
Soluzioni esercizi – Capitolo 7

Esercizio 7.1 a) Sia f ∈ L1(R) con f(x) =
√
2πe−|x|. Verificare che f̂(ξ) =

2

1 + ξ2
.

b) Sia f ∈ L1(R) con f(x) =

{√
2π : |x| ≤ 1

0 : altrimenti
. Verificare che f̂(ξ) = 2

sin ξ

ξ
.

Soluzione: a) Calcoliamo

f̂(ξ) =

∫ +∞

−∞
e−ixξe−|x| dx =

∫ 0

−∞
e−ixξex dx+

∫ +∞

0

e−ixξe−x dx.

Dopo la sostituzione y = −x, dy = −dx, nel primo integrale, troviamo

f̂(ξ) =

∫ +∞

0

e−x
(
eixξ + e−ixξ

)
dx = 2

∫ +∞

0

e−x cos(xξ) dx

= 2 lim
b→+∞

− cos(xξ) + ξ sin(xξ)

1 + ξ2
e−x

∣∣∣x=b

x=0
=

2

1 + ξ2
.

b) Calcoliamo

f̂(ξ) =

∫ 1

−1

e−ixξ dx
ξ ̸=0
=

1

−iξ
e−ixξ

∣∣∣x=1

x=−1
=

1

ξ

e−iξ − eiξ

−i
=

2

ξ

eiξ − e−iξ

2i
= 2

sin ξ

ξ
, f̂(0) = 2.

Esercizio 7.2 Dimostrare che, se c < (2π)−1/2, la stima ∥f̂∥L∞(R) ≤ c∥f∥L1(R) è falsa,

fornendo un controesempio. Dunque, ∥f̂∥L∞(R) ≤ (2π)−1/2∥f∥L1(R) è ottimale.

Soluzione: Detta f la funzione dell’Esercizio 7.1a, si trova ∥f̂∥L∞(R) = f(0) = 2 e ∥f∥L1(R) =∫ 1

−1

√
2π dt = 2

√
2π. Pertanto, ∥f̂∥L∞(R = 2 ≤ 2c

√
2π = ∥f∥L1(R è falsa se c < (2π)−1/2. Ne

segue che la costante che compare nella stima delle norme nell’enunciato del Lemma 7.1 è
ottimale.

Esercizio 7.3 Sia f ∈ L1(Rn) con f(x) = e−|x|2/2. Dimostrare che f̂(ξ) = e−|ξ|2/2.
Suggerimento: Usare xξ = x1ξ1+. . .+xnξn e f(x) = G(x1)·. . .·G(xn) con G(t) = e−t2/2.

Soluzione: Si ha f(x) = G(x1) · . . . · G(xn) con G(t) = e−t2/2. Quindi, utilizzando ripetuta-
mente il Teorema di Fubini-Tonelli e il Lemma 7.5,

f̂(ξ) = (2π)−n/2

∫
Rn

e−i(x1ξ1+...+xnξn)G(x1) · . . . ·G(xn) dx1 . . . dxn

=

[
(2π)−1/2

∫
R
e−ix1ξ1G(x1) dx1

]
· . . . ·

[
(2π)−1/2

∫
R
e−ixnξnG(xn) dxn

]
= Ĝ(ξ1) · . . . · Ĝ(ξn) = e−ξ21/2 · . . . · e−ξ2n/2 = e−|ξ|2/2.
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Esercizio 7.4 Siano u ∈ L1(Rn), y ∈ Rn, A una matrice n × n reale invertibile e tA la
sua trasposta. Dimostrare che:

� se v(x) = u(x− y) = (τyu)(x) allora v̂(ξ) = e−i·yû(ξ);

� se v(x) = eix·yu(x) allora v̂(ξ) = û(ξ − y) = (τyû)(ξ);

� se v(x) = u(A−1x) allora v̂(ξ) = | detA|û(tAξ);

� se v(x) = u(x) allora v̂(ξ) = û(−ξ).

Ricordando che u è radiale se u(x) = φ(|x|) con φ funzione definita su [0,+∞), o, equi-
valentemente, u(x) = u(Ax) per ogni matrice ortogonale A, dimostrare che

� se u è radiale allora û è radiale.

