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3.1 Invertibilità di operatori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Operatori di Fredholm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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0 Richiami sugli operatori limitati

Denotiamo con X, Y, Z degli spazi di Banach complessi, con H, H1, H2 degli spazi di Hilbert
complessi separabili pcioè con base ortonormale numerabileq.
Per un operatore lineare T : X Ñ Y le seguenti affermazioni sono equivalenti:

� T è continuo in X pcioè in ogni punto x P Xq.
� T è continuo in x � 0.

� T è limitato, cioè: DM ¥ 0 @ x P X : }Tx}Y ¤M}x}X .
� Se B � tx P X | }x}X ¤ 1u, allora T pBq � Y è limitato.

Scriviamo

L pX, Y q :� tT : X Ñ Y | T lineare e limitatou, L pXq :� L pX,Xq.

Si ricorda che X 1 � L pX,Cq pspazio duale di Xq.
L pX, Y q è uno spazio di Banach con norma

}T } � }T }L pX,Y q � sup
x ��0

}Tx}Y
}x}X � sup

}x}X�1

}Tx}Y .

La composizione ST di T P L pX, Y q e S P L pY, Zq appartiene a L pX,Zq e
}ST }L pX,Zq ¤ }S}L pY,Zq}T }L pX,Y q.

Il nucleo, rispettivamente l’immagine di T P L pX, Y q, sono
kerT � tx P X | Tx � 0u, imT � ty P Y | D x P X : y � Txu.

Si ricorda che T è iniettivo se e solo se kerT � t0u.

0.1 Teorema (di Banach). Sia T P L pX, Y q biettivo. Allora T�1 P L pY,Xq. Si chiama
T�1 l’inversa di T e T si dice invertibile.

0.2 Teorema (di Riesz-Fréchet). Sia x1 P H 1 � L pH,Cq un funzionale. Allora esiste un
unico y � ypx1q P H tale che

x1pxq � px, yq @ x P H.

Vale }y} � }x1}. L’applicazione x1 ÞÑ ypx1q : H 1 Ñ H è antilineare e biettiva.

La disuguaglianza di Cauchy-Schwarz e il Teorema di Hahn-Banach implicano

}x}H � sup
}y}H�1

|px, yqH |, }x}X � sup
}x1}X1�1

|x1pxq|.
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1 L’operatore aggiunto

Di cosa si tratta? In analisi funzionale, l’aggiunto di un operatore, chiamato
anche operatore hermitiano aggiunto, generalizza il trasposto coniugato di una
matrice quadrata al caso infinito dimensionale e il concetto di complesso coniu-
gato di un numero complesso. Ogni operatore lineare limitato su uno spazio
di Hilbert ha un corrispondente operatore aggiunto.

1.1 Definizione e proprietà fondamentali

1.1 Teorema. T P L pH1, H2q ñ Esiste un unico T � P L pH2, H1q tale che

pTx, yqH2 � px, T �yqH1 @ x P H1 @ y P H2.

T � si dice l’operatore aggiunto di T .

Dimostrazione. Sia y P H2 e ϕyx :� pTx, yqH2 .

|ϕyx| � |pTx, yqH2 | ¤ }Tx}H2}y}H2 ¤ }T }L pH1,H2q}y}H2}x}H1 @ x P H1.

ñ ϕy P H 1
1, }ϕy} ¤ }T }L pH1,H2q}y}H2 .

Teorema di Riesz ñ D! py � pypyq P H1 @ x P H1 : ϕyx � px, pyqH1 , }py}H1 � }ϕy}.
Definire T � : H2 Ñ H1, T

�y � pypyq.
T � è lineare:

pz, T �pλx� yqqH1 � pTz, λx� yqH2 � λpTz, xqH2 � pTz, yqH2

� pz, λT �xqH1 � pz, T �yqH1 � pz, λT �x� T �yqH1 @ z P H1

ñ T �pλx� yq � λT �x� T �y.

T � è limitato:

}T �y}H1 � }pypyq}H1 � }ϕy} ¤ }T }L pH1,H2q}y}H2 @ y P H2.

ñ }T �}L pH2,H1q ¤ }T }L pH1,H2q.

1.2 Esempio. Siano H � ℓ2pNq e L,R P L pℓ2pNqq con
Lpx1, x2, x3, . . .q � px2, x3, x4 . . .q p“left shift” q,
Rpx1, x2, x3, . . .q � p0, x1, x2, x3, . . .q p“right shift” q.

Allora

pLpx1, x2, . . .q, py1, y2 . . .qq � ppx2, x3, . . .q, py1, y2 . . .qq � x2y1 � x3y2 � . . .

� ppx1, x2, . . .q, p0, y1, . . .qq � ppx1, x2, . . .q, Rpy1, y2 . . .qq,
ñ L� � R. Analogamente: R� � L.
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1.3 Esempio. Per f P L2pr1, 2sq definiamo

pTfqpxq � fp?xq, 1 ¤ x ¤ 4.

Definisce T : L2pr1, 2sq Ñ L2pr1, 4sq limitato con }T } ¤ 2:

}Tf}2L2pr1,4sq �
» 4

1

|fp?xq|2 dx y�?x�
» 2

1

|fpyq|22y dy ¤ 4}f}2L2pr1,2sq.

Determiniamo T �:

pTf, gq �
» 4

1

fp?xqgpxq dx y�?x�
» 2

1

fpyqgpy2q2y dy � pf, T �gq,

dove T �g, g P L2pr1, 2sq definito da

pT �gqpyq � 2ygpy2q, 1 ¤ y ¤ 2.

1.4 Esempio. Siano U � Rn, V � Rm e k : U � V Ñ C misurabili. L’operatore integrale T
su V con nucleo integrale k associa a funzioni f : V Ñ C la funzione Tf : U Ñ C tramite

pTfqpuq �
»
V

kpu, vqfpvq dv, u P U.

Supponiamo che esistono c1, c2 ¥ 0 tale che»
U

|kpu, vq| du ¤ c1,

»
V

|kpu, vq| dv ¤ c2 quasi ovunque.

Allora T P L pL2pV q, L2pUqq con }T } ¤ ?
c1c2 p“Lemma di Schur”q. L’operatore aggiunto T � è

l’operatore integrale con nucleo kp�qpv, uq :� kpu, vq, cioè

pT �gqpvq �
»
U

kpu, vqgpuq du, v P V.

In fatti, sfruttando le ipotesi, la disuguaglianza di Cauchy-Schwarz ed il Teorema di Fubini-
Tonelli, si trova:

|pTfqpuq|2 �
����»
V

kpu, vqfpvq dv
����2 ¤ �»

V

|kpu, vq| 12 |kpu, vq| 12 |fpvq| dv
�2

¤
�»

V

|kpu, vq| dv


�
�»

V

|kpu, vq| |fpvq|2 dv
�

¤ c2

»
V

|kpu, vq| |fpvq|2 dv

ñ }Tf}2L2pUq ¤ c2

»
U�V

|kpu, vq| |fpvq|2 dvdu ¤ c1 c2

»
V

|fpvq|2 dv
� c1 c2 }f}2L2pV q.
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La seconda affermazione è una conseguenza immediata della definizione di operatore aggiunto
e del Teorema di Fubini-Tonelli. Infatti, per ogni f P L2pV q, g P L2pUq, si ha

pTf, gqL2pUq �
»
U

�»
V

kpu, vq fpvq dv
�
gpuq du

�
»
U�V

kpu, vq fpvq gpuq dvdu

�
»
V

fpvq
�»

U

kpu, vq gpuq du
�
dv � pf, T �gqL2pV q,

con

pT �gqpvq �
»
U

kpu, vq gpuq du �
»
U

kp�qpv, uq gpuq du.

1.5 Teorema. Siano S, T P L pH1, H2q, R P L pH2, H3q e λ P C. Allora valgono:

aq pT � Sq� � T � � S�, pλT q� � λT � pcioè la mappa T ÞÑ T � è anti-lineareq.
bq pRT q� � T �R�

cq pT �q� � T

dq T invertibile ðñ T � invertibile. In questo caso: pT �q�1 � pT�1q�.
eq }T �} � }T } � }T �T }1{2 pin particolare, la mappa T ÞÑ T � è continuaq.

Dimostrazione. aq ppλT � Sqx, yq � λpTx, yq � pSx, yq � λpx, T �yq � px, S�yq
� px, λ̄T �y � S�yq � px, pλT � � S�qyq.
bq pRTx, yq � pRpTxq, yq � pTx,R�yq � px, T �R�yq � px, pRT q�yq.
cq pT �x, yq � py, T �xq � pTy, xq � px, Tyq � px, pT �q�yq.
dq ”ñ”: I � TT�1

bqñ I � I� � pT�1q�T �, I � T�1T
bqñ I � I� � T �pT�1q�

ñ pT �q�1 � pT�1q�.
”ð”: Applicare ”ñ” a T �, notando che pT �q� � T .

e) Sappiamo }T �} ¤ }T }.
ñ }T } cq� }pT �q�} ¤ }T �} ñ }T } � }T �}.
}T �T } ¤ }T }}T �} � }T }2 ñ }T �T }1{2 ¤ }T }.

}Tx}2 � |pTx, Txq| � |pT �Tx, xq| ¤ }T �Tx}}x} ¤ }T �T }}x}2 @ x P H

ñ }Tx} ¤ }T �T }1{2}x} @ x ñ }T } ¤ }T �T }1{2.
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1.2 Operatori autoaggiunti

1.6 Definizione. Un operatore T P L pHq si dice autoaggiunto se T � T �, si dice
normale se T �T � TT �, si dice unitario se T è invertibile e T�1 � T �.

1.7 Lemma. Sia T P L pHq. Allora:
aq kerT � ker pT �T q, bq T normale ñ kerT � kerT �.

Dimostrazione. aq x P kerT ñ T �Tx � T �pTxq � 0 ñ x P kerT �T ,

x P kerT �T ñ pT �Tx, xq � 0 ñ }Tx}2 � pTx, Txq � 0 ñ Tx � 0 ñ x P kerT .

bq kerT aq� kerT �T
hyp� kerTT � Teorema 1.5,cq� ker pT �q� T � aq� kerT �.

1.8 Teorema. Sia T P L pHq autoaggiunto. Allora }T } � sup
}x}�1

|pTx, xq|.

Dimostrazione. Prima notiamo che, per ogni T P L pHq, vale

}T } � sup
}x}�}y}�1

|pTx, yq|. (�)

Quindi spT q :� sup
}x}�1

|pTx, xq| ¤ }T|.

Siano x, y, z P H arbitrari tali che }x} � }y} � 1. Valgono

pT px� yq, x� yq � pT px� yq, x� yq � 2
�pTx, yq � pTy, xq�

� 2
�pTx, yq � pTx, yq� � 4Re pTx, yq

e

|pTz, zq| �
�����T z

}z} ,
z

}z}

���� }z}2 ¤ spT q}z}2.

Legge del parallelogramma ñ

4Re pTx, yq ¤ |pT px� yq, x� yq| � |pT px� yq, x� yq|
¤ spT q�}x� y}2 � }x� y}2� � 2spT q�}x}2 � }y}2� � 4spT q.

Dϕ � ϕpx, yq P R : |pTx, yq| � eiϕpTx, yq � pT peiϕxq, yq
}eiϕx} � }x} � 1 ñ |pTx, yq| � Re pT peiϕxq, yq ¤ spT q
p�q ñ }T } ¤ spT q.

1.9 Corollario. T � T � P L pHq ñ T è determinato dai valori pTx, xq, x P H.
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Dimostrazione. Sia S P L pHq autoaggiunto con pSx, xq � pTx, xq @ x P H.

ñ R :� S � T autoaggiunto e pRx, xq � 0 @ x P H.

Teorema 1.8 ñ R � 0.

1.10 Teorema. Sia T P L pHq. Allora:

T autoaggiunto ðñ pTx, xq P R @ x P H.

Dimostrazione. “ñ”: pTx, xq � px, Txq � pTx, xq ñ pTx, xq P R.
“ð”: Siano α P C e x, y P H.

pTx, xq�αpTy, xq � αpTx, yq � |α|2pTy, yq
� pT px� αyq, x� αyq
� pT px� αyq, x� αyq
� pTx, xq � αpy, Txq � αpx, Tyq � |α|2pTy, yq

α � 1 ñ p1q pTy, xq � pTx, yq � py, Txq � px, Tyq
α � i ñ p2q ipTy, xq � ipTx, yq � ipy, Txq � ipx, Tyq
p1q � ip2q ñ pTx, yq � px, Tyq

1.3 Sottospazi complementari e proiezioni ortogonali

Siano M,N due sottospazi di H. Il complementare ortogonale di M è

MK � tx P H | x KMu � tx P H | px,mq � 0 @ m PMu.

Scriviamo

H �M `N :ðñ H �M �N, M XN � t0u, M,N chiusi.

Si ricordi (prima parte): MK è chiuso, MK �M
K
e sottospazi di dimensione finita sono chiusi.

Inoltre, H �M `MK se M è chiuso, e vale il Teorema di Pitagora:

x K y ñ }x� y}2 � }x}2 � }y}2.

1.11 Lemma. Sia H �M �N con due sottospazi M,N . Sia py, zq � 0 per ogni y PM ,
z P N . Allora N �MK e H �M `MK pi.e., M è chiusoq.

Dimostrazione. Ipotesi ñ N �MK. Sia x PMK e poniamo, come è possibile per le ipotesi,
x � y � z con y PM , z P N . Troviamo:

x � y � z PMK ñ 0 � py, xq � py, y � zq � py, yq � py, zq � }y}2 ñ x � z P N
ñ MK � N ñ N �MK ed N è chiuso.

