxqϕ1pxq dx

� �
» 8

0
ϕ1pxq dx � �ϕpxq

���x��8
x�0

� ϕp0q � δpϕq.

Thus the derivative of Th coincides with the δ-distribution.

1.15 Theorem Let u P L1
locpRq be of the form

upxq �
#
vpxq : x ¡ x0

wpxq : x   x0
, v P C 1prx0,�8qq, w P C 1pp�8, x0sq,

pit does not matter how u is defined in x � x0q. Then

pTuq1 � T
ru �

�
vpx0q � wpx0q

�
δx0 , rupxq :� #

v1pxq : x ¡ x0

w1pxq : x   x0
.

Note that

vpx0q � wpx0q � upx�0 q � upx�0 q � lim
xÑx�0

upxq � lim
xÑx�0

upxq

is the “height of the jump” that u makes in x0.

The proof of the previous theorem is one of the homeworks. The theorem easily extends
to functions with more than one point of discontinuity:

1.16 Example Let upxq � |x2 � 1| �
#
1� x2 : �1   x   1

x2 � 1 : |x| ¡ 1
.

First derivative: pTuq1 � T
ru, rupxq � #

�2x : �1   x   1

2x : |x| ¡ 1
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Second derivative: pTuq2 � pT
ruq1 � T

r

ru
� 4δ1 � 4δ�1, rrupxq � #

�2 : �1   x   1

2 : |x| ¡ 1

Third derivative: pTuq3 � pT
r

ru
q1 � 4δ11 � 4δ1�1 � 4δ1 � 4δ�1 � 4δ11 � 4δ1�1.

1.5 Convolution

For psuitableq functions f, g : Rn Ñ C define the convolution

f � g : Rn ÝÑ C, pf � gqpxq �
»
Rn

fpx� yqgpyq dy �
»
Rn

fpyqgpx� yq dy.

1.17 Theorem Let f P LppRnq, g P LqpRnq. If r satisfies 1
p � 1

q � 1 � 1
r then

f � g P LrpRnq,
}f � g}LrpRnq ¤ }f}LppRnq}g}LqpRnq.

In particular: If f, g P L1pRnq then f � g P L1pRnq and }f � g}L1 ¤ }f}L1}g}L1.

Proof: Let us only consider the case p � q � r � 1. Then»
|pf � gqpxq| dx �

» ��� » fpx� yqgpyq dy
��� dx ¤¼

|fpx� yq||gpyq| dydx

�
¼

|fpx� yq||gpyq| dxdy �
» � »

|fpx� yq| dx
	
|gpyq| dy

�
» � »

|fpzq| dz
	
|gpyq| dy � }f}L1}g}L1 ,

where interchanging the order of integration is justified by Fubini’s theorem.

Let Tu P D 1pRnq be a regular distribution and ϕ P DpRnq. Then

pu � ϕqpxq �
»
Rn

upyqϕpx� yq dy � Tupϕpx� �qq, x P Rn.

This observation leads to the following:

1.18 Theorem (and definition) Let T P D 1pRnq and ϕ P DpRnq. Then

fpxq :� T pϕpx� �qq, x P Rn,

defines a function f P C8pRnq with

Bαfpxq � pBαT qpϕpx� �qq � T ppBαϕqpx� �qq.

We write T � ϕ :� f and call T � ϕ the convolution of T with ϕ.
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1.19 Example δ � ϕ � ϕ for all ϕ P DpRnq, since

pδ � ϕqpxq � δpϕpx� �qq � ϕpx� 0q � ϕpxq @ x P Rn.

One can also define the convolution of two distributions, when at least one of them has
compact support – we shall not enter into details here. You may try to guess the definition
by rewriting Tu�vpϕq in terms of Tu and Tv and where Tu and Tv can be substituted by
general distributions.

1.6 Distributions and partial differential equations

A differential operator A � °
|α|¤m

aαBαx with constant coefficients aα P C induces a map

A : D 1pRnq ÝÑ D 1pRnq, AT �
¸

|α|¤m

aαBαT.

Note that, by definition of the distributional derivative,

AT pϕq � T pAtϕq, At :�
¸

|α|¤m

p�1q|α|aαBαx .

Given a distribution S P D 1pRnq we may ask whether there exists a solution T P D 1pRnq
of the partial differential equation AT � S, i.e.,

T pAtϕq � Spϕq @ ϕ P DpRnq.

1.20 Example The Laplacian or Laplace operator on Rn is ∆ :� B2x1
� . . . � B2x1

. Note
that ∆t � ∆.

1.21 Definition A distribution E P D 1pRnq is called a fundamental solution of A
if AE � δ.

The importance of the fundamental solution lies in the following: Given ϕ P DpRnq, let
u :� E � ϕ. Then, by Theorem 1.18 and Example 1.19, u P C8pRnq and

Au � ApE � ϕq � pAEq � ϕ � δ � ϕ � ϕ.

In other words,

u � E � ϕ is a solution of the pde Au � ϕ.

1.22 Theorem (Malgrange-Ehrenpreis) Every differential operator A �� 0 with
constant coefficients has a fundamental solution.
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1.23 Example The Laplacian ∆ � B21 � . . .� B2n has fundamental solution E � Te with

epxq � 1

2π
ln |x| pn � 2q, epxq � Γpn{2q

p2� nq2πn{2
1

|x|n�2
pn ¥ 3q.

Then, for ϕ P DpRnq, a solution of ∆u � ϕ is the function u � e � ϕ, i.e.,

upxq � Γpn{2q
p2� nq2πn{2

»
Rn

ϕpxq
|x� y|n�2

dy pn ¥ 3q.

