Analysis (SDS – UNITO, 23/24) Week 1: normed and Banach spaces

S. Ivan Trapasso

Exercise 1 (The maximum of two norms)

Let X be a normed space and $\|\cdot\|_{\alpha}, \|\cdot\|_{\beta}$ be norms on X.

Prove that $\|\cdot\|_M \coloneqq \max\{\|\cdot\|_\alpha, \|\cdot\|_\beta\}$ is a norm on X.

Exercise 2 (The minimum of two norms)

Given $\lambda > 0$, consider the following norms for $f \in C[0, 1]$:

$$||f||_{\infty} \coloneqq \sup_{x \in [0,1]} |f(x)|, \qquad ||f||_{1,\lambda} \coloneqq \lambda \int_0^1 |f(x)| dx.$$

Prove that constraints on λ must be set in order for $\|\cdot\|_m := \min\{\|\cdot\|_{\infty}, \|\cdot\|_{1,\lambda}\}$ to be a norm on C[0, 1].

Exercise 3

We prove below that the set P of polynomials is not open in C[-1, 1]. Fill the details.

- (a) Assume by contradiction that P is open. Consider f(x) = x. Since P is open, there exists R > 0 such that $\ldots \subseteq P$.
- (b) Consider now $h_R(x) \coloneqq x + R \frac{x}{2(1+|x|)}$. We have

$$||h_R - f||_{\infty} \leq \ldots,$$

hence $h_R \in \ldots$ – in particular, $h_R \in P$.

(c) We obtained above that h_R is a polynomial, but... Hence a contradiction.

Exercise 4 (Topological properties of linear subspaces) Let X be a normed space and $S \subseteq X$ a linear subspace.

- (a) Prove that if S is contained in a ball then $S = \{0\}$.
- (b) Prove that if S contains a ball then S = X.

Exercise 5 (The space of convergent series) Consider the set

$$S = \left\{ a = (a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : \sum_{n \in \mathbb{N}} a_n < \infty \right\},$$

set $||a||_S := \sup \left| \sum_{n \in \mathbb{N}} a_k \right|.$

and for $a = (a_n)_{n \in \mathbb{N}} \in S$ set $||a||_S \coloneqq \sup_{n \in \mathbb{N}} \left| \sum_{k=0}^{\infty} a_k \right|$

Prove that $(S, \|\cdot\|_S)$ is a Banach space.

Exercise 6 (On some spaces of polynomials)

Let P_k be the space of real polynomials of degree at most $k \in \mathbb{N}$.

- (a) For $p \in P_k$ set $||p|| = \sum_{j=0}^k |p(j)|$. Is $(P_k, ||\cdot||)$ a Banach space?
- (b) Prove that for any $k \in \mathbb{N}$ there exists $C_k > 0$ such that

$$|p(0)| \le C_k \int_0^1 |p(x)| dx, \quad p \in P_k.$$

Hint. There is a short and nice argument that smartly exploits equivalence of norms.

Exercise 7 (Interplay between continuity and norms)

Consider the functional

$$T: C[0,1] \to \mathbb{R}, \qquad T(f) = f(1).$$

Prove that T is continuous if C[0,1] is endowed with the standard $\|\cdot\|_{\infty}$ norm, but continuity fails under any norm $\|\cdot\|_{L^p}$ with $1 \leq p < \infty$.

Exercise 8

A necessary condition for convergence Let X be a normed space.

Show that if $\lim_{n\to\infty} x_n = x$ then $\lim_{n\to\infty} ||x_n|| = ||x||$.

What about the converse?

Exercise 9 (\star)

Let X be a normed space, and fix $x, y \in X$ and $\lambda \in \mathbb{R}$. Show that

$$\lim_{n \to \infty} (\|(n+\lambda)x + y\| - \|nx + y\|) = \lambda \|x\|.$$

Exercise 10 (\star The space of Lipschitz continuous functions)

Recall that $f: [0,1] \to \mathbb{R}$ is said to be Lipschitz continuous if there exists C > 0 such that $|f(x) - f(y)| \le C|x - y|$ for all $x, y \in [0, 1]$.

Let L be the set of Lipschitz continuous functions $[0,1] \to \mathbb{R}$. Is L a closed subspace of C[0,1]?

Hint. Recall Weierstrass' approximation theorem.