Soluzione: � v̂(ξ) = (2π)−n/2

∫
e−ixξu(x− y) dx = (2π)−n/2

∫
e−i(z+y)ξu(z) dz =

= e−iyξ(2π)−n/2

∫
e−izξu(z) dz = e−iyξû(ξ);

� v̂(ξ) = (2π)−n/2

∫
e−ixξeixyu(x) dx = (2π)−n/2

∫
e−ix(ξ−y)u(z) dz = û(ξ − y) =

= (τyû)(ξ);

� v̂(ξ) = (2π)−n/2

∫
e−ixξu(A−1x) dx = (2π)−n/2

∫
e−i(Ay)ξu(y)| detA| dy =

= | detA|(2π)−n/2

∫
e−iy(tAξ)u(y) dy = | detA| û(tAξ);

� v̂(ξ) = (2π)−n/2

∫
e−ixξu(x) dx = (2π)−n/2

∫
e−ix(−ξ)u(x) dx = û(−ξ) ⇔ û = ˇ̂u;

� con una matrice n× n ortogonale A ⇒ tA = A−1 ⇒ | detA| = 1, ricordando che u(Ax) =
u(x), x ∈ Rn, troviamo

û(Aξ) = (2π)−n/2

∫
e−ix(Aξ)u(x) dx = (2π)−n/2

∫
e−i(tAx)ξu(x) dx =

= (2π)−n/2

∫
e−i(A−1x)ξu(x) dx = (2π)−n/2

∫
e−iyξu(Ay)| detA| dy =

= (2π)−n/2

∫
e−ixξu(x) dx = û(ξ),

ovvero, û è radiale.
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Esercizio 7.5 Siano f, g ∈ L1(Rn). Dimostrare:

a) f̂ ∗ g = (2π)n/2f̂ ĝ

b)

∫
Rn

f̂(ξ)g(ξ) dξ =

∫
Rn

f(ξ)ĝ(ξ) dξ

Suggerimento: Si ricordi che e−ixξ = e−i(x−y)ξe−iyξ.

Soluzione: Siccome e−ixξ = e−i(x−y)ξe−iyξ, utilizzando il teorema di Fubini-Tonelli ed un
cambio di variabili (lineare), si ha

f̂ ∗ g(ξ) = (2π)−n/2

∫
e−ixξ

(∫
f(x− y)g(y) dy

)
dx

= (2π)−n/2

∫
e−iyξg(y)

(∫
e−i(x−y)ξf(x− y) dx

)
dy

= (2π)n/2 (2π)−n/2

∫
e−iyξg(y)

[
(2π)−n/2

∫
e−izξf(z) dz

]
dy = (2π)n/2f̂(ξ) · ĝ(ξ).

Utilizzando il teorema di Fubini-Tonelli,∫
f̂(ξ)g(ξ) dξ =

∫ [
(2π)−n/2

∫
e−ixξf(x) dx

]
g(ξ) dξ

=

∫ [
(2π)−n/2

∫
e−iξxg(ξ) dξ

]
f(x) dx =

∫
ĝ(x)f(x) dx.

Esercizio 7.6 Sia f ∈ C∞
0 (Rn). Dimostrare:

∂̂xj
f(ξ) = iξj f̂(ξ), ∂ξj f̂(ξ) = −i x̂jf(ξ).

Nota: Iterando queste formule si trova quindi

∂̂α
x f(ξ) = i|α|ξαf̂(ξ), ∂α

ξ f̂(ξ) = (−i)|α|x̂αf(ξ),

per ogni multi-indice α.

Soluzione: Utilizzando l’integrazione per parti, troviamo:

∂̂xj
φ(ξ) = (2π)−n/2

∫
e−ixξ(∂xj

φ)(x) dx = −(2π)−n/2

∫ (
∂xj

e−ixξ
)
φ(x) dx

= iξj(2π)
−n/2

∫
e−ixξφ(x) dx = iξjφ̂(ξ),

∂ξj φ̂(ξ) = (2π)−n/2∂ξj

∫
e−ixξφ(x) dx = (2π)−n/2

∫ (
∂ξje

−ixξ
)
φ(x) dx

= −(2π)−n/2

∫
e−ixξixjφ(x) dx = −îxjφ(ξ).
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Esercizio 7.7 Calcolare

∫ +∞

−∞

dξ

(ξ2 + 1)2
e

∫ +∞

−∞

sin2 ξ

ξ2
dξ.