1.24 Example Let A � a d2

dx2 � b d
dx � c, a �� 0, be a second order differential operator on

R. Let v P C8pRq be the unique solution of the homogeneous initial value problem

av2 � bv1 � cv � 0, vp0q � 0, v1p0q � 1{a.

Define u on R by upxq �
#
vpxq : x ¡ 0

0 : x   0
. Then the regular distribution Tu is a fundamental

solution of A.

Proof: Apply Theorem 1.15. Since u is continuous in x0 � 0,

pTuq1 � T
ru, rupxq � #

v1pxq : x ¡ 0

0 : x   0
.

Now ru has a jump of height 1{a in x0 � 0, hence

pTuq2 � pT
ruq1 � T

r

ru
� 1

a
δ, rrupxq � #

v2pxq : x ¡ 0

0 : x   0
.

Hence
ATu � apTuq2 � bpTuq1 � cTu � T

arru
� bru� cu� δ � δ

since

arrupxq � brupxq � cupxq �
#
av2pxq � bv1pxq � cvpxq : x ¡ 0

0 : x   0
� 0.

This completes the proof.
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2 The Fourier transform and tempered distributions

What’s it about? The Fourier transform is an important tool in the
analysis of partial differential equations. First it is defined for integrable
functions. To extend the Fourier transform from functions to distribu-
tions one needs to introduce a new class of distributions, the so-called
tempered distributions. They are continuous functionals on a new space
of functions, the so-called rapidly decreasing functions.

2.1 The Fourier transform on L1-functions

For f P L1pRnq define the Fourier transform of f by

pFfqpξq � pfpξq � »
Rn

e�ixξfpxq dx, ξ P Rn,

where xξ � x � ξ � x1ξ1 � . . .� xnξn is the inner-product of x with ξ.

2.1 Lemma The following assertions are true:

aq F : L1pRnq Ñ L8pRnq is linear and continuous with operator-norm }F} ¤ 1.

bq If f P L1pRnq then pf P C pRnq and lim
|ξ|Ñ�8

pfpξq � 0.

b) is the so-called Theorem of Riemann-Lebesgue.

Proof: Let f P L1pRnq. Then

|Ffpξq| �
��� »

Rn

e�ixξfpxq dx
��� ¤ »

Rn

��e�ixξ
��loomoon

�1

�|fpxq| dx �
»
Rn

|fpxq| dx � }f}L1 ,

i.e., }Ff}L8 ¤ }f}L1 . This shows aq. For bq let ξk Ñ ξ. Note that��e�ixξkfpxq�� ¤ |fpxq| P L1pRnq @ k.
Hence, by Lebesgue’s dominated convergence theorem,

pfpξkq � »
Rn

e�ixξkfpxq dx kÑ�8ÝÝÝÝÑ
»
Rn

e�ixξfpxq dx � pfpξq.
The proof on the limit will be omitted here.

2.2 Lemma Let f, g P L1pRnq. The following assertions are true:

aq zf � g � pf pg bq
»
Rn

pfpξqgpξq dξ � »
Rn

fpξqpgpξq dξ
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Proof: aq Note that e�ixξ � e�ipx�yqξe�iyξ. By Fubini’s theorem we thus obtain

Fpf � gqpξq �
»
e�ixξ

� »
fpx� yqgpyq dy

	
dx

�
»
e�iyξgpyq

� »
e�ipx�yqξfpx� yq dx

	
dy

�
»
e�iyξgpyq

� »
e�izξfpzq dz

	
dy � pfpξq � pgpξq.

bq Again Fubini’s theorem gives» pfpξqgpξq dξ � » � »
e�ixξfpxq dx

	
gpξq dξ

�
» � »

e�ixξgpξq dξ
	
fpxq dx �

» pgpxqfpxq dx
This finishes the proof.

2.2 Rapidly decreasing functions – the space S pRnq

2.3 Definition Let S pRnq be the space of all functions φ P C8pRnq satisfying

}φ}pNq :� sup
xPRn, |α|�|β|¤N

��xβBαxφpxq��   �8 @ N P N0.

A sequence pφkqk � S pRnq is said to converge to φ P S pRnq if

}φk � φ}pNq
kÑ�8ÝÝÝÝÑ 0 @ N P N0.

2.4 Example The Gaussian φpxq � expp�|x|2q is rapidly decreasing.

2.5 Remark Let us define

dpφ,ψq :�
8̧

j�1

1

2j
}φ� ψ}j

1� }φ� ψ}j , φ, ψ P S pRnq.

One can show that d defines a metric on S pRnq and that pS pRnq, dq is a complete
metric space. Moreover, convergence of a sequence pφkqk in the metric is equivalent
to convergence in the above defined sense.

2.6 Lemma DpRnq � S pRnq � LppRnq for every 1 ¤ p ¤ �8.

Proof: If ϕ P DpRnq then xβBαϕ belongs to DpRnq and thus is bounded on Rn.
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Let φ P S pRnq. Then, for every N P N,

}φ}pLp �
»
|x|¤1

|φpxq|p dx�
»
|x|¥1

|x|�2Np||x|2Nφpxq|p dx. (2.1)

If τn is the measure of the unit-ball then»
|x|¤1

|φpxq|p dx ¤ τnmax
|x|¤1

|φpxq|p ¤ τn}φ}pp0q.