Scambiando i ruoli di M e N si ottiene M � NK ed M è chiuso.
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1.12 Corollario. Sia M sottospazio di H. Allora MKK :� pMKqK �M .

Dimostrazione. H �M `M
K �M `MK 1.11ñ M � pMKqK.

1.13 Lemma. T P L pHq ñ pimT qK � kerT � e pkerT qK � imT �.

Dimostrazione. Abbiamo

x P kerT � ðñ T �x � 0 ðñ pT �x, yq � 0 @ y P H
ðñ px, Tyq � 0 @ y P H
ðñ x K Ty @ y P H ðñ x P pimT qK.

Inoltre: kerT � kerT �� � pimT �qK ñ pkerT qK � pimT �qKK � pp imT � qKqK � imT �.

1.14 Definizione. Sia M uno sottospazio chiuso. L’operatore PM : H Ñ H definito da

PMx � y, x � y � z PM `MK,

si dice proiezione ortogonale su M .

1.15 Teorema. Sia P P L pHq. Le seguenti affermazioni sono equivalenti:

p1q P è una proiezione ortogonale, cioè DM � H sottospazio chiuso: P � PM ;

p2q P � P � � P 2;

p3q P 2 � P e pPx, xq ¥ 0 per ogni x P H.

Dimostrazione. p1q ñ p2q : Sia x � y � z con y PM, z PMK.

ñ Px � y ñ P 2x � Py � y � Px.

Sia x1 � y1 � z1 con y1 PM, z1 PMK.

ñ
#
pPx, x1q � py, y1 � z1q � py, y1q � py, z1q � py, y1q,
px, Px1q � py � z, y1q � py, y1q � pz, y1q � py, y1q. ñ P � P �

p2q ñ p3q : pPx, xq � pP 2x, xq � pPx, P �xq � pPx, Pxq � }Px}2 ¥ 0.

p3q ñ p1q : Siano M :� imP e N :� kerP .

i) x P H ñ P px� Pxq � Px� Px � 0 ñ x � Px� px� Pxq PM �N ñ H �M �N

ii) Siano y PM e z P N . Supponiamo α :� py, zq �� 0. Sia z1 � � 2
ᾱ
}y}2z ñ

0 ¤ pP py � z1q, y � z1q � py, yq � py, z1q � }y}2 � 2

α
}y}2py, zq � �}y}2  
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Lemma 1.11 ñ p1q, cioè, H �M `MK � N `NK e P � PM .

La dimostrazione mostra che per P � PM vale

M � imP, MK � kerP � im p1� P q, H � imP ` kerP.

Inoltre,
}P } � }P 2} � }PP �} � }P }2

implica che }P } � 1 oppure P � 0 pcioè M � t0uq.

1.4 Esercizi

Esercizio 1.1. Sia A P Rn�n una matrice invertibile. Per funzioni f P L2pRnq definiamo

pTfqpxq � fpAxq, x P Rn.

Dimostrare che T P L pL2pRnqq e determinare l’aggiunto di T .

Esercizio 1.2. Sia T P L pHq. Dimostrare:

T normale ðñ }Tx} � }T �x} @ x P H.

Esercizio 1.3. Sia T P L pHq. Dimostrare:

T è suriettivo ðñ T � è iniettivo e imT è chiuso.

Esercizio 1.4. Siano P,Q P L pHq due proiezioni ortogonali. Dimostrare:

PQ proiezione ortogonale ðñ PQ � QP.

In questo caso, PQ è la proiezione ortogonale su imP X imQ.

Esercizio 1.5. Siano P,Q P L pHq due proiezioni ortogonali. Dimostrare:

imP � imQ ðñ }Px} ¤ }Qx} @ x P H.

Esercizio 1.6. Siano P,Q P L pHq due proiezioni ortogonali. Dimostrare:

P �Q proiezione ortogonale ðñ PQ � QP � 0.

In questo caso, P �Q è la proiezione ortogonale su imP ` imQ.
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2 Operatori compatti in spazi di Hilbert

Di cosa si tratta? Operatori di rango finito hanno una struttura partico-
larmente semplice. La proprietà di avere immagine di dimensione finita non
è stabile sotto passaggio al limite. In uno spazio di Hilbert, la chiusura degli
operatori di rango finito definisce lo spazio degli operatori compatti. Dimostri-
amo alcune proprietà fondamentali degli operatori compatti, in particolare che
un operatore lineare è compatto se e solo se l’immagine di ogni sottoinsieme
limitato del dominio è un insieme relativamente compatto del codominio.

2.1 Operatori di rango finito

2.1 Definizione. T P L pHq si dice di rango finito, se dim imT   �8. Scriviamo

F pHq � tT P L pHq | dim imT   �8u.

2.2 Lemma. Sia T P F pHq e n :� dim imT . Allora esistono x1, . . . , xn P H e
y1, . . . , yn P H tale che

Tx �
ņ

i�1

px, yiqxi @ x P H.

In questo caso, T � P F pHq e T �y �
ņ

i�1

py, xiqyi per ogni y P H.

Dimostrazione. Sia x1, . . . , xn una base ortonormale di M :� imT e xn�1, xn�2, xn�3, . . .
una base ortonormale di MK. Quindi txi | i ¥ 1u è una base ortonormale di H.

ñ Tx �
�8̧

i�1

pTx, xiqxi TxPM�
ņ

i�1

pTx, xiqxi �
ņ

i�1

px, yiqxi @ x P H con yi :� T �xi.

px, T �yq � pTx, yq �
ņ

k�1

px, yiqpxi, yq �
�
x,

ņ

i�1

pxi, yqyi
	
�
�
x,

ņ

i�1

py, xiqyi
	
.

2.2 Operatori compatti

2.3 Definizione. T P L pHq si dice compatto, se esiste una successione pTjq � F pHq
tale che }Tj � T } jÑ�8ÝÝÝÝÑ 0. Scriviamo

K pHq � tT P L pHq | T compattou.

Si noti che K pHq è un sottoinsieme chiuso di L pHq dato che è la chiusura di F pHq in L pHq.
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2.4 Esempio. Siano T, Tj P L pℓ2pNqq dati da

T px1, x2, x3, . . .q �
�
x1,

1

2
x2,

1

3
x3, . . . ,

1

n
xn, . . .

	
,

Tjpx1, x2, x3, . . .q �
�
x1,

1

2
x2, . . . ,

1

j
xj, 0, 0, . . .

	
.

imTj � tx � pxkq P ℓ2 | xk � 0 per ogni n ¥ j � 1u ha dimensione j e

}pT � Tjqx}2 �
�8̧

k�j�1

���1
k
xk

���2 ¤ 1

pj � 1q2
�8̧

k�j�1

|xk|2 ¤ 1

pj � 1q2 }x}
2.

ñ }T � Tj} ¤ 1{pj � 1q jÑ�8ÝÝÝÝÑ 0 ñ T P K pℓ2q.

2.5 Esempio. Sia A � Rn e T un operatore integrale con nucleo k P L2pA� Aq,

pTfqptq �
»
A

kpt, sqfpsq ds.

Cauchy-Schwarz ñ

|pTfqptq| ¤
»
A

|kpt, sq||fpsq| ds ¤
� »

A

|kpt, sq|2 ds
	1{2

}f}L2pAq,

}Tf}2L2pAq ¤
»
A

»
A

|kpt, sq|2 ds}f}2L2pAq dt � }k}2L2pA�Aq}f}2L2pAq.

ñ T P L pL2pAqq con }T } ¤ }k}L2pA�Aq.

Sia te1, e2, e3, . . .u una base ortonormale di L2pAq e
fijpt, sq :� eiptqejpsq, i, j ¥ 1.

ñ tfij | i, j ¥ 1u base ortonormale di L2pA� Aq pcfr. Esercizio 2.4q.

ñ kpt, sq �
�8̧

i,j�1

aijeiptqejpsq, aij � pk, fijqL2pA�Aq pconvergenza in L2pA� Aqq

Definiamo Tℓ tramite il nucleo kℓpt, sq �
ℓ̧

i,j�1

aijeiptqejpsq.

Tℓf �
ℓ̧

i,j�1

aijeipf, ejq ñ imTℓ � xe1, . . . , eℓy ñ Tℓ P F pHq.

}T � Tℓ}2 ¤ }k � kℓ}2L2pA�Aq �
�8̧

i,j�1
i¡ℓ o j¡ℓ

|aij|2 ℓÑ�8ÝÝÝÝÑ 0.

ñ T P K pL2pAqq.
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2.6 Teorema. Sia V � F pHq oppure V � K pHq. Allora:
aq V è un sottospazio di L pHq;
bq T P V allora T � P V ;

cq T P V e S P L pHq, allora ST, TS P V .

Dimostrazione. Consideriamo prima V � F pHq.
aq S, T P F pHq, α P C ñ impS � T q � imS � imT e impαT q � imT hanno dimensione finita.

bq È il Lemma 2.2.

cq imTS � TSpHq � T pSpHqq � T pHq � imT ñ dim imTS ¤ dim imT   �8.

imST � ST pHq � SpT pHqq � SpimT q ñ dim imST ¤ dim imT   �8.

Le affermazioni per V � K pHq seguono tramite approssimazione e continuità. Per esempio,
siano Tj P F pHq e Tj Ñ T . Allora

}T �
j � T �} � }pTj � T q�} � }Tj � T } jÑ�8ÝÝÝÝÑ 0,

}STj � ST } � }SpTj � T q} ¤ }S}}Tj � T } jÑ�8ÝÝÝÝÑ 0.

Siccome T �
j , STj P F pHq, abbiamo provato che T �, ST P K pHq.

2.3 Caratterizzazioni della compattezza

Ricordiamo che, in uno spazio metrico completo, per un sottoinsieme Ω le seguenti affermazioni
sono equivalenti:

aq Ω è relativamente compatto pcioè Ω è compattoq;
bq Ω è totalmente limitato, cioè per ogni ε ¡ 0 esiste un numero finito di elementi x1, . . . , xN P

Ω tale che Ω � Bεpx1q Y . . . Y BεpxNq puna cosiddetta ε-reteq, dove Bδppq � tx P X |
dpx, pq   δu;

cq Ogni successione in Ω contiene una sottosuccessione convergente.

Un insieme compatto è sempre limitato e chiuso. In uno spazio vettoriale di dimensione finita
pquindi isomorfo a Cn per qualche nq vale anche l’opposto: cioè, un insieme limitato e chiuso è
compatto.

2.7 Teorema. Siano T P L pHq e B � tx P H | }x} ¤ 1u. Allora si ha:

T P K pHq ðñ T pBq relativamente compatto.

Dimostrazione. “ñ”: Sia dato un ε ¡ 0.
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T P K pHq ñ D S P F pHq : }T � S}   ε{2.
Y :� imS sottospazio chiuso di dimensione finita

SpBq � Y limitato e chiuso

+
ñ SpBq è compatta in Y .

ñ D n P N D y1, . . . , yn P SpBq : SpBq � BY
ε{2py1q Y . . .YBY

ε{2pynq,
dove BY

δ pyiq � ty P Y | }y � yi}   δu.
Sia x P B arbitrario.

ñ D i P t1, . . . , nu : Sx P BY
ε{2pyiq.

ñ }Tx� yi} ¤ }Tx� Sx} � }Sx� y}   ε
2
}x} � ε

2
  ε.

ñ Tx P Bεpyiq (qui Bεpyiq � tz P H | }z � yi}   εuq.
ñ T pBq � Bεpy1q Y . . .YBεpynq
ñ D ε-rete per T pBq.
ñ T pBq relativamente compatto.

“ð”: Sia dato un ε ¡ 0.

T pBq relativamente compatto ñ D n P N D y1, . . . , yn P H : T pBq � Bεpy1q Y . . .YBεpynq.
M :� xy1, . . . , yny ñ Tε :� PMT P F pHq.
Sia x P B arbitrario.

D k P t1, . . . , nu : }Tx� yk}   ε. Quindi

}pTε � T qx} ¤ }Tεx� yk} � }yk � Tx} � }PMTx� PMyk} � }yk � Tx}
¤ }PM}}Tx� yk} � }yk � Tx} ¤ 2ε.

ñ }Tε � T } � sup
xPB

}pTε � T qx} ¤ 2ε.

ε � 1{j ñ }T � T1{j} ¤ 2{j jÑ�8ÝÝÝÝÑ 0.

T1{j P F pHq @ j ñ T P K pHq.

Negli spazi di Banach, si definiscono gli operatori compatti tramite il Teorema 2.7.

Definizione. Siano X, Y spazi di Banach e B � tx P X | }x} ¤ 1u. L’operatore T P
L pX, Y q si dice compatto se T pBq è relativamente compatto in Y .

Un operatore che è limite di operatori di rango finito risulta essere compatto pcon la stessa
dimostrazioneq, ma il risultato opposto vale solo in spazi di Hilbert! Si può dimostrare che
K pX, Y q è uno sottospazio chiuso di L pX, Y q.

2.8 Teorema. Per T P L pHq le seguenti affermazioni sono equivalenti:

aq T P K pHq.
bq Se pxkq è una qualsiasi successione limitata, allora pTxkq contiene una sottosucces-
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sione convergente.

cq Se pxkq � H è una qualsiasi successione debolmente convergente, allora pTxkq con-
verge in H.

Dimostrazione. aq ñ bq : Sia }xk} ¤ C @ k.
yk :� xk{C ñ pykq � B � ty P H | }y} ¤ 1u.
Teorema 2.7 ñ pTykq contiene una sottosuccessione convergente.

