Homework 1

Exercise 1. Let $(X, \|\cdot\|)$ be a normed vector space and let S be a subspace of X. Let $\|\cdot\|_S$ be the restriction of $\|\cdot\|$ to S. Show that $\|\cdot\|_S$ is a norm on S.

Exercise 2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed vector spaces over F and let $Z = X \times Y$ be the Cartesian product of X and Y . This is a vector space.

- (i) Show that $||(x, y)||_Z = ||x||_X + ||y||_Y$ defines a norm on Z.
- (ii) Show that a sequence $\{(x_n, y_n)\}\subset Z$ converges to (x, y) in Z if and only if $\{x_n\}$ converges to x in X and $\{y_n\}$ converges to y in Y.
- (iii) Show that a sequence $\{(x_n, y_n)\}\subset Z$ is a Cauchy sequence in Z if and only if $\{x_n\}$ is a Cauchy sequence in X and $\{y_n\}$ is a Cauchy sequence in Y.

Exercise 3. Consider the space of sequences

$$
c_{00} = \{(a_n)_n : \exists n_0 \in \mathbb{N} : \forall n \ge n_0, a_n = 0\}.
$$

- (i) Show that $c_{00} \subset \ell^{\infty}$ and that it is a normed space with the norm $||(a_n)||_{\infty} = \sup_n |a_n|$. Hint: Use Exercise 1.
- (ii) Similarly, show that $c_{00} \subset \ell^p$, for every $1 \leq p < \infty$, and that it is a normed space with the norm $||(a_n)||_p = (\sum_n |a_n|^p)^{\frac{1}{p}}$.

Exercise 4. Let V be a non-empty set. Consider the function $d: V \times V \to \mathbb{R}$, defined by

$$
d(x,y) = \begin{cases} 0 & \text{: } x = y \\ 1 & \text{: } x \neq y \end{cases}.
$$

Show that d is a metric.

Exercise 5. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two equivalent norms on a vector space X. Consider the induced metrics $d_1(x, y) = ||x - y||_1$ and $d_2(x, y) = ||x - y||_2$. Show that a sequence $\{x_n\}$ on X is a Cauchy sequence in the metric space (X, d_1) if and only if it is a Cauchy sequence in the metric space (X, d_2) .

Exercise 6. Recall that $\mathcal{C}([-1,1])$ equipped with the norm $||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|$ is a Banach space.

- (i) Prove that $||f||| := \sup_{x \in [-1,1]} |e^{2x} f(x)|$ defines a norm on $C([-1,1])$.
- (ii) Show that $(C([-1, 1]), ||| \cdot |||)$ is a Banach space. *Hint:* Show that $\|\cdot\|$ and $\|\cdot\|_{\infty}$ are equivalent norms.

Exercise 7. Consider on $\mathcal{C}([0,1])$ the following two norms:

$$
||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|, \qquad ||f||_1 = \int_0^1 |f(x)| dx.
$$

Show that $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ are not equivalent norms.

Hint: Consider the sequence $f_n(x) = x^n$, $n \in \mathbb{N}$, and show that the equivalence of norms fails on this sequence.

Exercise 8. Let $(X, \|\cdot\|)$ be a normed space, $x_0 \in X$ and $r > 0$. Define

$$
D = \{x \in X : ||x - x_0|| \le r\} \text{ and } B = \{x \in X : ||x - x_0|| < r\}.
$$

- (i) Show that D is closed and B is open in X .
- (ii) Fix $y \in D$ and consider the sequence

$$
y_n = \left(1 - \frac{1}{n}\right)y + \frac{x_0}{n}, \qquad n \in \mathbb{N}.
$$

Show that $\lim_{n\to\infty} y_n = y$.

(iii) Use the previous step and show that $\overline{B} = D$.