Since |x|2N � px21 � . . .� x2nqN � °
|β|¤2N cN,βx

β with certain constants cN,β , the second
integral in (2.1) can be estimated by

cN

»
|x|¥1

|x|�2Np dx}φ}pp2Nq

with a certain costant cN . Introducing polar coordinates,»
|x|¥1

|x|�2Np � nτn

» �8

1
r�2Nprn�1 dr.

This integral is finite if we choose N P N such that n � 1 � 2Np   �1, i.e., N ¡ n{2p.
Summing up, there exist constants CN such that

}φ}pLp ¤ CN}φ}p2Nq @ φ P S pRnq @ N ¡ n

2p
. (2.2)

This shows the claim.

Note that (2.2) implies that the convergence φk Ñ φ in S pRnq implies convergence of the
sequence in LppRnq.

2.7 Theorem If 1 ¤ p   �8 then DpRnq is a dense subset of LppRnq, i.e.,

@ f P LppRnq D pφkqk � DpRnq : }φk � f}Lp
kÑ�8ÝÝÝÝÑ 0.

2.8 Definition Let X be a normed vector-space or X � S pRnq. A linear map
T : S pRnq Ñ X is said to be continuous if for every convergent sequence pφkqk �
S pRnq holds

lim
kÑ�8

T pφkq � T
�

lim
kÑ8

φk

	
.

2.9 Theorem The following identities hold for all φ P S pRnq and all α P Nn
0 :

yBαxφpξq � i|α|ξα pφpξq, p�iq|α|yxαφpξq � Bαξ pφpξq.
The Fourier transform induces a continuous map F : S pRnq Ñ S pRnq.



2.2 Rapidly decreasing functions – the space S pRnq 15

Proof: By induction, it suffices to show both equations for |α| � 1 only. Using inte-
gration by parts,

zBxjφpξq �
»
e�ixξpBxjφqpxq dx � �

» �Bxje
�ixξ

�
φpxq dx � iξj

»
e�ixξφpxq dx � iξj pφpξq.

For the second equation note that

Bξj pφpξq � Bξj
»
e�ixξφpxq dx �

» �Bξje�ixξ
�
φpxq dx � �

»
e�ixξixjφpxq dx � �iyxjφpξq.

For the continuity first note that (2.2) yields

|pφpξq| ¤ »
Rn

|φpxq| dx � }φ}L1 ¤ C0}φ}pn�2q, ξ P Rn,

with a suitable constant C0. Therefore

}pφ}p0q ¤ C0}φ}pn�2q.

By induction, using the two rules, one then shows that

}pφ}pNq ¤ CN}φ}pN�n�2q @ φ P S pRnq @N P N. (2.3)

Hence φ P S pRnq implies pφ P S pRnq and φk Ñ φ in S pRnq implies pφk Ñ pφ in S pRnq.

2.10 Theorem F 2φpxq � p2πqnφp�xq for every φ P S pRnq. In particular, the
Fourier transform F : S pRnq Ñ S pRnq is bijective with inverse F�1 given by

pF�1ψqpxq � qψpxq � p2πq�n

»
Rn

eixξψpξq dξ.

Proof: Let fpxq :� p2πq�n{2e�}x}
2{2. Note that }f}L1pRnq � 1.

Step1: We show that pfpξq � p2πqn{2fpξq.
Proof for n � 1 (the general case is a homework): Let upxq � e�x2{2. Then

u1pxq � �xe�x2{2 � �xupxq, up0q � 1,

and

pu1pξq 2.9� �ixxupξq � i pu1pξq 2.9� i2ξpupξq � �ξpupξq,
pup0q � » �8

�8
e�x2{2 dx �

?
2π.

Thus both u and pu{?2π are solutions of the initial value problem

y1ptq � �typtq, yp0q � 1.
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Since the solution of this initial problem is unique, we have pu � u{?2π.

2. Step: Let fεpxq � ε�nfpx{εq. Then tfεuε¡0 is an approximate identity psee the first
part of the lectureq and zfpε�qpξq � p2πqn{2fεpξq.
Therefore,

p2πq�n{2F 2φpyq � lim
εÑ0

»
Rn

e�iyξfpεξqpφpξq dξ � lim
εÑ0

»
Rn

fpεξqF rφp� � yqspξq dξ
2.2.bq� p2πqn{2 lim

εÑ0

»
Rn

fεpxqφpx� yq dx � p2πqn{2φp�yq,

3. Step: For the second claim define the operator R : S pRnq Ñ S pRnq by pRφqpxq �
p2πqnφp�xq. Then F 2 � R. Obviously, R is bijective with inverse given by pR�1φqpxq �
p2πq�nφp�xq. Hence pR�1F qF � R�1F 2 � id � F 2R�1 � F pFR�1q. This shows that
F has a left- and a right-inverse, hence is bijective with F�1 � R�1F .

2.11 Theorem (Parseval’s formula) For arbitrary φ,ψ P S pRnq,

ppφ, pψqL2pRnq � p2πqnpφ,ψqL2pRnq, }pφ}L2pRnq � p2πqn{2}φ}L2pRnq.

Proof: First note that

pψpξq � »
e�ixξψpxq dx �

»
eixξψpxq dx � p2πqnpF�1ψqpξq,

Thus, due to Lemma 2.2.bq,

ppφ, pψqL2pRnq �
» pφpξq pψpξq dξ � »

φpξqF pF�1ψqpξq dξ

� p2πqn
»
φpξqψpξq dξ � p2πqnpφ,ψqL2pRnq.

For the norm, apply this with ψ � φ.

2.12 Theorem (Plancherel’s theorem) Let A :� p2πq�n{2F . Then A : S pRnq Ñ
S pRnq extends to a unitary isomorphism A : L2pRnq Ñ L2pRnq, i.e., AA� � A�A �
id on L2pRnq.