Sia Tykj
jÑ�8ÝÝÝÝÑ y. Ne segue

Txkj
jÑ�8ÝÝÝÝÑ Cy ñ pTxkq contiene una sottosuccessione convergente.

bq ñ aq : Ogni successione in T pBq è della forma pTxkq con }xk} ¤ 1.

Ipotesi ñ Ogni successione in T pBq contiene una sottosuccessione convergente

ñ T pBq è relativamente compatto.

Teorema 2.7 ñ T compatto.

aq ñ cq : Sia xn á x. In particolare, pxnq è limitata.

x1 P H 1 ñ x1 � T P H 1 ñ x1pTxnq � px1 � T qpxnq Ñ px1 � T qpxq � x1pTxq
ñ Txn á Tx.

Dimostriamo Txn Ñ Tx. Per assurdo, supponiamo che sia vero il contrario. Si ha quindi

D ε ¡ 0 D pxnℓ
q : }Txnℓ

� Tx} ¥ ε p�q.
pxnℓ

q limitata

T compatto

+
2.8ñ D pxnℓj

q, y : Txnℓj
Ñ y

Txn á Tx ñ Txnℓj
á Tx ñ y � Tx ñ Txnℓj

Ñ Tx  (contraddice p�q).
cq ñ aq : Sia pxkq limitata.

Teorema di Eberlein-Smulian pH è riflessivo!) ñ D pxkℓq debolmente convergente.

Ipotesi ñ pTxkℓq convergente ñ pTxkq contiene una sottosuccessione convergente.

Allora cq implica bq e quindi aq.

2.9 Corollario. Sia I : H Ñ H l’operatore identità pcioè Ix � x per ogni x P Hq. Allora:

I P K pHq ðñ dimH   �8.

Dimostrazione. “ð”: dim im I � dimH   �8 ñ I P F pHq � K pHq.
“ñ”: Supponiamo dimH � �8 con base ortonormale te1, e2, e3, . . .u.
pekq � B � tx | }x} � 1u.
k �� ℓ ñ }ek � eℓ}2 � }ek}2 � }eℓ}2 � 2
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ñ pIekq � pekq non contiene nessuna sottosuccessione convergente.

Teorema 2.8 ñ I non è compatta.  
Di consequenza, in uno spazio H di dimensione infinita, un operatore compatto non è mai
invertibile (perché altrimenti I � TT�1 sarebbe compatto).

2.4 Esercizi

Esercizio 2.1. Sia T P L pHq. Dimostrare: T P K pHq ðñ T �T P K pHq.
Esercizio 2.2. Sia T P L pHq e V uno sottospazio chiuso di H con T pV q � V . Mostrare:

aq T autoaggiunto ñ T pV Kq � V K.

bq T compatto ñ T |V : V Ñ V compatto.

Esercizio 2.3. Sia panq � C una successione convergente ad a e sia T : ℓ2pNq Ñ ℓ2pNq definito
da

T px1, x2, x3, x4, . . .q � pa1x1, a2x2, a3x3, a4x4, . . .q.
Dimostrare che aI � T è un operatore compatto.

Esercizio 2.4. Sia te1, e2, e3, . . .u una base ortonormale di L2pAq. Dimostrare che le funzioni

fjkps, tq :� ejpsqekptq, j, k ¥ 1,

definiscono una base ortonormale tfjk | j, k ¥ 1u di L2pA� Aq.
Suggerimento. Si utilizzi il seguente teorema: Un sistema ortonormale tx1, x2, x3, . . .u in uno
spazio di Hilbert è una base ortonormale se, e solo se,

}x}2 �
�8̧

k�1

|px, xkq|2 @ x P H.

Osservazione. Siccome

te1, e2, e3, . . .u è una base ortonormale di L2pAq
ô

te1, e2, e3, . . .u è una base ortonormale di L2pAq,

in modo simile si dimostra che, posto rfjkps, tq � ejpsqekptq, j, k ¥ 1, t rfjk | j, k ¥ 1u è una base
ortonormale di L2pA� Aq.
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3 Operatori di Fredholm

Di cosa si tratta? Introduciamo la classe degli operatori di Fredholm (anche
detti operatori ad indice). Sono operatori che hanno nucleo di dimensione
finita e immagine di co-dimensione finita. In altre parole, se T P L pX, Y q è
un operatore di Fredholm, lo spazio delle soluzioni dell’equazione omogenea
Tx � 0 ha dimensione finita, mentre l’equazione inomogenea Tx � y è solubile
per quasi tutti y, salvo un difetto di dimensione finita.

Nel seguito, I � IX indica l’operatore identità X Ñ X, cioè Ipxq � x @ x P X.

3.1 Invertibilità di operatori

3.1 Teorema (Serie di Neumann). Sia T P L pXq con }T }   1. Allora I � T P L pXq è
invertibile con

pI � T q�1 �
�8̧

k�0

T k � I � T � T 2 � . . . ,

dove la serie converge passolutamenteq in L pXq. In particolare, }pI � T q�1} ¤ 1
1�}T } .

Dimostrazione. }T k} ¤ }T }k ñ
�8°
k�0

}T k} ¤
�8°
k�0

}T }k � 1
1�}T }   �8

ñ
�8°
k�0

T k assolutamente convergente in L pXq.

X Banach ñ L pXq spazio di Banach ñ DS P L pXq : Sn :�
n°
k�0

T k
nÑ�8ÝÝÝÝÑ S in L pXq.

}T k} ¤ }T }k kÑ�8ÝÝÝÝÑ 0 ñ

pI � T qS nÑ�8ÐÝÝÝÝ pI � T qSn � pI � T qpI � T � T 2 � . . .� T nq � I � T n�1 nÑ�8ÝÝÝÝÑ I

ñ pI � T qS � I

Analogamente: SpI � T q � I

ñ pI � T q invertibile, pI � T q�1 � S.

3.2 Corollario. Siano S, T P L pX, Y q. Allora:

T invertibile e }S}   1

}T�1} ñ S � T invertible.

In particolare: L �1pX, Y q :� tT P L pX, Y q |T invertibileu è aperto in L pX, Y q.
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Dimostrazione. S � T � T pI � T�1Sq.
}T�1S} ¤ }T�1}}S}   1

3.1ñ I � T�1S invertibile.

ñ pS � T q�1 � pI � T�1Sq�1T�1.

3.3 Corollario (Continuità dell’inversione). Sia Tk
kÑ�8ÝÝÝÝÑ T in L pX, Y q e T e tutti Tk

siano invertibili. Allora T�1
k

kÑ�8ÝÝÝÝÑ T�1 in L pY,Xq.

Dimostrazione. }T�1
k T } � }pI � T�1pT � Tkqq�1} Teorema 3.1¤ 1

1�}T�1pT�Tkq}
kÑ�8ÝÝÝÝÑ 1

ñ }T�1
k � T�1} � }T�1

k pTk � T qT�1} ¤ }T�1
k T }}Tk � T }}T�1}2 kÑ�8ÝÝÝÝÑ 0.

3.2 Operatori di Fredholm

3.4 Definizione. T P L pX, Y q , X, Y spazi di Banach, si dice poperatore diq Fredholm
oppure operatore ad indice, se dimkerT   �8 e codim imT � dim pY {imT q   �8. Si
definisce

indT :� dimkerT � codim imT. pindice di T q.
Scriviamo

FredpX, Y q :� tT P L pX, Y q | T Fredholmu, FredpXq :� FredpX,Xq,

3.5 Esempio. Sia T : C 1pra, bsq Ñ C pra, bsq con Tu � u1 pderivata primaq.

� Tu � 0 ðñ u1 � 0 ðñ u � const. ñ kerT � tu � c | c P Cu ha dimensione 1.

� Dato v P C pra, bsq, allora v � Tu con upxq �
» x

a

vptq dt� const ñ T suriettivo.

Ne segue T Fredholm, con indT � 1� 0 � 1.

3.6 Esempio. Sia T : C 1
2π�perpRq Ñ C2π�perpRq pfunzioni 2π-periodicheq con Tu � u1.

Come sopra, dimkerT � 1.

v � u1 P imT ñ
» 2π

0

vpθq dθ � up2πq � up0q � 0.

v P C2π�perpRq con
» 2π

0

vpθq dθ � 0 ñ upxq :�
» x

0

vpθq dθ � const è 2π-periodica

ñ imT �
!
v P C2π�perpRq |

» 2π

0

vpθq dθ � 0
)
, C2π�perpRq � imT ` tu � c | c P Cu.

Ne segue T Fredholm, con indT � 1� 1 � 0.
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Nota (somma diretta): Sia X ` Y � tpx, yq | x P X, y P Y u.

(1) X, Y Banach ñ X ` Y Banach con norma }px, yq} � }x}X � }y}Y ;

(2) X, Y Hilbert ñ X ` Y Hilbert con prodotto interno

xpx1, y1q, px2, y2qy � px1, x2qX � py1, y2qY .

3.7 Teorema (Lemma di Kato). Sia T P L pX, Y q con codim imT   �8. Allora imT
è chiuso. In particolare, T P FredpX, Y q ñ imT chiuso.

Dimostrazione. (1) Supponiamo che T sia iniettivo.

Sia Y � imT � Z, dimZ � codim imT   �8 ñ pZ, } � }Y q spazio di Banach.

Sia S : X ` Z Ñ Y , Spx, zq � Tx� z.

Ovviamente S è suriettivo.

S è iniettivo: Spx, zq � 0ñ Tx � �z P imT X Z � t0u ñ Tx � z � 0ñ x � z � 0.

S è continuo: pxk, zkq Ñ p0, 0q ñ xk Ñ 0, zk Ñ 0ñ Spxk, zkq � Txk � zk Ñ 0.

Dunque, S P L pX ` Z, Y q è biiettivo.

Teorema 0.1 ñ S�1 P L pY,X ` Zq
ñ pS�1q�1pAq � SpAq ppre-immagine di A sotto S�1q chiuso per ogni A � X ` Z chiuso.

X � t0u chiuso in X ` Z ñ SpX � t0uq � T pXq � imT chiuso in Y .

(2) Sia X � H spazio di Hilbert. Si ha allora

H � kerT ` pkerT qK.
Posto rH :� pkerT qK, rT :� T |

rH , seguerT P L p rH, Y q, rT iniettivo, im rT � imT .

i) ñ im rT chiuso.

pNon dimostriamo il caso in cui X è spazio di Banach.q1

3.8 Corollario. T P FredpHq ñ H � imT ` pimT qK � imT ` kerT � e

indT � dimkerT � dimkerT �.

In particolare: T P FredpHq autoaggiunto ñ indT � 0.

1La dimostrazione è analoga, utilizzando lo spazio quoziente rX :� X{kerT con norma }rxs} � infvPkerT }x�

v}X dove rxs � x � kerT . Allora rX è uno spazio di Banach e rT rxs :� Tx definisce un operatore iniettivorT P L p rX,Y q con im rT � imT . Se X è spazio di Hilbert, X{kerT � pkerT qK.



20 3.3 Proprietà fondamentali

3.3 Proprietà fondamentali

3.9 Teorema. Per T P L pHq le seguenti affermazioni sono equivalenti:

p1q T P FredpHq;
p2q D S P L pHq D R0, R1 P F pHq : ST � I �R0, e TS � I �R1;

p3q D S 1 P L pHq D R1
0, R

1
1 P K pHq : S 1T � I �R1

0, e TS 1 � I �R1
1.

Dimostrazione. p1q ñ p2q : X :� kerT e Y :� imT chiusi ñ H � X `XK � Y ` Y K.

T0 :� T |XK P L pXK, Y q biiettivo Teorema 0.1ñ T�1
0 P L pY,XKq.

S :� T�1
0 PY P L pHq ñ
TS � TT�1

0 PY � T0T
�1
0 PY � PY � I � PY K ,

ST � T�1
0 PY T � T�1

0 T � T�1
0 T pPX � p1� PXqq � T�1

0 TPXK � T�1
0 T0PXK � I � PX .

p2q ñ p1q : x P kerT ñ 0 � STx � pI �R0qx � x�R0x ñ x � R0x P imR0

ñ kerT � imR0 ha dimensione finita.

x � R1x� pI �R1qx � R1x� TSx @ x ñ H � imR1 � imTSloomoon
�imT

� imR1 � imT

ñ codim imT ¤ dim imR1   �8.

p2q ñ p3q : Immediato, poiché F pHq � K pHq.
p3q ñ p2q : Sia F 1

0 P F pHq con }R1
0 � F 1

0}   1.

Teorema 3.1 ñ A0 :� I � pR1
0 � F 1

0q invertibile
ñ S 1T � I �R1

0 � A0 � F 1
0 ñ pA�1

0 S 1qT � I � pA�1
0 F 1

0q
ñ ST � I �R0 con S :� A�1

0 S 1 e R0 :� A�1
0 F 1

0 P F pHq.
Analogamente: D rS P L pHq D rR P F pHq : T rS � I � rR. Troviamo:

S � rS � S � pST �R0qrS � S � SpI � rRq �R0
rS � S rR �R0

rS �: F P F pHq
ñ TS � T prS � F q � I � rR � TF � I �R1 con R1 :� rR � TF P F pHq.

Esplicitamente: un operatore T P L pHq è Fredholm se e solo se è invertibile modulo operatori
compatti (oppure di rango finito), ovvero se e solo se ammette una paramtrix modulo operatori
compatti (oppure di rango finito).

3.10 Corollario. T P FredpHq ñ T � P FredpHq e indT � � �indT .

Dimostrazione. Teorema 3.9 ñ T invertibile modulo K pHq.
Teorema 1.5, b), Teorema 2.6, b) ñ T � invertibile modulo K pHq.
Teorema 3.9 ñ T � Fredholm.
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3.8 ñ indT � � dimkerT � � dimkerT �� � �pdimkerT � dimkerT �q � �indT .