Suggerimento: Usare l’Esercizio 7.1 e il Teorema di Plancherel.

Soluzione: Sia f la funzione dell’Esercizio 7.1.a). Grazie al Teorema di Plancherel, si ha

∫ +∞

−∞

dξ

(1 + ξ2)2
=

1

4
∥f̂∥2L2(R) =

1

4
∥f∥2L2(R) =

1

4

∫ +∞

−∞
2πe−2|x| dx

=
π

2

(∫ 0

−∞
e−2|x| dx+

∫ +∞

0

e−2|x| dx

)
= π

∫ +∞

0

e−2x dx = π

[
e−2x

−2

]+∞

0

=
π

2
.

Sia f la funzione dell’Esercizio 7.1.b). Grazie al Teorema di Plancherel, si ha

∫ +∞

−∞

sin2 ξ

ξ2
dξ =

1

4
∥f̂∥2L2(R) =

1

4
∥f∥2L2(R) =

1

4

∫ 1

−1

2π dx = π.

Esercizio 7.8 Calcolare la trasformata di Fourier della funzione

u(x) =

{
|x|α, se |x| < 1,

0, se |x| > 1,

dove α > −3, x ∈ R3, cos̀ı che u ∈ L1(R3).

Soluzione: Posto x1 = ρ cos θ cosφ, x2 = ρ cos θ sinφ, x3 = ρ sin θ, ρ ∈ [0,+∞), φ ∈ [0, 2π],
θ ∈ [−π/2, π/2], si ha dx = dx1dx2dx3 = ρ2 cos θ dρdφdθ e

∫∫∫
R3

|u| =
∫∫∫

B1(0)

|x|α dx =

∫ 1

ρ=0

∫ π
2

θ=−π
2

∫ 2π

φ=0

ραρ2 cos θ dρdφdθ = 4π lim
a→0+

[
ρα+3

α + 3

]1
ρ=a

=
4π

α + 3
(1− lim

a→0+
aα+3︸ ︷︷ ︸

=0⇐α+3>0

) =
4π

α + 3
< +∞,

quindi u ∈ L1(R3), come affermato. Dall’Esercizio 7.6, dato che u è radiale, segue che û è radiale.
Dunque, denotata con (e1, e2, e3) la base canonica di R3, usando coordinate polari sferiche come
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sopra, troviamo, per ξ ̸= 0,

û(ξ) = u(|ξ|e3) = (2π)−3/2

∫∫∫
R3

e−i|ξ|xe3u(x) dx = (2π)−3/2

∫∫∫
B1(0)

e−i|ξ|x3|x|α dx

= (2π)−3/2

∫ 1

ρ=0

∫ π
2

θ=−π
2

∫ 2π

φ=0

e−i|ξ|ρ sin θραρ2 cos θ dρdφdθ

= (2π)−1/2

∫ 1

ρ=0

[
e−i|ξ|ρ sin θ

−i|ξ|

]π
2

θ=−π
2

ρα+1 dρ = 2(2π)−1/2|ξ|−1

∫ 1

ρ=0

eiρ|ξ| − e−iρ|ξ|

2i
ρα+1 dρ

= 2(2π)−1/2|ξ|−1

∫ 1

ρ=0

ρα+1 sin(ρ|ξ|) dρ = 2(2π)−1/2|ξ|−α−3

∫ |ξ|

0

tα+1 sin t dt.

Osserviamo che l’integrale ottenuto nell’ultimo passaggio è convergente, dato che tα+1 sin t ∼
tα+2, t → 0+ e α + 2 > −1. Abbiamo quindi, per ogni ξ ∈ R3, ξ ̸= 0,

û(ξ) = û(|ξ|) = 2(2π)−1/2|ξ|−α−3

∫ |ξ|

0

tα+1 sin t dt.
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