Proof: By Parseval’s formula,

pAφ,AψqL2 � p2πq�nppφ, pψqL2 � pφ,ψqL2 @ φ,ψ P S pRnq. (2.4)

In particular,
}Aφ}L2 � }φ}L2 @ φ P S pRnq.
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Let f P L2pRnq. Then there exists pφkqk � S pRnq with φk Ñ f in L2pRnq. Then pAφkqk
is a Cauchy sequence in L2pRnq, since

}Aφk �Aφℓ}L2 � }Apφk � φℓq}L2 � }φk � φℓ}L2 .

Hence pAφkqk converges in L2pRnq and we define

Af :� lim
kÑ�8

Aφk

phomework: Af does not depend on the choice of the sequence pφkqkq. Note that

}Af}L2 � lim
kÑ�8

}Aφk}L2 � lim
kÑ�8

}φk}L2 � }f}L2 .

Hence A extends to a bounded operator in L2pRnq with operator-norm equal to 1.

Now let B � p2πqn{2F�1 : S pRnq Ñ S pRnq. Then B is the inverse of A : S pRnq Ñ
S pRnq. Hence substituting φ and ψ in (2.4) by Bφ and Bψ, respectively, we find

pBφ,BψqL2 � pφ,ψqL2 @ φ,ψ P S pRnq.

Repeating the above argument, B extends to a bounded operator B : L2pRnq Ñ L2pRnq.
If pφkqk � S pRnq converges in L2pRnq to f , then pBφkqk � S pRnq converges in L2pRnq
to Bf . It follows

ABf � lim
kÑ�8

ABφk � lim
kÑ�8

φk � f

and analogously BAf � f . This means that B � A�1 as operators L2pRnq Ñ L2pRnq.
Next let φ,ψ P L2pRnq and pφkqk, pψkqk � S pRnq with φk Ñ f and ψk Ñ g in L2pRnq.
Then

pAφ,AψqL2 � lim
kÑ�8

pAφk, AψkqL2 � lim
kÑ�8

pφk, ψkqL2 � pφ,ψqL2 .

This implies A�A � 1. Since A is invertible it follows A� � A�1, i.e., A is unitary.

2.13 Remark Let X,Y be a Banach spaces and D � X be a dense subspace.
Assume that T : D Ñ Y is linear and

}Tx}Y ¤M}x}X @ x P D

with some constant M ¥ 0. Then there exists a unique rT P L pX,Y q such thatrTx � Tx for all x P D. In fact,

rTx :� lim
kÑ�8

Txk,

where pxkq � D is an arbitrary sequence converging to x.
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2.3 Tempered distributions – the space S 1pRnq

We define the space of tempered distributions

S 1pRnq :�
!
T : S pRnq Ñ C | T linear and continuous

)
,

where continuity refers to Definition 2.8, i.e., φk Ñ φ in S pRnq implies T pφkq Ñ T pφq.

2.14 Theorem For a linear map T : S pRnq Ñ C the following are equivalent:

aq T P S 1pRnq
bq There exist an N P N0 and a C ¥ 0 such that

|T pφq| ¤ C}φ}pNq � C max
xPRn, |α|�|β|¤N

|xβBαφpxq| @ φ P S pRnq.

Proof: Similar to the proof of Theorem 1.8.

The basic concepts of distributions seen before can be adapted to tempered distributions:

� Regular tempered distributions: Those T P S 1pRnq of the form

T pφq �
»
Rn

upxqφpxq dx, φ P S pRnq,

where u P L1
locpRnq is a function such that upxq

1�|x|N
P L1pRnq for some N ¥ 0. We call

u the density of T and write T � Tu.

Example: If u P LppRnq for some 1 ¤ p ¤ �8 then u defines a regular tempered
distribution. upxq � ex does not define a regular tempered distribution.

� Differentiation: If T P S 1pRnq and α P Nn
0 define BαT P S 1pRnq by

BαT pφq � p�1q|α|T pBαφq φ P S pRnq.

� Multiplication with functions: If T P S 1pRnq and a P C8pRnq one can define aT P
S 1pRnq by

aT pφq � T paφq, φ P S pRnq,
provided a is of tempered growth, i.e.,

@ α P Nn
0 D N � Npαq ¥ 0 : sup

|x|¥1
|Bαapxq||x|�N   �8.

The condition of tempered growth is necessary to ensure that aφ belongs to S pRnq.
Example: apxq � ex is not of tempered growth. Instead, any polynomial is of
tempered growth.
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� Convolution: Let T P S 1pRnq. If φ P S pRnq then
pT � φqpxq � T pφpx� �qq, x P Rn,

defines a function T � φ P C8pRnq of tempered growth.

The main motivation for introducing tempered distributions is, however, the Fourier trans-
form. Note that for f P L1pRnq and φ P S pRnq

T
pf
pφq �

» pfpxqφpxq dx � »
fpxqpφpxq dx � Tf ppφq.

Therefore, for T P S 1pRnq, we define FT � pT by

pT pφq :� T ppφq, φ P S pRnq.

Since F : S pRnq Ñ S pRnq and T : S pRnq Ñ C are continuous, pT � T �F : S pRnq Ñ C
is continuous too, i.e., pT P S 1pRnq. Analogously one defines F�1T � qT P S 1pRnq by

qT pφq :� T pqφq, φ P S pRnq.