3.11 Teorema. Per T P L pHq le seguente affermazioni sono equivalenti:

p1q T P FredpHq;
p2q D m,n P N0 D A P L pCn, Hq iniettivo D B P L pH,Cmq :

�
T A
B 0



:
H
`
Cn

ÝÑ
H
`
Cm

:

�
x
z



ÞÑ

�
T A
B 0


�
x
z



�
�
Tx� Az
Bx



,

è invertibile.

In questo caso indT � m� n.

Dimostrazione. La dimostrazione si basa su due risultati:

Lemma 1 (Esercizio 3.4). Siano Tj : H0 Ñ Hj, j � 1, 2, lineari.

�
T1
T2



: H0 Ñ

H1

`
H2

biiettivo ðñ T2 : H0 Ñ H2 suriettivo e T1 : kerT2 Ñ H1 biiettivo.

Lemma 2. Siano T P L pHq e U, V sottospazi chiusi di H con dimU   �8 e
U X V � t0u. Se T P FredpV,Hq allora T P FredpV ` U,Hq e

indpT : V ` U Ñ Hq � indpT : V Ñ Hq � dimU.

Dimostrazione. Per induzione su n :� dimU .

n � 0 : vero.

Supponiamo che l’enunciato sia vero per ogni U con dimU � n P N0.

nñ n� 1 : Sia u1, . . . , un�1 base di U , U 1 :� xu1, . . . , uny.
V 1 :� V ` U 1 ñ indpT : V 1 Ñ Hq � indpT : V Ñ Hq � n.

Primo caso: Sia Tun�1 P T pV 1q. Otteniamo

D v1 P V 1 : Tv1 � Tun�1

ñ T pV 1 ` xun�1yq � T pV 1q,
kerpT : V 1 ` xun�1y Ñ Hq � kerpT : V 1 Ñ Hq ` xun�1 � v1y 2

ñ indpT : V ` U Ñ Hq � dimkerpT : V 1 Ñ Hq � 1� codimT pV 1q
� indpT : V 1 Ñ Hq � 1 � indpT : V Ñ Hq � n� 1.

2Per ”�” si osserva: v � v10 � αun�1 P kerT con v10 P V 1 ñ v � pv10 � αv1q � αpun�1 � v1q
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Secondo caso: Sia Tun�1 R T pV 1q. Ne segue

T pV 1 ` xun�1yq � T pV 1q ` xTun�1y,
kerpT : V 1 ` xun�1y Ñ Hq � kerpT : V 1 Ñ Hq

ñ indpT : V ` U Ñ Hq � dimkerpT : V 1 Ñ Hq � �
codimT pV 1q � 1

�
� indpT : V Ñ Hq � n� 1.

p1q ñ p2q : m :� dimkerT , n :� codim imT � dim pimT qK.
ñ DA P L �1pCn, pimT qKq, B1 P L �1pkerT,Cmq.
Con B :� B1PkerT vale p2q papplicare Lemma 1 con H0 � H ` Cn, H1 � H, H2 � Cm e
T1 � pT Aq, T2 � pB 0qq.

p2q ñ p1q : Lemma 1 ñ B : H Ñ Cm suriettivo,
�
T A

�
:
kerB
`
Cn

ÝÑ H invertibile

ñ H � T pkerBq ` ApCnq, T : kerB Ñ H iniettivo.

ñ T : kerB Ñ H Fredholm con indice �dimApCnq � �n.
U :� pkerBqK ñ B : U Ñ Cm biettivo ñ dimU � n.

Lemma 2 ñ indT � indpT : kerB ` U Ñ Hq � indpT : kerB Ñ Hq � dimU � m� n.

3.12 Teorema. FredpHq è un sottoinsieme aperto di L pHq e ind : FredpHq Ñ Z è
localmente costante pin particolare, continuoq.

Dimostrazione. Sia T P FredpHq e T :�
�
T A
B 0



come nel Teorema 3.11.b).

Siano ε � 1{}T �1}, S P L pHq con }S � T }   ε e S :�
�
S A
B 0



. Allora

}S � T } �
����S � T 0

0 0


��� � }S � T }   ε.

Corollario 3.2 ñ S è invertibile.

Lemma 3.11 ñ S P FredpHq con indS � m� n � indT .

3.13 Teorema. Valgono le seguenti proprietà.

aq Sia T : r0, 1s Ñ L pHq continua e T ptq P FredpHq per ogni t. Allora

indT p0q � indT p1q.

bq Siano T P FredpHq e K P K pHq. Allora T �K P FredpHq e
indpT �Kq � indT.
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Dimostrazione. aq t ÞÑ indT ptq : r0, 1s Ñ Z è continuo e quindi costante.

bq T invertibile modulo K pHq ñ T � tK invertibile modulo K pHq ñ T � tK P FredpHq.
Si conclude applicando il punto aq alla famiglia continua di operatori T ptq :� T � tK.

3.14 Corollario. Sia T P K pHq e λ �� 0. Allora λI�T P FredpHq con indpλI�T q � 0.
Quindi, l’equazione

pλI � T qx � y

ha un’unica soluzione per ogni y P H, oppure l’equazione

pλI � T qx � 0

ha una soluzione non-triviale px �� 0q.

3.15 Teorema. S, T P FredpHq ñ ST P FredpHq e indST � indS � indT .

Dimostrazione. iq La composizione di operatori Fredholm è Fredholm:

T1, T2 invertibili modulo K pHq ñ T1T2 invertibile modulo K pHq ñ T1T2 P FredpHq.

iiq
�
S 0
0 I



,

�
I 0
0 T



:
H
`
H
ÝÑ

H
`
H

Fredholm ñ

T ptq :�
�
S 0
0 I


�
I cospπt{2q �I sinpπt{2q
I sinpπt{2q I cospπt{2q


�
I 0
0 T



: r0, 1s Ñ L pH `Hq

è continua e Fredholm per ogni t, dato che l’operatore al centro della composizione è invertibile.

Teorema 3.13.a) ñ ind

�
S 0
0 T



� ind T p0q � ind T p1q � ind

�
0 �ST
I 0



.

Esercizio. T1, T2 P FredpHq ñ
�
T1 0
0 T2



,

�
0 T1
T2 0



P FredpH `Hq con

ind

�
T1 0
0 T2



� ind

�
0 T1
T2 0



� indT1 � indT2.

Troviamo quindi3

indS � indT � ind

�
S 0
0 T



� ind

�
0 �ST
I 0



� ind p�ST q � ind I � indST .

3È immediato provare ”T è Fredholm ô �T è Fredholm”, e si ha indT � ind p�T q.
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3.4 Esercizi

Esercizio 3.1. Sia T P L pHq nilpotente, cioè esiste N P N tale che TN � 0. Dimostrare che
I � T è invertibile.

Esercizio 3.2. Nei seguenti casi determinare dimkerT e codim imT :

1q T � d2

dx2
: C 2pra, bsq Ñ C pra, bsq.

2q T � d2

dx2
: C 2pS1q Ñ C pS1q.

3q T P L pℓ2pNqq con T px1, x2, x3, . . .q � p0, x2, x3, . . .q.
Esercizio 3.3. Sia T P L pCm,Cnq. Determinare l’indice di T .

Esercizio 3.4. Siano Tj : H Ñ Hj, j � 1, 2, lineari. Dimostrare che

�
T1
T2



: H Ñ

H1

`
H2

biiettivo ðñ T2 : H Ñ H2 suriettivo e T1 : kerT2 Ñ H1 biiettivo.
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4 Teoria spettrale

Di cosa si tratta? Lo spettro di un operatore T P L pXq, X Banach, può
essere considerato come una generalizzazione dell’insieme degli autovalori di
una matrice quadrata al caso infinito dimensionale. Consiste di tutti i valori
λ P C tali che λI � T non è invertibile. Il teorema spettrale per gli operatori
compatti e autoaggiunti in uno spazio di Hilbert generalizza il fatto che le
matrici autoaggiunte sono diagonalizzabili. Determiniamo, in particolare, lo
spettro degli operatori di rango finito in uno spazio di Hilbert.

4.1 Spettro e risolvente di operatori limitati

4.1 Definizione. Sia T P L pXq, X Banach. L’insieme risolvente di T è

ρpT q :� tλ P C | λI � T è invertibileu.

L’operatore risolvente di T è

Rpλ, T q :� pλI � T q�1, λ P ρpT q.

Il complementare dell’insieme risolvente si chiama lo spettro di T ,

σpT q :� CzρpT q � tλ P C | λI � T non è invertibileu.

λ P σpT q si dice autovalore se

ker pλI � T q � tx P X | Tx � λxu �� t0u pautospazio di λq.

Se λ P σpT q non è un autovalore, allora

ker pλI � T q � t0u, im pλI � T q � X pinclusione strettaq,

cioè λI � T è iniettivo ma non suriettivo.

Definizione. Più in generale, si possono dare le seguenti definizioni:

(1) spettro puntuale: λ P σppT q ô kerpλI � T q �� t0u pλ è un autovalore di T q.
(2) Se kerpλI � T q � t0u (cioè λI � T è iniettivo):

(i) spettro continuo: λ P σcpT q ô λI � T non è suriettivo ma il suo immagine è
denso in X.

(ii) spettro residuale: λ P σrpT q ô l’immagine di λI � T non è denso in X.
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Per definizione, si ha quindi

σpT q � σppT q Y σcpT q Y σrpT q � CzρpT q.

4.2 Esempio. Sia X :� C pra, bsq e T P L pXq l’operatore di moltiplicazione per h P X, cioè

pTfqptq � hptqfptq, f P X, t P ra, bs.

T è limitato:

}Tf}8 � max
tPra,bs

|hptq||fptq| ¤ }h}8}f}8 @ f P X ñ }T }L pXq ¤ }h}8.

Per g P X,

pλI � T qf � g ðñ fptq � gptq
λ� hptq @ t P ra, bs.

Se λ R hpra, bsq, 1
λ�h P Cpra, bsq e λI � T è biiettivo.

Sia λ P hpra, bsq. Se g � 1, f non appartiene a Cpra, bsq; quindi λI � T non è suriettivo.

Pertanto,
λ P σpT q ðñ D t P ra, bs : hptq � λ ðñ λ P hpra, bsq.

Per λ P ρpT q, l’inverso pλI � T q�1 è l’operatore di moltiplicazione per la funzione 1
λ�h .

Esempio. SianoX � L2pra, bsq e T : X Ñ X definito da pTfqpxq � x�fpxq (cioè T è l’operatore
di moltiplicazione per la funzione hpxq � xq.

C :� maxt|a|, |b|u ñ |pTfqpxq| ¤ C|fpxq| @ x P ra, bs ñ }T }L pXq ¤ C.

Per λ P C,

px� λq fpxq � 0 q.o. ra, bs ñ fpxq � 0 q.o. ra, bs ô f � 0ô kerpλI � T q � t0u,

cioè λI � T è sempre iniettivo. Per g P X,

pλI � T qf � g ô fpxq � gpxq
λ� x

, q.o. ra, bs.

Se λ R ra, bs, 1
λ�x è continua su ra, bs e quindi f è ben definita ed appartiene a X. Quindi λI�T

è suriettivo e λ P ρpT q.
Sia allora λ P ra, bs. Se g � 1, f non appartiene ad X; quindi λI � T non è suriettivo. Ma se
g � 0 in un intorno di λ in ra, bs, f è ben definita ed appartiene a X. Tali g sono dense in

X. Infatti, posto, per n " 1, gn � g �
�
1� χpλ� 1

n
,λ� 1

n
q
�
, χE funzione caratteristica di E � R,

g P X, si ha gn � 0 in un intorno di λ, gn P X, e, per il Teorema della Convergenza Dominata,

}gn � g}X nÑ�8ÝÝÝÝÑ 0. Pertanto, im pλI � T q è densa in X. Concludiamo che λ P σcpT q per ogni
λ P ra, bs e quindi σpT q � σcpT q � ra, bs.
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4.3 Teorema. Sia T P L pXq, X Banach. Allora

aq ρpT q � C è aperto, σpT q � C è chiuso. Inoltre

σpT q �  
λ P C | |λ| ¤ }T }(.

bq }pλI � T q�1} ¥ 1

distpλ, σpT qq per ogni λ P ρpT q.

Dimostrazione. Sia λ0 P ρpT q e ε :� 1{}pλ0I � T q�1}.
λI � T � pλ0I � T q � pλ� λ0qI � pλ0I � T q�I � pλ� λ0qpλ0I � T q�1

�
|λ� λ0|   ε ñ }pλ� λ0qpλ0I � T q�1}   1

3.2ñ λI � T invertibile @ λ P Uεpλ0q

ñ Uεpλ0q � ρpT q ñ
#
ρpT q aperto, σpT q � CzρpT q chiuso,
distpλ0, σpT qq ¥ ε � 1{}pλ0I � T q�1}

|λ| ¡ }T } ñ }T {λ}   1
3.2ñ pλI � T q � λpI � T {λq invertibile.

