M.Sc. IN STOCHASTICS AND DATA SCIENCE Analysis Course A (Advanced)

> —— Elena Cordero

Homework 2

Exercise 1. Let X and Y be inner product spaces with inner products $(\cdot, \cdot)_X$ and $(\cdot, \cdot)_Y$ respectively, and let $Z = X \times Y$ be the Cartesian product space. Prove that the function $(\cdot, \cdot)_Z : Z \times Z \to \mathbb{F}$ defined by

$$
((x_1, y_1), (x_2, y_2))_Z = (x_1, x_2)_X + (y_1, y_2)_Y
$$

is an inner product on Z.

Exercise 2. Let X be an inner product space with inner product (\cdot, \cdot) and induced norm $\|\cdot\| = (\cdot, \cdot)^{1/2}$. For every $x, y \in X$, prove the following equalities

(i)

$$
||x + y||2 + ||x - y||2 = 2(||x||2 + ||y||2)
$$

(the parallelogram rule);

(ii) If X is real then

$$
(x,y) = \frac{\|x+y\|^2 - \|x-y\|^2}{4};
$$

(iii) If X is complex then

$$
(x,y) = \frac{\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2}{4}
$$

(the polarization identity).

Exercise 3. Let X and Y be linear subspaces of a Hilbert space H . Recall that

$$
X + Y = \{x + y : x \in X, y \in Y\}.
$$

Prove that $(X + Y)^{\perp} = X^{\perp} \cap Y^{\perp}$.

Exercise 4. Let H be a Hilbert space and let $A \subseteq H$ be a non-empty set. Show that:

(i) $A^{\perp \perp} = \overline{\text{Sp}}A;$ (ii) $A^{\perp \perp \perp} = A^{\perp}$ (where $A^{\perp \perp \perp} := ((A^{\perp})^{\perp})^{\perp}$).

Exercise 5. Let H be a Hilbert space and let $\{e_n\}$ be an orthonormal sequence in H. Determine whether the following series converge in H :

(a)
$$
\sum_{n=1}^{\infty} \frac{e_n}{n}
$$
, (b) $\sum_{n=1}^{\infty} \frac{e_n}{n^{\frac{1}{2}}}$

Exercise 6. Consider the function $f \in L^2([-\pi,\pi])$ given by

$$
f(x) = |x|, \quad x \in [-\pi, \pi).
$$

Compute the Fourier series of f . Hint: Observe that f is even.

Exercise 7. Let $T : C_{\mathbb{R}}([0,1]) \to \mathbb{R}$ be the transformation defined by

$$
T(f) = \int_0^1 f(x) dx.
$$

- (i) Show that T is linear and bounded;
- (ii) Show that $||T|| \leq 1;$
- (iii) Show that $||T|| = 1$. Hint: Evaluate $T(g)$ where g is the function in $\mathcal{C}_{\mathbb{R}}([0,1])$ such that $g(x) = 1$ for every $x \in [0, 1]$.

Exercise 8. Consider the space

 $\mathcal{C}'_{\mathbb{C}}([a,b]) = \{f : [a,b] \to \mathbb{C} : f \text{ is differentiable and } f' \text{ is continuous on } [a,b]\}\$

(i) Show that

$$
||f||_{\mathcal{C}'} = \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)| = ||f||_{\infty} + ||f'||_{\infty}
$$

is a norm on $\mathcal{C}'_{\mathbb{C}}([a, b]).$

(ii) For $f \in C'_{\mathbb{C}}([a, b])$, consider the operator $T : C'_{\mathbb{C}}([a, b]) \to \mathbb{C}$ defined by

$$
T(f) = f'(a).
$$

Show that T is linear and bounded.

Exercise 9. Given a sequence $(x_n) \in \ell^2$, consider the operator

$$
T(x_1, x_2, x_3, x_4, \dots) = (0, 4x_1, x_2, 4x_3, x_4, \dots).
$$

- (i) Show that $T: \ell^2 \to \ell^2$ is linear and bounded.
- (ii) Compute ||T||. *Hint*: Consider the sequence $e_1 = (1, 0, 0, 0, ...) \in \ell^2$ and compute Te_1 .