By construction, the following result is obvious:

2.15 Theorem The Fourier transform F : S 1pRnq Ñ S 1pRnq is bijective with
inverse F�1 : S 1pRnq Ñ S 1pRnq.

2.16 Example The Fourier transform δpkq P S 1pRq is a regular distribution given by

yδpkqpφq � p�1qkδpyφpkqq � ikyxkφp0q � »
pixqkφpxq dx � Tpkpφq

with the polynomial pkpxq � pixqk.

2.17 Theorem Let f P L1pRnq with pf P L1pRnq. Then

fpxq � p2πq�n

»
eixξ pfpξq dξ for almost all x P Rn.

Proof: Let gpxq be the expression on the right-hand side. Note that |gpxq| ¤ } pf}L1 for
every x, i.e., g is bounded. Now

Tf pφq � pF�1xTf qpφq � T
pf
pqφq � » pfpξq�p2πq�n

»
eixξφpxq dx

	
dξ

�
» �

p2πq�n

»
eixξ pfpξq dξ	φpxq dx � Tgpφq.

In particular,
Tf pϕq � Tgpϕq @ ϕ P DpRnq.

Hence fpxq � gpxq almost everywhere by Example 1.9.



20 2.4 Distributions and partial differential equations (II)

2.4 Distributions and partial differential equations (II)

2.18 Lemma The rules in Theorem 2.9 do not only hold for φ P S pRnq but for
arbitrary tempered distributions.

To proof this lemma is part of the homeworks.

Let A � °
|α|¤m

aαBαx be a differential operator with constant coefficients. Set

apξq :�
¸

|α|¤m

aαpiξqα pthe so-called symbol of Aq.

Note that a is a polynomial, hence is of tempered growth. Then, for T P S 1pRnq, we have

yAT �
¸

|α|¤m

aαyBαT �
¸

|α|¤m

aαi
|α|ξα pT � a pT ,

or, equivalently,

AT � F�1pa pT q.
Suppose now that a has no zeros. Then 1{a is of tempered growth and

AT � S ðñ T � F�1
�1
a
pS	

gives a unique solution for the pde AT � S for arbitrary S P S 1pRnq.

2.19 Example Let ∆ � B21 � . . .� B2n be the Laplacian and λ P Czp�8, 0s arbitrary. The
symbol of A :� λ�∆ is

apξq � λ� p�ξ21 � . . .� ξ2nq � λ� |ξ|2.

In particular, apξq �� 0 for all ξ. Hence

λ�∆ : S 1pRnq ÝÑ S 1pRnq, λ P Czp�8, 0s,

is bijective with inverse given by

pλ�∆q�1S � F�1
� 1

λ� | � |2
pS	.

The idea of this approach is that properties of a differential operator A can be read of
from its symbol. This approach can be extended also to differential operators with variable
coefficients, i.e., A � °

|α|¤m

aαpxqBαx , and leads to the theory of pseudodifferential operators.
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2.20 Remark (Sobolev (or Bessel potential) spaces) In this remark we write shortly
f � Tf for regular distributions. For k P N0 we say

f P Hk
2 pRnq :ðñ Bαf P L2pRnq for all |α| ¤ k

pwhere the derivatives are understood in the distributional sense, i.e., for every such
α the distribution BαTf is a regular distribution whose density is an L2-functionq.
The spaces Hk

2 pRnq can be considered as a substitute of the classical spaces CkpRnq
of k-times continuously differentiable functions.
For s P R we define

Hs
2pRnq :�

!
T P S 1pRnq | F�1

�p1� |ξ|2qs{2 pT � P L2pRnq
)
.

Recalling Parseval’s theorem pf P L2pRnq ðñ pf P L2pRnqq it is meaningful to
define the norm

}T }Hs
2pRnq :� }F�1

�p1� |ξ|2qs{2 pT �}L2pRnq � }p1� |ξ|2qs{2 pT }L2pRnq.

This makes Hs
2pRnq a Banach space peven a Hilbert spaceq. One can show that in

case s � k the two definitions are equivalent.
If A is a differential operator of order m with constant coefficients, then

A : Hs
2pRnq ÝÑ Hs�m

2 pRnq, s P R,

is a continuous map; it is an isomorphism if the symbol apξq of A has no zeros.
Similarly, substituting L2pRnq by LppRnq, 1   p   �8, one can define Banach
spaces Hk

p pRnq and Hs
ppRnq. The above statements remain valid.

The following example shows an application of the Fourier transform to so-called boundary
value problems.

2.21 Example Let Rn�1
� � tpx, tq |x P Rn, t ¡ 0u be a half-space. Given f P S pRnq we

want to find a function u which satisfies

p∆x � B2t qupx, tq � 0 @ x P Rn @ t ¡ 0,

upx, 0q � fpxq @ x P Rn.

Let us proceed with some formal computations. Define

vpξ, tq :� pFxÑξuqpξ, tq �
»
e�ixξupx, tq dx

Applying the Fourier transform in x to the above equations yields

B2t vpξ, tq � |ξ|2vpξ, tq � 0 @ ξ P Rn @ t ¡ 0,

vpξ, 0q � pfpξq @ ξ P Rn.
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For each fixed ξ P Rn this is an ODE having the two solutions

v�pξ, tq � pfpξqe|ξ|t, v�pξ, tq � pfpξqe�|ξ|t
We choose vpξ, tq � v�pξ, tq so that we can apply the inverse Fourier transform. In fact,
defining

Ptpxq :� F�1
ξÑxpe�|ξ|tqpxq pPoisson kernelq

we have
pFxÑξuqpξ, tq � v�pξ, tq � pPtpξq pfpξq � {Pt � fpξq,

and therefore upx, tq � pPt � fqpxq. One can show that

Ptpxq � Cnt|px, tq|�n�1

with some constant Cn. Hence we find the solution formula

upx, tq � pPt � fqpxq � Cn

»
Rn

t

|x� y, t|n�1
fpyq dy.