4.4 Esempio. aq Sia T P L pℓ2pNqq definito da T px1, x2, . . .q � p0, x1, x2, . . . q.
Allora 0 P σrpT q perché kerp0 � I �T q � kerT � t0u e im p0 � I �T q � imT � tx P ℓ2pNq |
x1 � 0u non è densa in ℓ2pNq.

bq Sia T P L pℓ2pNqq definito da T px1, x2, . . .q � px2, x3 . . .q.
Allora σpT q � tλ P C | |λ| ¤ 1u e λ è un autovalore se e solo se |λ|   1. Infatti:

}T } � 1 ñ σpT q � t|λ| ¤ 1u
px2, x3 . . .q � T px1, x2, . . .q � λpx1, x2, . . .q ðñ px1, x2, x3 . . .q � x1p1, λ, λ2, . . .q
p1, λ, λ2, . . .q P ℓ2 ðñ °

j |λ|2j   �8 ðñ |λ|2   1 ðñ |λ|   1 pserie geometricaq.
t|λ|   1u � σpT q
σpT q chiuso

+
ñ σpT q � t|λ| ¤ 1u

4.5 Teorema. T P L pHq autoaggiunto ñ σpT q � R.

Dimostrazione. Sia λ � α � iβ con β �� 0.

ñ }pλI � T qx}2 � pαx� iβx� Tx, αx� iβx� Txq � }αx� Tx}2 � }βx}2.
ñ }pλI � T qx} ¥ |β|}x} @ x P H.

ñ λI � T iniettivo.

im pλI � T q è chiuso: Sia yk � pλI � T qxk Ñ y.
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}xk � xℓ} ¤ 1
|β|}pλI � T qpxk � xℓq} � 1

|β|}yk � yℓ}. ñ pxkq successione di Cauchy

ñ D x P H : xk Ñ x ñ y � limkÑ�8pλI � T qxk � pλI � T qx ñ y P im pλI � T q.
λI � T normale:

pλI � T qpλI � T q� � pλI � T qpλI � T q � pλI � T qpλI � T q � pλI � T q�pλI � T q
ñ pim pλI � T qqK � ker pλI � T q� 1.7,bq� ker pλI � T q � t0u.
ñ H � t0uK � pim pλI � T qqKK � im pλI � T q � im pλI � T q.
ñ λI � T invertibile.

4.6 Teorema. Sia T P L pHq autoaggiunto. Siano λ1 �� λ2 due autovalori di T . Allora:

u1 P ker pλ1I � T q, u2 P ker pλ2I � T q ñ u1 K u2.

Dimostrazione. Grazie al fatto che T � T � e λj P R, j � 1, 2, troviamo

λ1pu1, u2q � pTu1, u2q � pu1, Tu2q � λ2pu1, u2q ñ pλ1 � λ2q pu1, u2q � 0.

Pertanto, λ1 �� λ2 ñ pu1, u2q � 0.

4.2 Lo spettro degli operatori compatti autoaggiunti

La teoria spettrale per operatori compatti autoaggiunti si basa sul seguente risultato:

4.7 Teorema. Sia T P L pHq autoaggiunto. Valgono:
aq Almeno uno dei valori �}T } o }T } appartiene a σpT q.
bq Se T P K pHq allora almeno uno dei valori �}T } o }T } è un autovalore di T .

Dimostrazione: Il caso T � 0 è banale, quindi assumiamo }T } ¡ 0.

Teorema 1.8: }T } � sup}x}�1 |pTx, xq|
ñ D pxnq � H : }xn} � 1 @ n e |pTxn, xnq| nÑ�8ÝÝÝÝÑ }T }.
pTx, xq P R @ x ñ Spdg4 pTxn, xnq nÑ�8ÝÝÝÝÑ α �� 0 con α � �}T } o α � }T }
paltrimenti passiamo ad una sottosuccessioneq.
0 ¤ }pT � αIqxn}2 � }Txn}2 � 2αpTxn, xnq � α2 ¤ 2α2 � 2αpTxn, xnq nÑ�8ÝÝÝÝÑ 0

ñ }pT � αIqxn} nÑ�8ÝÝÝÝÑ 0.

aq Supponiamo α P ρpT q. Allora 1 � }xn} ¤ }pT � αIq�1}}pT � αIqxn} nÑ�8ÝÝÝÝÑ 0 
4Senza perdere di generalità.
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bq T compatto ñ Spdg D y P H : Txn
nÑ�8ÝÝÝÝÑ y

paltrimenti passiamo ad una sottosuccessioneq
ñ xn � 1

α

�
pαI � T qxn � Txn

	
nÑ�8ÝÝÝÝÑ 1

α
y

ñ y
nÑ�8ÐÝÝÝÝ Txn

nÑ�8ÝÝÝÝÑ T
�

1
α
y
	
� 1

α
Ty ñ Ty � αy.

|α| � }αxn} nÑ�8ÝÝÝÝÑ }y} ñ }y} � |α| ¡ 0 ñ y �� 0.

4.8 Teorema (Teorema spettrale). Sia T P K pHq autoaggiunto e dimH � �8. Allora

σpT q � t0, λ1, λ2, λ3, . . .u

con un numero finito o infinito di autovalori reali λk �� 0 con autospazi Vk :� kerpλkI�T q
di dimensione finita. Nel caso di un numero infinito di autovalori, λk

kÑ�8ÝÝÝÝÑ 0. Unendo
le base ortonormali di kerT e di tutti i Vk, si ottiene una base ortonormale di H.

Dimostrazione. Notiamo:


 Teorema 4.5: σpT q � R.


 0 P σpT q perché altrimenti I � T�1T P K pHq (Corollario 2.9)


 0 �� λ P σpT q ñ λ autovalore con dimkerpλI � T q   �8 pper l’Alternativa di Fredholmq.
Ci serve il seguente

Lemma.5 Sia T P K pHq autoaggiunto e V un sottospazio di H con T pV q � V .

Allora T pV Kq � V K e T |V K P K pV Kq autoaggiunto con }T |V K} ¤ }T }.

Teorema 4.7 ñ D λ1 P t�}T }, }T }u : V1 � kerpλ1I � T q �� t0u.
Abbiamo H � V1 `H1 con H1 :� V K

1 e T pV1q � V1.

Lemma ñ T1 :� T |H1 P K pH1q autoaggiunto, }T1} ¤ }T }.
Supponiamo T1 �� 0.

Teorema 4.7 ñ D λ2 P t�}T1}, }T1}u : kerpλ2I � T1q �� t0u.
λ2 �� λ1 perché altrimenti

kerpλ2I � T1q � kerpλ1I � T1q � H1 X kerpλ1I � T q � V K
1 X V1 � t0u  .

Teorema 4.6 ñ kerpλ2I � T q � V K
1 � H1 ñ kerpλ2I � T1q � V2.

Abbiamo H1 � V2 `H2 con H2 :� V K
2 pcomplementare in H1q e T2 :� T |H2 .

Nota che H � V1 `H1 � pV1 ` V2q `H2, cioè H2 � pV1 ` V2qK pcomplementare in Hq.
Iterazione di questo procedimento genera una successione pche, eventualmente, assume solo una
quantità finita di valori distintiq di autovalori λ1, λ2, λ3, . . ., diversi tra di loro con

5Veda Esercizio 2.2.
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(i) |λ1| ¥ |λ2| ¥ . . . ¥ |λn| ¥ . . . ¡ 0

(ii) Vn � kerpλnI � T q, Hn � pV1 ` . . .` VnqK e λn�1 � �}T |Hn}.

Si verifica necessariamente una delle due situazioni trattate di seguito.

Primo caso: La procedura si ferma, cioè T |Hn � 0 per un n P N ñ Hn � kerT .

x P kerT e y P Vk ñ λkpy, xq � pTy, xq � py, Txq � 0
λk ��0ñ x K Vk

ñ kerT � pV1 ` . . .` VnqK � Hn.

ñ Hn � kerT e H � V1 ` . . .` Vn ` kerT .

Secondo caso: La procedura non si ferma.

ñ D pxnqnPN : xn P Vn, }xn} � 1.

T P K pHq Teorema 2.8ñ D sottosuccessione convergente pTxnk
q.

Txn � λnxn e xn K xm per n �� m ñ λ2nk
� λ2nℓ

� }Txnk
� Txnℓ

}2 k,ℓÑ�8ÝÝÝÝÝÑ 0

p|λn|q decrescente, quindi convergente
|λnk

| kÑ�8ÝÝÝÝÑ 0

+
ñ |λn| nÑ�8ÝÝÝÝÑ 0ñ λn

nÑ�8ÝÝÝÝÑ 0.

Sia te1, e2, . . .u ottenuta dall’unione delle basi di tutti i Vk e sia rH � spante1, e2, . . .u.
Come sopra: kerT � spante1, e2, . . .uK � rHK.

Sia x P rHK.

ñ x P V K
n � Hn per ogni n e }Tx} � }T |Hnx} ¤ }T |Hn}}x} � |λn�1|}x} nÑ�8ÝÝÝÝÑ 0

ñ x P kerT .

Concludiamo quindi che kerT � rHK e H � rH ` kerT .

4.9 Esempio. Sia T P K pℓ2pNqq con T px1, x2, x3, . . .q � px1, x2{2, x3{3, . . .q. Ovviamente 0
non è un autovalore. Gli autovalori sono 1, 1{2, 1{3, . . . con autovettori e1, e2, e3, . . ..

4.10 Corollario. Sia T P K pHq autoaggiunto. Allora H ha una base ortonormale di
autovettori tx1, x2, x3, . . .u. Se Txj � λjxj per ogni j, allora

Tx �
�8°
j�1

λjpx, xjqxj @ x P H pforma diagonale di T q.

Il teorema spettrale rimane parzialmente valido per un operatore compatto non autoaggiunto
oppure in uno spazio di Banach: lo spettro è numerabile ed è composto da 0 e solo autovalori
con autospazi di dimensione finita. 0 è l’unico eventuale punto di accumulazione.
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4.3 Lo spettro degli operatori di rango finito

Un operatore T P L pHq di rango finito n ¥ 1 ha la forma

Tx �
ņ

j�1

px, yjqxj @ x P H

con xj, yj P H. Supponiamo che sia x1, . . . , xn sia y1, . . . , yn siano linearmente indipendenti.6

Allora

imT � xx1, . . . , xny, kerT � xy1, . . . , ynyK.
Determiamo gli altri autovalori. Gli autovettori appartengono necessariamente a imT . Dobbi-
amo quindi studiare

T : imT ÝÑ imT.

Possiamo utilizzare tutti i mezzi dell’algebra lineare. La rappresentazione di T rispetto alla base
x1, . . . , xn di imT è la matrice

T :� ptijq1¤i,j¤n � ppxj, yiqq1¤i,j¤n �

���px1, y1q � � � pxn, y1q
...

...
px1, ynq � � � pxn, ynq

��
.
Gli autovalori di T sono quelli di T che corrispondono agli zeri del polinomio caratteristico.
Risulta

σpT q � t0u Y tautovalori di Tu � t0, λ1, . . . , λnu,

dove i λj non devono essere necessariamente diversi fra di loro (in caso di zeri di molteplicità
piu grande di 1q. Se a � pa1, . . . , anq è un autovettore di T per l’autovalore λk, allora x �
a1x1 � . . .� anxn soddisfa Tx � λkx.

4.11 Esempio. Sia T un operatore integrale in A � RN con nucleo kpx, yq �
n°
j�1

rjpxqsjpyq,

pTfqpxq �
ņ

j�1

rjpxq
»
A

fpyqsjpyq dy, x P A.

Supponiamo che r1, . . . , rn e s1, . . . , sn siano linearmente indipendenti. Gli autovalori di T sono
0 e gli autovalori della matrice ptijq con

tij �
»
A

rjpxqsipxq dx.
6Questo non è una limitazione: Secondo Lemma 2.2, dato T P F pHq, possiamo scegliere gli xi come base

ortogonale di imT e yi :� T�xi.
°

i αiyi � 0 implica
°

i αixi P kerT� � pimT qK. Allora
°

i αixi � 0 e quindi
αi � 0 per tutti i.
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Per λ R σpT q esiste pλI � T q�1. Sia data y P H. Cerchiamo x P H con

pλI � T qx � y ðñ λx� Tx � y ðñ λx�
ņ

j�1

px, yjqxj � y.

Passando al prodotto interno con yi per tutti gli i, troviamo il sistema

λpx, yiq �
ņ

j�1

px, yjqpxj, yiq � py, yiq, i � 1, . . . , n.

In forma matriciale questo significa

pλI �Tq

���px, y1q...
px, ynq

��
�
���py, y1q...
py, ynq

��
 ðñ

���px, y1q...
px, ynq

��
� pλI �Tq�1

���py, y1q...
py, ynq

��
.
Quindi, definendo ���b1py, λq...

bnpy, λq

��
:� pλI �Tq�1

���py, y1q...
py, ynq

��
,
troviamo la soluzione

pλI � T q�1y � 1

λ
y � 1

λ

ņ

j�1

bjpy, λqxj.

4.12 Esempio. Con la notazione dell’Esempio 4.11 e g P L2pAq troviamo

rpλI � T q�1gspxq � gpxq
λ

� 1

λ

ņ

j�1

bjpg, λqrjpxq.

4.13 Esempio. Studiare, in L2pr0, 2πsq, l’equazione integrale

λfpxq �
» 2π

0

kpx, yqfpyq dy � gpxq, 0 ¤ x ¤ 2π,

dove kpx, yq � sinx sin y � 2 cosx cos y. Nella notazione introdotta sopra, n � 2 e

r1pxq � s1pxq � sinx, r2pxq � s2pxq �
?
2 cosx.

In particolare, l’operatore pTfqpxq �
» 2π

0

kpx, yqfpyq dy è autoaggiunto.

Calcoliamo T �
�
π 0
0 2π



, che ha autovalori π e 2π, con rispettivi autospazi xp1, 0qy e xp0, 1qy.

