Soluzioni esercizi — Capitolo 7

Esercizio 7.1 a) Sia f € L'(R) con f(x) = v2me~1#l. Verificare che f({) = fgz.
vV : < -~ i
b) Sia f € L*(R) con f(x) = 2m el - ! .. Verificare che f(§) = 2sm§.
0 - altrimenti 19

SOLUZIONE: a) Calcoliamo
. +o00 ) 0 ) 400 )
f(§ = / e el dp = / e e dx + / e e dy.
—00 —00 0
Dopo la sostituzione y = —z, dy = —dz, nel primo integrale, troviamo

J?(f) = /0+°° e (™ +e ") dr =2 /0+00 e " cos(xf) dx

—cos(x) + Esin(x) _, |z=b 2
b—-+oo 1+ & “ s T1re

b) Calcoliamo

. B » A . » '
~ , 1=t le ® — et 266 — e sin & ~

Esercizio 7.2 Dimostrare che, se ¢ < (27)~/2, la stima ||ﬂ|Lw(R) < || fllerwy € falsa,

fornendo un controesempio. Dunque, || f]| ) < (27) 2| f| Li(r) ¢ ottimale.

SOLUZIONE: Detta f la funzione dell’Esercizio 7.1a, si trova ||f||Loo(R) = f(0)=2¢|fllrrw) =

1
V2mdt = 2v/2m. Pertanto, o = 2 < 2¢V/2m = e ¢ falsa se ¢ < (2m)7Y/2. Ne
( (
—1
segue che la costante che compare nella stima delle norme nell’enunciato del Lemma 7.1 e

ottimale.

Esercizio 7.3 Sia f € L*(R") con f(z) = e~171*/2 Dimostrare che f(ﬁ) — e leP/2,
Suggerimento: Usare 2§ = 21§+ . .4+ 2,8, e f(x) = G(x1)-...-G(x,) con G(t) = e—t2/2.

SOLUZIONE: Si ha f(z) = G(zy) - ... G(z,) con G(t) = e~**/2. Quindi, utilizzando ripetuta-
mente il Teorema di Fubini-Tonelli e il Lemma 7.5,

f(&) = (27T)_n/2/ eTi@btFmE) Q) L Glay,) day . . day,

_ |(2m)112 / ¢80 G (2y) dxl} . {(zw)lﬂ / eI G (z,)
R R

_ Q&) ... GE) =82 G2 = ol

1



Esercizio 7.4 Siano u € L}*(R"), y € R™, A una matrice n X n reale invertibile e ‘A la
sua trasposta. Dimostrare che:

(o) = i — ) = (o2 s ) — =

o se v(x) = e“Yu(z) allora v(¢) = u(§ —y) = (1,u)();
(r) = u(A~1z) allora (&) = | det A|u(*A¢);

)

e se v(z) = u(z) allora v(§) = u(—¢).

Ricordando che u ¢ radiale se u(x) = ¢(|z|) con ¢ funzione definita su [0, 4+00), 0, equi-
valentemente, u(z) = u(Ax) per ogni matrice ortogonale A, dimostrare che

e se u ¢ radiale allora u ¢ radiale.

SOLUZIONE: e V(&) = (27)"/2/6”514(&: —y)dr = (2#)"/2/ei(z+y)£u(z) dz =

= ¢ W5 (2m) /2 / e u(z) dz = e "u(E);

e V(&) = (2%)_”/2/6_””%(14_127) dr = (2#)_"/2/e_i(Ay)fu(y)| det Al dy =
= | det A|(27) /2 / e~ WAy (y) dy = | det A| T(*AE);

)
Il
2

° V(&) = (2#)_"/2/6_”55@(:10) dr = (2m)—"/? / e~ w(=y(x)dx = u(-¢£) &

e con una matrice n x n ortogonale A = ‘A = A~! = |det A| = 1, ricordando che u(Az) =

u(z), € R, troviamo

A(A€) = (2m) " / A0y (1) d = (2m) 2 / e~ iAMEy (z) dr =

= (QW)_"/Q/e_i(Alz)gu(a:) dx = (27r)_”/2/e_iy§u(Ay)| det Al dy =

= (27r)_”/2 / e () dr = u(§),

ovvero, u ¢ radiale.