2.5 The Heisenberg uncertainty principal

2.22 Theorem Let φ P S pRq and x0, ξ0 P R. Then

}φ}2L2pRq ¤
c

2

π
}px� x0qφpxq}L2pRq}pξ � ξ0qpφpξq}L2pRq.

Proof: 1. Step: Let first x0 � ξ0 � 0. Then integration by parts yields

}φ}2L2pRq �
»
φpxqφpxq dx � �

»
xpφφq1pxq dx � �

»
xpφ1φ� φφ1qpxq dx

� �2
»
xRe

�
φ1pxqφpxq� dx

Taking the modulus and applying Cauchy-Schwarz inequality yields

}φ}2L2pRq ¤ 2

»
|xφpxq||φ1pxq| dx ¤ 2}xφpxq}L2pRq}φ1}L2pRq.

The claim then follows from
?
2π}φ1}L2pRq

2.11� }Fφ1}L2pRq
2.9� }ξ pφ}L2pRq.

2. Step: Define ψpxq � e�ixξ0φpx� x0q and calculate that }ψ}L2pRq � }φ}L2pRq and

}xψpxq}L2pRq � }px� x0qφpxq}L2pRq, }ξ pψpξq}L2pRq � }pξ � ξ0qpφpξq}L2pRq.

Apply the estimate of Step 1 to ψ.

We conclude this section by stating the following result due to Amrein and Berthier:
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2.23 Theorem Let E,F � R be two sets of finite measure. Then there exists a
constant C ¥ 0 such that

}f}L2pRq ¤ C
�}f}L2pRzEq � } pf}L2pRzF q

� @ f P L2pRq.

In particular, if both f and pf have compact support then f � 0.
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3 The Laplace transform

What’s it about? The Laplace transform is a useful tool in the anal-
ysis of ordinary differential equations. We discuss basic properties and
applications to initial value problems of the form

ypnqpxq�an�1y
pn�1qpxq� . . .�a1y1pxq�a0ypxq � bpxq, x ¡ 0, (3.1)

with initial conditions

yp0q � y0, y1p0q � y1, . . . ypn�1qp0q � yn�1, (3.2)

where n ¥ 1. For simplicity we shall mainly focus on the case of order
n � 2.

3.1 Definition and basic properties

3.1 Definition A function f : p0,8q Ñ C is called L-transformable if there exists
a σ P R such that

x ÞÑ e�σxfpxq P L1pp0,�8qq. (3.3)

In this case, we set
σf :� inftσ P R | σ satisfies (3.3)u.

The Laplace transform of f , denoted by Lf , is then defined as

pLfqpsq � pLfpxqqpsq �
» �8

0
e�sxfpxq dx, Re s ¡ σf .

Note that Lf is defined on the half-plane ts P C | Re s ¡ σfu, since |e�sx| � e�xRe s.

3.2 Example Let a P C. Then

pLeaxqpsq �
» �8

0
epa�sqx dx

a��s� lim
bÑ�8

epa�sqx

a� s

���x�b

x�0
� 1

s� a
, Re s ¡ Re a,

since |epa�sqx| � eRe pa�sqx xÑ�8ÝÝÝÝÑ 0 provided Re s ¡ Re a.

3.3 Example Let ω P R. Then

cospωxq � 1

2

�
eiωx � e�iωx

	
, sinpωxq � 1

2i

�
eiωx � e�iωx

	
.

Using the previous example with a � �iω we find

pL cospωxqqpsq � s

s2 � ω2
, pL sinpωxqqpsq � ω

s2 � ω2
, Re s ¡ 0.
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3.4 Example Let k P N. Then, for Re s ¡ 0,

pLxkqpsq �
» �8

0
e�sxxk dx � � xk

s
e�sx

���x��8
x�0looooooomooooooon

�0

�
» 8

0

k

s
e�sxxk�1 dx � k

s
pLxk�1qpsq.

By iteration we conclude

pLxkqpsq � k!

sk
pL1qpsq � k!

sk�1
, Re s ¡ 0.

3.5 Lemma Let f and g be L-transformable and a, b P C. Then:

aq Lpaf � bgq � apLfq � bpLgq on the half-plane Re s ¡ maxpσf , σgq,
bq pLeaxfpxqqpsq � pLfqps� aq on the half-plane Re s ¡ σf � Re a,

cq pLxnfpxqqpsq � p�1qn d
n

dsn
pLfqpsq on the half-plane Re s ¡ σf .

Proof: a) is obvious.

b) pLeaxfpxqqpsq �
» �8

0
e�sxeaxfpxq dx �

» �8

0
e�ps�aqxfpxq dx � pLfqps� aq

c)
dn

dsn
pLfqpsq � dn

dsn

» �8

0
e�sxfpxq dx �

» �8

0
p�xqne�sxfpxq dx � p�1qnpLxnfpxqqpsq.