Risulta σpT q � t0, π, 2πu con
kerT � xs1, s2yK, ker pπI � T q � xs1y, ker p2π � T q � xs2y.
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Per λ R t0, π, 2πu calcoliamo�
b1pg, λq
b2pg, λq



�
�
1{pλ� πq 0

0 1{pλ� 2πq

�pg, s1qL2

pg, s2qL2



.

Risulta

fpxq � rpλI � T q�1gspxq � 1

λ
gpxq � pg, s1qL2

λpλ� πq sinx�
?
2pg, s2qL2

λpλ� 2πq cosx

� 1

λ
gpxq � sinx

λpλ� πq
» 2π

0

gpyq sin y dy � 2 cosx

λpλ� 2πq
» 2π

0

gpyq cos y dy.

4.4 Esercizi

Esercizio 4.1. Sia T : C pr�1, 1sq Ñ C pr�1, 1sq l’operatore di moltiplicazione per la funzione
h P C pr�1, 1sq, cioè pTfqpxq � hpxqfpxq. Nei seguenti casi calcolare spettro, autovalori e
autofunzioni di T :

aq hpxq � 2x.

bq hpxq � 0 per x ¤ 0, hpxq � x per x ¡ 0.

Esercizio 4.2. Sia T P L pHq. Dimostrare:

aq σpT �q � σpT q � tλ | λ P σpT qu.
bq T unitario ñ σpT q � tλ P C | |λ| � 1u.

Esercizio 4.3. Sia T P L pℓ2q con T px1, x2, . . .q � p0, x1, x2, . . .q. Dimostrare che σpT q � tλ P
C | |λ| ¤ 1u e che T non ha nessun autovalore.

Esercizio 4.4. Determinare autovalori, autofunzioni e risolvente degli operatori integrali in L2

con nucleo k :

aq kpx, yq � xy in r0, 1s,
bq kpx, yq � xy � x2y2 in r�1, 1s,
cq kpx, yq � x� y in r0, 1s.

Trovare la soluzione f in L2 della seguente equazione integrale:

dq
» 2π

0

sin yfpyq dy � fpxq � x in r0, 2πs.

Esercizio 4.5. Siano T P L pHq e λ, µ P ρpT q. Dimostrare che

Rpµ, T q �Rpλ, T q � pλ� µqRpλ, T qRpµ, T q.
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Esercizio 4.6. Sia T P L pHq. Dimostrare che λ ÞÑ Rpλ, T q : ρpT q Ñ L pHq è continua.

Esercizio 4.7. Sia T P K pHq autoaggiunto tale che pTx, xq ¥ 0 per ogni x P H. Dimostrare
che esiste un S P L pHq tale che S2 � T .

Esercizio 4.8. Sia T P K pHq autoaggiunto e tx1, x2, x3, . . .u base ortonormale di autovettori,
Txj � λjxj. Sia λ R σpT q e y P H. Dimostrare che

pλI � T q�1y �
�8̧

j�1

1

λ� λj
py, xjqxj � 1

λ
y � 1

λ

�8̧

j�1

λj
λ� λj

py, xjqxj.

Esercizio 4.9. Sia K un operatore integrale con nucleo k P L2pA� Aq, cf. Esempio 2.5. Sup-
poniamo che kps, tq � kpt, sq, quindi K è autoaggiunto. Sia te1, e2, e3, . . .u una base ortonormale
di L2pAq di autofunzioni di K con Kej � λjej per ogni j. Dimostrare che

}k}2L2pA�Aq �
�8̧

j�1

|λj|2.
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5 Operatori di Toeplitz

Di cosa si tratta? Studiamo i cosidetti operatori di Toeplitz nello spazio di
Hardy delle funzioni 2π-periodiche. Caraterizziamo gli operatori Fredholm e
troviamo una “formula topologica” che esprime l’indice in forma di un indice
di avvolgimento.

Lo spazio L2pS1q � L2
2π�perpRq degli funzioni 2π-periodiche e integrabili al quadrato su r0, 2πs

con prodotto interno

pf, gqL2 � 1

2π

» 2π

0

fpxqgpxq dx

ha la base ortonormale ten | n P Zu, dove

enpxq � einx, n P Z.

Ogni f P L2pS1q ha la rappresentazione pserie di Fourier, convergenza in L2pS1qq

f �
�8̧

n��8
pfpnqen, pfpnq � pf, enqL2pS1q � 1

2π

» 2π

0

e�inxfpxq dx.

Se φ P C pS1q � C2π�perpRq, cioè una funzione continua e 2π-periodica, allora

Mφf :� φ � f, f P L2pS1q,

definisce l’operatore Mφ P L pL2pS1qq con }Mφ}L pL2pS1qq ¤ }φ}8 :

}Mφf}2L2 � 1

2π

» 2π

0

|φpxqfpxq|2 dx ¤ max
0¤x¤2π

|φpxq|2 1

2π

» 2π

0

|fpxq|2 dx � }φ}28}f}2L2 .

Inoltre è facile da vedere che pMφq� �Mφ.

Nota: Vale perfino }Mφ} � }φ}8. Infatti, sia |φpx0q| � }φ} pWeierstrass!q. Sia χh l’estensione
2π-periodica della funzione caratteristica dell’intervallo rx0�h, x0�hs moltiplicato per 1{?2h.
Allora }χh}L2 � 1{?2π e, vista la continuità di φ,

}Mφχh}2L2

}χh}2L2

� 1

2h

» x0�h

x0�h
|φpxq|2 dx hÑ0�ÝÝÝÑ |φpx0q|2 � }φ}28.

5.1 Definizione (Hardy space). Si definisce

H2pS1q �  
f P L2pS1q | pfpnq � 0 per ogni n   0

( � spante0, e1, e2, e3, . . .u.
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Denotiamo con P � PH2pS1q la proiezione ortogonale con imP � H2pS1q, cioè

P
� �8̧

n��8
pfpnqen	 � �8̧

n�0

pfpnqen.
Ovviamente

pI � P q
� �8̧

n��8
pfpnqen	 � �1̧

n��8
pfpnqen.

5.2 Definizione. Sia φ P C pS1q. Allora

Tφf � PMφf � P pφfq, f P H2pS1q,

definisce Tφ P L pH2pS1qq, il cosidetto operatore di Toeplitz associato a φ.

Valgono }Tφ} ¤ }P }}Mφ} ¤ }φ}8 e pTφq� � Tφ, dato che

pTφf, gq � pPMφ, gq � pf,MφPgq � pPf,Mφgq � pf, PMφgq � pf, Tφgq,
per ogni f � Pf, g � Pg P H2pS1q.

5.1 Proprietà di Fredholm

5.3 Teorema. φ P C pS1q ñ pI � P qMφP, PMφpI � P q P K pL2pS1qq.

Dimostrazione. 1. passo: Sia φ � eL con L P Z. Allora

MφPf � eL

�8̧

n�0

pfpnqen � �8̧

n�0

pfpnqen�L � �8̧

n�L
pfpn� Lqen.

L ¥ 0 ñ pI � P qMφP � 0.

L   0 ñ pI � P qMφPf �
�1°
n�L

pfpn� Lqen P xeL, eL�1, . . . , e�1y.

ñ pI � P qMφP P F pL2pS1qq � K pL2pS1qq.

2. passo: Sia φ � p �
N°

n��N
anen un polinomio trigonometrico.

1. passo ñ pI � P qMpP �
N°

n��N
anpI � P qMenP P F pL2pS1qq.

3. passo: Sia φ P C pS1q. Teorema di Stone-Weierstrass ñ
Esiste successione ppkq di polinomi trigonometrici con }pk � φ}8 kÑ�8ÝÝÝÝÑ 0.
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ñ }pI � P qMpkP � pI � P qMφP } � }pI � P qMpk�φP } ¤ }pk � φ}8 kÑ�8ÝÝÝÝÑ 0.

ñ pI � P qMφP è limite di operatori di rango finito, quindi è compatto.

Teoremi 1.5 e 2.6 ñ PMφpI � P q � �pI � P qM�
φP

�� � �pI � P qMφP
��

compatto.

5.4 Corollario. φ, ψ P C pS1q ñ TφTψ � Tφψ modulo K pH2pS1qq.

Dimostrazione. Mφψ �MφMψ e Teorema 5.3 ñ
S :� PMφψ � PMφPMψ � PMφpI � P qMψ P K pL2pS1qq.

SpH2pS1qq � H2pS1q ñ TφTψ � Tφψ � S|H2pS1q P K pH2pS1qq.

5.5 Lemma. Per h P R e f P L2pS1q definiamo pShfqpxq :� fpx� hq. Allora:
iq Sh P L pL2pS1qq e Sh P L pH2pS1qq sono invertibili con pShq�1 � S�h.

iiq ShP � PSh e TShφ � ShTφS�h.

Dimostrazione. Calcoliamo i coefficienti di Fourier di Shf :

yShfpnq � 1

2π

» 2π

0

e�inxfpx� hq dx � 1

2π

» 2π

0

e�inpy�hqfpyq dy � einh pfpnq.
Seguono iq e ShP � PSh. Inoltre, Shpf � gq � pShfq � pShgq e ShS�h � I implicano

MShφf � Shφ � f � Shpφ � S�hfq � pShMφS�hqf.
ñ MShφ � ShMφS�h ñ TShφ � PMShφ � PShMφS�h � ShPMφS�h � ShTφS�h

5.6 Teorema. Sia φ P C pS1q. Allora:

Tφ P FredpH2pS1qq ðñ φ non ha degli zeri.

Dimostrazione. “ð”: ψ :� 1{φ P C pS1q.
Corollario 5.4 ñ TφTψ � Tφψ � T1 � I modulo operatori compatti.

Analogamente: TψTφ � I modulo operatori compatti.

ñ Tφ invertibile modulo operatori compatti.

Teorema 3.9 ñ Tφ Fredholm.

“ñ”: 1. passo: Supponiamo che φ � 0 in rx0 � π{N, x0 � π{N s per un N P N.
Definiamo

φn � S�2πn{Nφ, n � 0, . . . , N � 1.
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φn � 0 in rpx0 � 2πn{Nq � π{N, px0 � 2πn{Nq � π{N s ñ φ0 � . . . � φN�1 � 0 in R.
Corollario 5.4 ñ Tφ0 � � �TφN�1

� Tφ0�...�φN�1
� 0 modulo operatori compatti.

Lemma 5.5 ñ Tφk
� S�2πk{NTφS2πk{N Fredholm.

Teorema 3.15 ñ Tφ0 � � �TφN�1
Fredholm.

ñ Tφ0 � � �TφN�1
P K pH2pS1qq X FredpH2pS1qq  

(dato che K pHq X FredpHq � H per ogni H con dimH � �8).

2. passo: Supponiamo che esista un x0 tale che φpx0q � 0.

Possiamo supporre che x0 � 0 paltrimenti consideriamo S�x0φq.

Sia χk 2π-periodica con χkpxq �

$'&'%
0 : 0 ¤ x ¤ 1{2k
2kx� 1 : 1{2k ¤ x ¤ 1{k
1 : 1{k ¤ x ¤ 2π

.

χkφ
kÑ�8ÝÝÝÝÑ φ uniformemente:

max
0¤x¤2π

|pφ� χkφqpxq| � max
0¤x¤2π

|p1� χkqpxq||φqpxq| ¤ max
0¤x¤1{k

|φpxq| kÑ�8ÝÝÝÝÑ 0.

φpxq � χkpxqφpxq �

$'&'%
φpxq : 0 ¤ x ¤ 1{2k
2p1� kxqφpxq : 1{2k ¤ x ¤ 1{k
0 : 1{k ¤ x ¤ 2π

ñ max
0¤x¤2π

|pφ� χkφqpxq| ¤ max
0¤x¤1{k

|φpxq| kÑ�8ÝÝÝÝÑ 0.

ñ }Tχkφ � Tφ} ¤ }χkφ� φ}8 kÑ�8ÝÝÝÝÑ 0.

FredpH2pS1qq aperto in L pH2pS1qq ñ D K @ k ¥ K : Tχkφ P FredpH2pS1qq  
(è in contraddizione con l’affermazione del primo passo)

Usermo il seguente risultato senza dimostrazione:

Indice di avvolgimento: Sia φ P C pS1q senza zeri. Allora esistono un unico numero L P Z e
una ψ P C pS1q tale che

φpxq � eiLxeψpxq @ x.

τpφq :� L è detto indice di avvolgimento di φ. Se φ P C 1pS1q vale

τpφq � 1

2πi

» 2π

0

φ1pxq
φpxq dx.

5.7 Teorema (Gohberg-Krein). Sia φ P C pS1q senza zeri. Allora indTφ � �τpφq.
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Dimostrazione. Definiamo φtpxq :� eiLxetψpxq, 0 ¤ t ¤ 1.

φt non ha zeri
5.6ñ Tφt Fredholm.

t ÞÑ φt : r0, 1s Ñ C pS1q continuo.
ñ t ÞÑ Tφt : r0, 1s Ñ L pL2pS1qq continuo.
Teorema 5.6, Teorema 3.13, a) ñ indTφ � indTφ1 � indTφ0 � indTeL .

L ¥ 0: Sia f P H2pS1q.

TeLf � P
�
eL

�8̧

n�0

pfpnqen	 � �8̧

n�L
pfpn� Lqen.

ñ TeL iniettivo e imTeL �
!
f P H2pS1q | pfp0q � . . . � pfpL� 1q � 0

)
ñ codim imTeL � L e indTeL � �L � �τpφq.

L   0: pTeLq� � TeL � Te�L

ñ indTeL
3.10� �ind pTeLq� � �indTe�L

�L¡0� �p�p�Lqq � �L � �τpφq.