Esercizio 7.5 Siano f,g € L'(R"). Dimostrare:

a) f+g=(2m)"2fG

~

b) Rnf(i)g(ﬁ)dfz Rnf(é)ﬁ(ﬁ)dé

Suggerimento: Si ricordi che e~ = ¢~ =V)EewE

SOLUZIONE: Siccome e ¢ = ¢~ "= 9&e=¢  ytilizzando il teorema di Fubini-Tonelli ed un
cambio di variabili (lineare), si ha

Fro©) =0 [eve( [ 16— vt dy) do
= (2m) 2 [ etgu)( [ e~ g) o) dy
= (2m)2 2m) 2 [ gty [(2m) 2 [ ) dz] ay = n (e - 916)
Utilizzando il teorema di Fubini-Tonelli,
[ Fenerde= [ [em e e st ae
= [ Jen e [esg©de] faydo = [ ga) 1) de

Esercizio 7.6 Sia f € C§°(R"). Dimostrare:

~ —

05, 1(€) = i&;F(€), 0, F(€) = —iz; F(6).

Nota: Iterando queste formule si trova quindi

~

daf(e) =i fle),  82f(€) = (—i)lzaf(¢),

per ogni multi-indice .

SoLuzIONE: Utilizzando l'integrazione per parti, troviamo:

—

0016) = @n) " [ (0, 0)w) o = —2m) ™ [ (0, ) ole) do
— ig;(2m) 2 / e o) di = i€ B(),
06, 3(€) = (2m) 20, / e p(z) dr = (2m) "2 / (8,c) ()

= —(2m)™"/? / e ixip(x) dr = —iz;p(8).
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+o00 d +o0
Esercizio 7.7 Calcolare / —é e / sin gdﬁ
Suggerimento: Usare 1'Esercizio 7.1 e il Teorema di Plancherel.

SOLUZIONE: Sia f la funzione dell’Esercizio 7.1.a). Grazie al Teorema di Plancherel, si ha

/+oo déﬂ
e (1422

-~ L[t
Flomy = Mo =3 | 2meda

—00

0 +oo +o00 672‘% +oo
(/ e 2l gy 4 / e~ 2l dx) = 7r/ e dr =1 [ }
—oo 0 0 -2 0

N Ny

Sia f la funzione dell’Esercizio 7.1.b). Grazie al Teorema di Plancherel, si ha

+too gin? ¢ 1,20 1.0 1!
/Oo e dg_Z“fHLQ(R) :Z“fHLQ(R) 21/127de:ﬂ-'

Esercizio 7.8 Calcolare la trasformata di Fourier della funzione

() = {!xl”‘, se [o] <1,

0, se |z| > 1,

dove a > —3, x € R3, cosi che u € L'(R?).

SOLUZIONE: Posto x; = pcosfcosp, xa = pcosfsing, x3 = psind, p € [0,+00), ¢ € [0, 27],
€ [-7n/2,7/2], si ha dz = dx1dxadzs = p? cos O dpdpdf e

% 2 pa+3 1
/// lu| = /// |z|* dx —/ / / p%p* cos 0 dpdipdf = 4 lim [ }
B1(0 —0Jo=—= Jyo=o am0t [ +3]
4m

= (1 — lim a*"3) =
a4+ 3 a—0t a+3

=0<=a+3>0

< 400,

quindi v € L'(R3), come affermato. Dall’Esercizio 7.6, dato che u ¢ radiale, segue che U ¢ radiale.
Dunque, denotata con (ey, ez, e3) la base canonica di R3, usando coordinate polari sferiche come
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sopra, troviamo, per & # 0,

) = u(éles) = 2m) " [[[ ety o = 2mor [[ | PO

1 2
(2m) —3/2 / / / e~ IElPsinG pa 2 o5 0 dpdpdd
p=0J0 p=

_Z‘ﬂpsme 1 giplel _ o—iplé]
_ 1/2 a+l g —1/2)¢1—1 € € a+1
= p*" dp = 2(2m)” ¢ / ——— " dp
|: _Z|§’ :|0_7r p=0 27

€]
= 2(2m)2[¢| ! / p* M sin(pl¢]) dp = 2(2m) Mg / t**sint dt.

p=0 0

Osserviamo che l'integrale ottenuto nell’ultimo passaggio ¢ convergente, dato che t**sint ~
to*t2 + - 07 e a +2 > —1. Abbiamo quindi, per ogni £ € R3, £ # 0,

o €
a(e) = allel) = 202m) e / 4 sint di.