3.2 The inverse Laplace transform

Note that if σ ¡ σf , then

pLfqpσ � iτq �
» �8

0
e�ixτ

�
e�σxfpxq� dx � rF pe�σ� rfqspτq,

where rf is the function that is equal to 0 on p�8, 0q and coincides with f on p0,�8q. From
this and the known injectivity of the Fourier transform, one obtains the injectivity of the
Laplace transform: If f and g are L-transformable and their Laplace transforms coincide
on some vertical line in the complex plane, then f � g almost everywhere. Moreover, if
τ ÞÑ pLfqpσ � iτq belongs to L1pRq, by Theorem 2.17 one recovers the function f :

fpxq � eσx
�
F�1

τÑxpLfqpσ � iτq�pxq � 1

2π

» �8

�8
epσ�iτqxpLfqpσ � iτq dτ, x ¡ 0.
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The previous result suggests to define, for suitable functions F holomorphic for Re s ¥ σ,

pL�1F qpxq � 1

2πi

» σ�i8

σ�i8
esxF psq ds. 1

The “art” in using the Laplace transform is to recognize whether a function F belongs to
the range of L and to calculate the inverse L�1F . To this scope one often uses techniques
from complex analysis plike the residue theoremq. Some examples can be also found by
elementary calculations:

3.6 Example Sei F psq � 1

ps� aqn with n P N and a P C. Using pLxnqpsq � n!

sn�1
, we

find pLeaxxnqpsq � n!

ps� aqn�1
. Thus

�
L�1 1

ps� aqn
	
pxq � xn�1

pn� 1q!e
ax.

3.3 Laplace transform and convolution

The pLaplace-qconvolution f � g of suitable functions f, g : p0,�8q Ñ C is defined by

pf � gqpxq :�
» x

0
fpx� yqgpyq dy, x ¡ 0.

3.7 Theorem If f and g are L-transformable, then

Lpf � gq � pLfqpLgq

pon the half-plane Re s ¡ maxpσf , σgqq. If F and G are Laplace transforms, then

L�1pFGq � pL�1F q � pL�1Gq.

3.4 Application to initial value problems

The following theorem describes the key property of the Laplace transform which is used
in the analysis of initial value problems.

0If γ : I Ñ C is a C1-function on an interval I and f is defined on γpIq, the integral of f along γ is
»
γ

fpsq ds :�

»
I

fpγpτqγ1pτq dτ.

Then

» σ�i8

σ�i8

:�

»
γ

with γpτq � σ � iτ, τ P R.
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3.8 Theorem Let f P CN pr0,�8qq such that f and all its derivatives are L-
transformable. Then the following is true:

pLf pjqqpsq � sjpLfqpsq �
j̧

k�1

f pk�1qp0q sj�k, Re s ¡ σf .

Proof: First note that

pLf 1qpsq �
» 8

0
e�sxf 1pxq dx � e�sxfpxq

���x��8
x�0

�
» 8

0
se�sxfpxq dx � spLfqpsq � fp0q.

Then

pLf2qpsq � spLf 1qpsq � f 1p0q � spspLfqpsq � fp0qq � f 1p0q � s2pLfqpsq � fp0qs� f 1p0q.

This procedure can be iterated.

Now consider the initial value problem

y2pxq � a1y
1pxq � a0ypxq � bpxq, yp0q � y0, y1p0q � y1. (3.4)

Applying the Laplace transform, this is equivalent to

s2pLyqpsq � yp0qs� y1p0q � a1
�
spLyqpsq � fp0q�� a0pLyqpsq � pLbqpsq

hence to

ps2 � a1s� a0qloooooooomoooooooon
�:P psq

pLyqpsq � py0s� y1 � a1y0loooooooomoooooooon
�:Qpsq

q � pLbqpsq.

P is called the characteristic polynomial of the ode. Solving for Ly, we find

pLyqpsq � Qpsq � pLbqpsq
P psq � Qpsq

P psq �
pLbqpsq
P psq . (3.5)

This identity determines y uniquely due to the injectivity of L mentioned above. By
applying the inverse Laplace transform we obtain a formula for the solution of (3.4):

ypxq �
�
L�1Q� Lb

P

	
pxq �

�
L�1Q

P

	
pxq �

�
b � L�1 1

P

	
pxq.

(3.6)

Using a partial fraction decomposition (note that the degree of Q is smaller than that of
P q, both inverse Laplace transforms can be calculated.

3.9 Example (Partial fraction decomposition) Let P psq � ps�λ0qps�λ1q with λ0 �� λ1.
Then

Qpsq
P psq �

a

s� λ0
� b

s� λ1
� pa� bqs� aλ1 � bλ0

ps� λ0qps� λ1q
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with coefficients

a � Qpsq
s� λ1

���
s�λ0

� Qpλ0q
λ0 � λ1

, b � Qpsq
s� λ0

���
s�λ1

� Qpλ1q
λ1 � λ0

;

alternatively, a and b are the unique solutions of the linear system

a� b � y0, �aλ1 � bλ0 � y1 � a1y0.

3.10 Example Consider the problem

y2pxq � 2y1pxq � 8ypxq � 0, yp0q � 1, y1p0q � 2

pnote that bpxq � 0q. In this case,

P psq � s2 � 2s� 8 � ps� 2qps� 4q, Qpsq � s.

By partial fraction decomposition:

Qpsq
P psq �

s

ps� 2qps� 4q �
a

s� 2
� b

s� 4

with

a � s

s� 4

���
s��2

� 1

3
, b � s

s� 2

���
s�4

� 2

3
.

Therefore

ypxq �
�
L�1Q

P

	
pxq � 1

3

�
L�1 1

s� 2

	
pxq � 2

3

�
L�1 1

s� 4

	
pxq � 1

3
e�2x � 2

3
e4x.

3.11 Example Consider the problem

y2pxq � 2y1pxq � 2ypxq � bpxq, yp0q � 2, y1p0q � 3.