5.2 Lo spettro degli operatori di Toeplitz (complemento)

Nel seguito scriviamo pfpnq � 1

2π

» 2π

0

e�inxfpxq dx, n P Z, per f P L1pS1q (si noti che LqpSq �
LppSq se 1 ¤ p ¤ q ¤ �8q.

5.8 Lemma. Sia f P L1pS1q. Allora valgono:

aq pfpnq � 0 @ n P Z ñ f � 0 quasi ovunque.

bq f a valori reali e pfpnq � 0 @ n ¥ 1 ñ f � pfp0q quasi ovunque.
Dimostrazione. aq Ipotesi ñ

» 2π

0

ppxqfpxq dx � 0 per tutti i polinomi trigonometrici.

Stone-Weierstrass Theorem ñ
» 2π

0

φpxqfpxq dx � 0 @ φ P C pS1q
ñ f � 0 quasi ovunque pveda Teorema 6.12q.

bq Sia c � pfp0q e g :� f � c.

ñ pgpnq � pfpnq � pc, enqL2 � 0 @ n ¥ 0.

g a valori reali ñ pgp�nq � pgpnq � 0 @ n ¥ 0.

aq ñ g � 0 quasi ovunque.
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5.9 Lemma. Siano f, g P L2pS1q. Allora fg P L1pS1q e xfgpnq � �8̧

k��8
pfpn� kqpgpkq.

Dimostrazione. Disuguaglianza di Hölder ñ fg P L1pS1q con }fg}L1pS1q ¤ }f}L2pS1q}g}L2pS1q

|xfgpnq| ¤ » 2π

0

|fpxq||gpxq| dx ¤ 2π}f}L2pS1q}g}L2pS1q.

Se snpf, gq denota la serie, allora

|snpf, gq| ¤
¸
kPZ

| pfpn� kq||pgpkq| ¤ �¸
kPZ

| pfpn� kq|2
	 1

2
�¸
kPZ

|pgpkq|2	 1
2 � }f}L2pS1q}g}L2pS1q.

Quindi
pf, gq ÞÑ T pf, gq :� xfgpnq � snpf, gq : L2pS1q ` L2pS1q ÝÑ C

è bilineare e continua, cioè esiste C ¥ 0 con

|T pf, gq| ¤ C}f}L2pS1q}g}L2pS1q @ f, g P L2pS1q.

Per p � er e q � es con r, s P Z vale

ppqpnq � per�s, enqL2 � δr�s,n (simbolo di Kronecker),

snpp, qq �
¸
kPZ

pppn� kqpqpkq � ¸
kPZ

δn�k,rδk,s � δn�s,r � δr�s,n

,.-ñ T pp, qq � 0.

T bilineare ñ T pp, qq � 0 se p, q polinomi trigonometrici.

Siano f, g P L2pS1q arbitrari e pN :�
N°

k��N
pfpkqek, qN :�

N°
k��N

pgpkqek.
ñ pN

NÑ�8ÝÝÝÝÑ f e qN
NÑ�8ÝÝÝÝÑ g in L2pS1q

T continuo ñ 0 � T ppN , qNq NÑ�8ÝÝÝÝÑ T pf, gq
ñ T pf, gq � 0 ñ xfgpnq � snpf, gq per ogni f, g P L2pS1q.

5.10 Lemma. Sia t0u �� V � L2pS1q sottospazio chiuso conMe1pV q � V e X
n¥0

MenpV q �
t0u. Allora esiste u P L8pS1q tale che

V �MupH2pS1qq � tuf | f P H2pS1qu, |u| � 1 quasi ovunque.

Dimostrazione. Scriviamo Mn :�Men per l’operatore di moltiplicazione per en. Si noti che
tutti Mn sono operatori unitari in L2pS1q con M�

n �M�n e MmMn �Mm�n.

ñ Vn :�MnpV q sottospazio chiuso di L2pS1q.
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Vale Vn�1 �M1pVnq @ n, V � V1 � V2 � . . . e X
n¥1

Vn � t0u.
Sia V � V1 ` U1 con U1 :� V K

1 (complementare in V q.
U1 �� t0u perché altrimenti V � V1 e quindi Vn � V @ n  
Step 1: Sia u P U1 con }u}L2 � 1.

ñ u P V e u P V K
n @ n ¥ 1.

ñ u KMnu � enu @ n ¥ 1.

ñ 0 � pu, enuqL2 � 1

2π

» 2π

0

e�nuu dx � y|u|2pnq @ n ¥ 1.

Lemma 5.8.b) ñ |u|2 � cost q.o.

}u}L2 � 1 ñ |u| � 1 q.o.

Step 2: Mostriamo che U1 � spantuu. Sia w P U1 con u K w.

V � V1 ` U1

Mn unitario

+
ñ Vn � Vn�1 ` Un�1 con Un�1 :�MnpU1q � V K

n�1 @ n (complementare in Vnq.

n ¥ 0 ñ Mnu KMnw e Mnu P V K
n�1 � V K

m @m ¥ n� 1 ñ Mnu KMmw @m ¥ n ¥ 0

Scambiare ruoli di u e w ñ Mnu KMmw @ n ¥ m ¥ 0.

ñ 0 � pMnu,MmwqL2 � 1

2π

» 2π

0

en�muw dx � xuwpm� nq @ m,n P N0

Lemma 5.8.a) ñ uw � 0 q.o.

|u| � 1 q.o. ñ w � 0 q.o.

Step 3: U :� Y
n¥1

U1 ` . . .` Un è uno sottospazio di V .

Sia x P V e x P UK.

ñ x P V X UK
1 ñ x P V KK

1 � V1.

ñ x P V1 X UK
2 ñ x P V KK

2 � V2.

Iterazione ñ x P X
n¥1

Vn � t0u
ñ UK � t0u (complementare in V q ñ V � U .

Step 4: V � U � spantu, ue1, ue2, . . .u �Mupspante0, e1, e2, . . .uq �MupH2pS1qq.

5.11 Teorema (F. e M. Riesz). 0 �� f P H2pS1q ñ Nf :� tx P r0, 2πs | fpxq � 0u ha
misura zero.

Dimostrazione. V :� tg P H2pS1q | g|Nf
� 0u è sottospazio di L2pS1q con Me1pV q � V e

MenpV q �MenpH2pS1qq � spanten, en�1, en�2, . . .u.
Lemma 5.10 ñ V �MupH2pS1qq con |u| � 1 q.o.
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1 � e0 P H2pS1q ñ u �Mupe0q P V ñ u � 0 su Nf .

ñ Nf ha misura zero.

5.12 Teorema (Coburn’s Lemma). Sia φ P C pS1q senza zeri. Allora kerTφ � t0u oppure
kerT �

φ � t0u.

Dimostrazione. Supponiamo il contrario.

ñ D 0 �� f, g P H2pS1q : Tφf � Tφg � 0.

ñ P pφfq � P pφgq � 0

ñ xφfpnq � 0 e xφgp�nq � xφgpnq � 0 @ n ¥ 0.pgpnq � pgp�nq � 0 @ n ¥ 1
Lemma 1ñ {pφfqgpnq � 0 @ n ¥ 0.pfpnq � 0 @ n ¤ �1 Lemma 1ñ {pφgqfpnq � 0 @ n ¤ 0.

pφgqf � pφfqg ñ yφfgpnq � 0 @ n P Z.
Lemma 2 ñ φgf � 0.

Teorema ñ φ � 0 quasi ovunque  (infatti, f, g �� 0 q.o.).

5.13 Teorema. Sia φ P C pS1q. Allora:

Tφ invertibile ðñ Tφ Fredholm e indTφ � 0.

Dimostrazione. “ñ”: Ovvio.

“ð”: Teorema 5.6 ñ φ non ha zeri.

0 � indTφ � dimkerTφ � dimkerT �
φ .

Teorema 5.12 ñ dimkerTφ � 0

Alternativa di Fredholm ñ Tφ biiettivo, cioè invertibile.

5.14 Corollario. Sia φ P C pS1q. Allora:

σpTφq � φpS1q Y tλ | τpλ� φq �� 0u.

Dimostrazione. Teoremi 5.6, 5.7, 5.13 ñ
λI � Tφ � Tpλ�φq invertibile ðñ λ� φpxq �� 0 @ x e τpφ� λq � 0

ðñ λ R φpS1q e τpφ� λq � 0.

Quindi: λ P σpT q ðñ λ P φpS1q oppure τpφ� λq �� 0.



43

6 Distribuzioni (funzioni generalizzate)

Di cosa si tratta? Le distribuzioni sono funzionali continui su opportuni
spazi di funzioni. Generalizzano il concetto di funzione, nel senso che qualsiasi
funzione localmente integrabile (in particolare, continua) può essere identifi-
cata con una distribuzione e che molte operazioni standard sulle funzioni si
estendono alle distribuzioni. Per questo motivo, le distribuzioni sono anche
chiamate funzioni generalizzate. Per alcuni aspetti, le distribuzioni si compor-
tano addirittura meglio delle funzioni. Per esempio, qualsiasi distribuzione può
essere (parzialmente) derivata tutte le volte che si desidera. Questo rende le
distribuzioni un ambiente molto adatto allo studio delle equazioni alle derivate
parziali.

Nel seguito Ω denota un sottoinsieme aperto di Rn con n ¥ 1.

Scriveremo K �� Ω se K è compatto e K � Ω.

Ricordiamo che un multi-indice è un vettore α � pα1, . . . , αnq con αj P t0, 1, 2, . . .u. Per una
funzione f � fpxq � fpx1, . . . , xnq di classe C NpΩq si scrive7

Bαf � Bαxf � Bα1
x1
� � � Bαn

xn f :� B|α|f
Bxα1

1 � � � Bxαn
n

p“α-derivata parziale”q,

con |α| � |α1|�. . .�|αn| ¤ N . Si scrive anche, per x P Rn, α P Nn
0 multi-indice, xα :� xα1

1 � � � xαn
n ,

dove è sottinteso l’abuso di notazione8 x0 � 1 per ogni x P R.

6.1 Le funzioni test

Il supporto di una funzione continua f : Rn Ñ C e l’insieme

supp f :� tx P Rn | fpxq �� 0u.

6.1 Esempio. fpxq � sinx ñ supp f � RzπZ � R.

6.2 Definizione (Spazio delle funzioni test). Definiamo

DpΩq �  
ϕ P C8pRnq | suppϕ �� Ω

(
.

DpΩq è uno spazio vettoriale pcon la solita addizione di funzioni e la solita moltiplicazione di
funzioni per numeri complessiq. Infatti,

supp pϕ� ψq � suppϕY suppψ, supp pλϕq � suppϕ pλ P Cq.
7L’ordine di applicazione delle derivate parziali in Bαf non è rilevante, grazie al Teorema di Schwarz, per le

ipotesi f P CN pΩq e |α| ¤ N .
8Cioè, il fattore xj non è presente nel monomio xα se αj � 0, j � 1, . . . , n.
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Si noti anche che DpΩq � DprΩq � DpRnq per Ω � rΩ.
6.3 Esempio (Mollificatore). ρpxq :�

#
exp

�
1

|x|2�1

	
: |x|   1

0 : |x| ¥ 1.

Con c :�
»
Rn

ρpxq dx sia ρεpxq � ε�n

c
ρ
�x
ε

	
, ε ¡ 0.

ñ 0 ¤ ρε P DpRnq con supp ρ � tx | |x| ¤ εu e
»
Rn

ρεpxq dx � 1.

6.4 Lemma. Sia K �� Ω. Esiste ϕ P DpΩq con 0 ¤ ϕ ¤ 1 e ϕ � 1 in un intorno di K.

Dimostrazione. Sia Kε :� tx P Rn | distpx,Kq ¤ εu, χε � χKε la funzione caratteristica e

ϕεpxq :� pχ2ε � ρεqpxq �
»
|y|¤ε

χ2εpx� yqρεpyq dy.

Dai risultati della prima parte (Capitolo 2) ñ ϕε P C8pRnq.

|y| ¤ ε ñ χ2εpx� yqρεpyq �
#
ρεpyq : x P Kε

0 : x R K3ε

ñ ϕε � 1 su Kε e supp ϕε � K3ε.

Basta scegliere ε ¡ 0 tale che K3ε � Ω e prendere ϕ :� ϕε.

6.5 Definizione. In DpRnq definiamo le norme } � }j, j � 0, 1, 2, . . . da

}ϕ}j :� max
xPR, |α|¤j

|Bαxϕpxq|.

6.6 Definizione. Una successione pϕkqk � DpΩq si dice convergente a ϕ P DpΩq se
iq D K �� Ω @ k : suppϕk � K,

iiq }ϕk � ϕ}j kÑ�8ÝÝÝÝÑ 0 per ogni j � 0, 1, 2, . . .

Scriviamo ϕk
kÑ�8ÝÝÝÝÑ ϕ oppure lim

kÑ�8
ϕk � ϕ; si nota che allora anche suppϕ � K.

Condizione iiq significa che Bαϕk kÑ�8ÝÝÝÝÑ Bαϕ uniformemente in Rn per tutte α.

6.7 Lemma. Sia β P Nn
0 e ϕk

kÑ�8ÝÝÝÝÑ ϕ. Allora Bβϕk kÑ�8ÝÝÝÝÑ Bβϕ.

Dimostrazione. Sia L :� |β| e pϕkq come nella Definizione 6.6. Allora

iq ϕk � 0 on ΩzK ñ Bβϕk � 0 on ΩzK ñ supp Bβϕk � K per ogni k,
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iiq }Bβϕk � Bβϕ}j ¤ }ϕk � ϕ}j�L kÑ�8ÝÝÝÝÑ 0 per ogni j.