In this case,

P psq � s2 � 2s� 2 � ps� p1� iqqps� p1� iqq, Qpsq � 2s� 1.

We decompose
2s� 1

P psq � a

s� p1� iq �
b

s� p1� iq
with

a � 2s� 1

s� p1� iq
���
s�1�i

� 1� 2i

2i
� 1� i

2
, b � 2s� 1

s� p1� iq
���
s�1�i

� 1� 2i

�2i � 1� i

2
.

Therefore,�
L�1Q

P

	
pxq �

�
L�1 1� i

2

s� p1� iq
	
�
�
L�1 1� i

2

s� p1� iq
	

�
�
1� i

2

	
ep1�iqx �

�
1� i

2

	
ep1�iqx � ex

�
peix � e�ixq � i

2
pe�ix � eixq

	
� ex

�
2 cosx� sinx

�
.
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Note that this function solves the above problem in case bpxq � 0. Moreover

1

P psq �
1

2i

� 1

s� p1� iq �
1

s� p1� iq
	
,�

L�1 1

P

	
pxq � ep1�iqx � ep1�iqx

2i
� ex

eix � e�ix

2i
� ex sinx.

We obtain �
b � L�1 1

P

	
pxq � ex

» x

0
bpyqe�y sinpx� yq dy.

Summing up, the solution is

ypxq � ex sinx� ex
» x

0
bpyqe�y sinpx� yq dy.

In case the coefficients of the ode and all initial values are real numbers one may employ
the real partial fraction composition:

3.12 Example Consider the problem

y2pxq � 2y1pxq � 5ypxq � e�x sinx, yp0q � 0, y1p0q � 1.

Applying the Laplace transform we find

ps2 � 2s� 5qpL yqpsq � 1 � 1

ps� 1q2 � 1
, i.e. pL yqpsq � s2 � 2s� 3

ps2 � 2s� 2qps2 � 2s� 5q .

The identity
s2 � 2s� 3

ps2 � 2s� 2qps2 � 2s� 5q �
As�B

s2 � 2s� 2
� Cs�D

s2 � 2s� 5

leads to the linear system

A� C � 0

2A�B � 2C �D � 1

5A� 2B � 2C � 2D � 2

5B � 2D � 3,

which has the unique solution A � C � 0, B � 1{3 and D � 2{3. We find that

ypxq �
�
L �1 1{3

s2 � 2s� 2

	
pxq �

�
L �1 2{3

s2 � 2s� 5

	
pxq

� 1

3

�
L �1 1

ps� 1q2 � 1

	
pxq � 1

3

�
L �1 2

ps� 1q2 � 4

	
pxq

� 1

3
e�xpsinx� sinp2xqq,

where the last identity holds due to Example 3.3 and Lemma 3.5.bq.

The final example shows an application of the Laplace transform to systems of ode.
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3.13 Example We want to solve the pfirst orderq system
y11pxq � 2y12pxq � 3y2pxq � 12ex

y11pxq � y12pxq � 6y1pxq � 6

y1p0q � y2p0q � 0.

We need to find the two functions y1 and y2. Applying L to both equations yields

spLy1qpsq � p2s� 3qpLy2qpsq � 12
1

s� 1

ps� 6qpLy1qpsq � spLy2qpsq � 6
1

s
,

which in matrix notation becomes�
s 2s� 3

s� 6 �s



looooooooomooooooooon
�:Apsq

�pLy1qpsq
pLy2qpsq



� 6

�
2

s�1
1
s



.

The inverse of Apsq is

Apsq�1 � � 1

3ps� 2qps� 3q
� �s 3� 2s
6� s s



.

Together with a partial fraction decomposition we find

pLy1qpsq � 1

2

1

s� 1
� 3

1

s� 2
� 7

2

1

s� 3
� 1

s

pLy2qpsq � 6
1

s� 2
� 7

2

1

s� 3
� 5

2

1

s� 1
.

Applying L�1 results in

y1pxq � 1

2
ex � 3e2x � 7

2
e3x � 1, y2pxq � 6e2x � 7

2
e3x � 5

2
ex.

3.5 Higher order equations

The solution formula (3.6) remains valid for the general case, i.e., (3.1) and (3.2). In this
case the characteristic polynomial is

P psq � sn � an�1s
n�1 � . . .� a1s� a0 � sn �

n�1̧

ℓ�0

aℓs
ℓ,

while

Qpsq �
n�1̧

ℓ�0

� n�1̧

k�ℓ

ak�1yk�ℓ

	
sℓ.

Now assume that
P psq � ps� λ1qℓ1 � . . . � ps� λkqℓk
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with its pairwise different zeros λ1, . . . , λk P C and ℓ1� . . .� ℓk � n. If qpsq is an arbitrary
polynomial of degree at most n� 1 pin particular, qpsq � Qpsq or qpsq � 1q, then

qpsq
P psq �

ķ

i�1

ℓi̧

j�1

cij
ps� λiqj

with suitable coefficients cij P C pwhich are determined by a system of linear equationsq.
The inverse Laplace transform can be found by using Example 3.6.

In case all coefficients a0, . . . , an�1 and all initial values y0, . . . , yn�1 are real numbers one
can use real partial fraction decomposition. In this case qpsq{P psq can be written in the
form

qpsq
P psq �

ķ

i�1

ℓi̧

j�1

cij
ps� σiqj �

m̧

i�1

ni̧

j�1

aijs� bij
ps2 � pijs� qijqj ,

where all involved coefficients are real numbers, and the involved second order polynomials
do not have real zeros. Again, the inverse Laplace transform can be calculated explicitly.