Quindi Bβϕk kÑ�8ÝÝÝÝÑ Bβϕ.

6.2 Distribuzioni

6.8 Definizione. Una mappa T : DpΩq Ñ C si dice distribuzione in/su Ω se

iq T è lineare.

iiq Per ogni successione pϕkqk convergente in DpΩq vale lim
kÑ�8

T pϕkq � T
�

lim
kÑ�8

ϕk

	
.

Definiamo
D 1pΩq � tT : DpΩq Ñ C | T distribuzioniu.

Si nota che D 1pΩq è uno sottospazio dello spazio vettoriale delle mappe lineari DpΩq Ñ C.

6.9 Teorema (Disuguaglianza di controllo). Sia T : DpΩq Ñ C lineare. Le seguenti
affermazioni sono equivalenti:

aq T P D 1pΩq
bq @K �� Ω DC � CpKq ¥ 0 D j � jpKq P N @ ϕPDpΩq,

suppϕ�K : |T pϕq| ¤ C}ϕ}j

Dimostrazione. bq ñ aq : ϕk Ñ ϕ in DpΩq come in Definizione 6.6.

ñ |T pϕkq � T pϕq| � |T pϕk � ϕq| ¤ CpKq}ϕk � ϕ}jpKq kÑ�8ÝÝÝÝÑ 0.

aq ñ bq : Dato T supponiamo che bq non sia vero per un K �� Ω.

ñ @ k P N D ϕkPDpΩq,
suppϕk�K : |T pϕkq| ¡ k}ϕk}k.

ψk :� ϕk{T pϕkq ñ T pψkq � 1 e }ψk}k � }ϕk}k
|T pϕkq|   1

k
.

ñ }ψk}j
k¥j¤ }ψk}k   1

k

kÑ�8ÝÝÝÝÑ 0 per ogni j.

ñ ψk Ñ 0 in DpΩq, ma T pψkq � 1 �Ñ 0.  

6.10 Definizione. T P D 1pΩq si chiama distribuzione di ordine finito se in bq del Teorema
6.9 si può scegliere un j simultaneamente per tutti i K �� Ω. Il j più piccolo possibile è
detto ordine di T .

6.11 Esempio (Distribuzioni regolari). Sia f P L1
locpΩq, cioè»

K

|fpxq| dx   �8 @ K �� Ω;
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pf si dice localmente integrabile in/su Ωq. Definiamo

Tf : DpΩq Ñ C, Tf pϕq �
»
Ω

fpxqϕpxq dx.

Tf è una distribuzione di ordine 0 :

|Tf pϕq| ¤
»
Ω

|fpxq||ϕpxq| dx �
»
K

|fpxq||ϕpxq| dx

¤ max
xPRn

|ϕpxq| �
»
K

|fpxq| dx � CK}ϕ}0 @ ϕPDpΩq,
suppϕ�K.

Tf è detta distribuzione regolare, f è la densità di Tf .

6.12 Teorema. Sia f localmente integrabile in Ω. Allora

Tf pϕq � 0 @ ϕ P DpΩq ðñ f � 0 quasi ovunque in Ω.

In particolare, la densità di una distribuzione regolare è determinata unicamente pquasi
ovunqueq.

Dimostrazione. L’implicazione“ð” è immediata. Dimostriamo l’implicazione “ñ”.

Passo I. Sia Ω � Rn e f P L1pRnq.
Dai risultati della prima parte (Capitolo 2): f � ρε εÑ0ÝÝÑ f in L1pRnq.
pf � ρεqpxq �

»
fpyqρεpx� yq dy � Tf pρεpx� �qq � 0 @x

ñ f � 0 in L1pRnq ñ f � 0 quasi ovunque.

Passo II. Sia K �� Ω arbitrario e ψ P DpΩq con ψ � 1 su K.

ψf P L1pRnq pidentificando ψf con la sua estensione a 0 da Ω a tutto Rnq
Tψf pϕq � Tf pψϕq � 0 @ ϕ P DpRnq
Passo I ñ f � 0 quasi ovunque in K.

Kn :� tx P Ω | distpx,RnzΩq ¥ 1
n
, |x| ¤ nu

ñ Kn �� Ω e Ω � YnKn

f � 0 quasi ovunque in Kn per ogni n ñ f � 0 quasi ovunque in Ω

psi utilizzi che l’unione numerabile di insiemi di misura nulla è un insieme di misura nullaq.

6.13 Esempio (Distribuzione δ, distribuzione di Dirac). Definiamo

δ : DpRnq Ñ C : ϕ ÞÑ δpϕq � ϕp0q.
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Allora δ P D 1pRnq di ordine 0 :

|δpϕq| � |ϕp0q| ¤ max
xPRn

|ϕpxq| � }ϕ}0 @ ϕ P DpRnq.

Analogamente, la distribuzione δ centrata in x0 P Rn è

δx0 : DpRnq Ñ C, δx0pϕq � ϕpx0q.

δ non è una distribuzione regolare:

Supponiamo δ � Tf . Sia ρ P DpRnq come nell’Esempio 6.3.

ñ ϕkpxq � ρpkxq P DpRnq e

1 � ϕkp0q � δpϕkq � Tf pϕkq �
»
B1p0q

fpxqϕkpxq dx kÑ�8ÝÝÝÝÑ 0,

grazie al Teorema della convergenza dominata.  

6.14 Esempio (Valor principale di 1{x). x ÞÑ 1{x non appartiene a L1
locpRq, quindi non

definisce una distribuzione regolare su R. Comunque

T pϕq � lim
εÑ0�

»
Rzr�ε,εs

ϕpxq
x

dx, ϕ P DpRq,

definisce T P D 1pRq, detta valor principale di 1{x. Si scrive anche pv-
1

x
o vp

1

x
. Infatti:

Taylor ñ ϕpxq � ϕp0q � xrϕpxq con rϕ P C8pRq. Allora

T pϕq �
»
Rzr�1,1s

ϕpxq
x

dx� lim
εÑ0�

»
r�1,1szr�ε,εs

ϕpxq
x

dx

�
»
R
upxqϕpxq dx�

» 1

�1

rϕpxq dx �: Tupϕq � Spϕq

perché »
r�1,1szr�ε,εs

ϕp0q
x

dx � ϕp0q
� » �ε

�1

1

x
dx�

» 1

ε

1

x
dx

	
� 0,

e dove

upxq �
#
0 : |x| ¤ 1

1{x : |x| ¡ 1
P L1

locpRq.

Inoltre,

|rϕpxq| �
��� » 1

0

ϕ1ptxq dt
��� ¤ max

sPR
|ϕ1psq| ¤ }ϕ}1 @ ϕ P DpRq.

Quindi T � Tu � S è una distribuzione di ordine 1.
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6.15 Definizione. Una successione pTkqk � D 1pΩq si dice convergente a T P D 1pΩq se

Tkpϕq kÑ�8ÝÝÝÝÑ T pϕq @ ϕ P DpΩq.

6.16 Esempio. Con il mollificatore di Esempio 6.3 vale Tρ1{k
kÑ�8ÝÝÝÝÑ δ :

|Tρ1{kpϕq � δpϕq| �
��� »

Rn

ρ1{kpxqϕpxq dx� ϕp0q
��� � ��� »

Rn

ρ1{kpxq
�
ϕpxq � ϕp0q� dx���

¤ max
xPRn

|x|¤1{k
|ϕpxq � ϕp0q| kÑ�8ÝÝÝÝÑ 0.

6.3 Prodotto di distribuzioni e funzioni di classe C8

Siano f P L1
locpΩq e a P C8pΩq. Allora Tf e Taf sono distribuzioni regulari e

Taf pϕq �
»
Ω

apxqfpxqϕpxq dx � Tf paϕq.

Si osserva che nell’espressione a destra possiamo sostituire Tf con una distribuzione generale
T . Ciò suggerisce la definizione successiva.

6.17 Teorema (e Definizione). Siano a P C8pΩq e T P D 1pΩq. Allora

paT qpϕq � T paϕq, ϕ P DpΩq,

definisce una distribuzione aT P D 1pΩq.

6.4 Derivazione di distribuzioni

Sia f P C 1pRq. Allora Tf , Tf 1 sono distribuzioni regolari. È naturale definire la prima derivata
di Tf come Tf 1 . Per un qualsiasi ϕ P DpRq vale

Tf 1pϕq �
» �8

�8
f 1pxqϕpxq dx � fpxqϕpxq

���x��8
x��8looooooomooooooon

�0

�
» �8

�8
fpxqϕ1pxq dx � �Tf pϕ1q.

Mentre Tf 1pϕq ha senso solo se f è differenziabile, l’espressione�Tf pϕ1q ha senso per una qualsiasi
funzione f e, di più, possiamo sostituire Tf con una qualsiasi distribuzione T . Questo ci porta
a definire T 1 P DpRq con T 1pϕq � �T pϕ1q.

6.18 Teorema (e definizione). Sia T P D 1pRq e k P N. Allora

T pkqpϕq :� p�1qkT pϕpkqq @ ϕ P DpRq
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definisce una distribuzione T pkq � dk

dxk
T P D 1pRq pla k-esima derivata di T q.

Dimostrazione. Ovviamente T pkq : DpRq Ñ C lineare.

Sia ϕℓ
ℓÑ�8ÝÝÝÝÑ ϕ.

Lemma 6.7 ñ ϕ
pkq
ℓ

ℓÑ�8ÝÝÝÝÑ ϕpkq.

ñ p�1qkT pϕpkqℓ q ℓÑ�8ÝÝÝÝÑ p�1qkT pϕpkqq.

Se f P C kpRq, allora pTf qpkq � Tf pkq , cioè si ottiene la derivata usuale. Se f e una funzione non

necessariamente derivabile, pTf qpkq si dice k-esima derivata debole oppure k-esima derivata nel
senso delle distribuzioni di f . In generale, la derivata debole non è una di-stribuzione regolare.

6.19 Teorema. Sia f una funzione di forma

fpxq �
#
gpxq : x ¡ x0

hpxq : x   x0
, g P C 1prx0,�8qq, h P C 1pp�8, x0sq

pcome f è definita in x0 non importaq. Allora

pTf q1 � Tf 1 �
�
gpx0q � hpx0q

�
δx0 , f 1pxq :�

#
g1pxq : x ¡ x0

h1pxq : x   x0
.

Si nota che gpx0q � hpx0q � fpx0�q � fpx0�q è l’altezza del salto di f in x0.

Dimostrazione. Per ogni ϕ P DpRq

pTf q1pϕq � �Tf pϕ1q � �
» x0

�8
hpxqϕ1pxq dx�

» �8

x0

gpxqϕ1pxq dx

� �hpxqϕpxq
���x�x0
x��8

�
» x0

�8
h1pxqϕpxq dx� gpxqϕpxq

���x��8
x�x0

�
» �8

x0

g1pxqϕpxq dx

� pgpx0q � hpx0qqϕpx0q �
» �8

�8
f 1pxqϕpxq dx � pgpx0q � hpx0qqδx0pϕq � Tf 1pϕq.

Questo finisce la dimostrazione.

Il teorema precedente si generalizza a funzioni con più di un salto:

6.20 Esempio. Sia fpxq � |x2 � 1| �
#
1� x2 : �1   x   1

x2 � 1 : |x| ¡ 1
. Derivare Tf :

Prima derivata: pTf q1 � Tf 1 , f 1pxq �
#
�2x : �1   x   1

2x : |x| ¡ 1
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Seconda derivata: pTf q2 � pTf 1q1 � Tf2 � 4δ1 � 4δ�1, f2pxq �
#
�2 : �1   x   1

2 : |x| ¡ 1

Terza derivata: pTf q3 � pTf2q1 � 4δ11 � 4δ1�1 � 4δ1 � 4δ�1 � 4δ11 � 4δ1�1

Un operatore a coefficienti costanti di secondo ordine

P � a
d2

dx2
� b

d

dx
� c pa, b, c P Cq

si può pensar come operatore lineare nell’ambito delle distribuzioni:

P : D 1pRq ÝÑ D 1pRq, PT � aT 2 � bT 1 � cT.

Le soluzioni dell’equazione omogenea aT 2 � bT 1 � cT � 0 sono le ben note soluzioni classiche
y P C8pRq, cioè le distribuzioni regolari Ty con ay2�by1�cy � 0 pnon ci sono soluzioni aggiuntive
in D 1pRq – per le equazioni a derivate parziali invece alle soluzioni classiche si aggiungono nuovo
soluzioni distribuzionali). Dimostriamo questo fatto per equazioni di primo ordine:

Teorema. Siano I � pα, βq, f P C pIq e T P D 1pIq con T 1 � bT � Tf . Allora D y P C 1pIq
tale che y1pxq � bypxq � fpxq in I e T � Ty.

Dimostrazione. Passo I. Sia T 1 � 0. Sia S � T1 P D 1pIq, cioè Spϕq �
» β

α

ϕpxq dx.
ψ P DpIq e Spψq � 0 implica T pψq � 0:

Ψpxq :�
» x

α

ψptq dt P DpIq e quindi T pψq � T pΨ1q � �T 1pΨq � 0.

Scegliamo un ϕ0 P DpIq con Spϕ0q � 1.

S
�
ϕ� Spϕqϕ0

� � Spϕq � SpϕqSpϕ0q � 0 @ ϕ P DpIq
ñ 0 � T pϕ� Spϕqϕ0q � T pϕq � SpϕqT pϕ0q @ ϕ P DpIq

ñ T pϕq �
» β

α

T pϕ0qϕpxq dx @ ϕ P DpIq
ñ T � Tc con c � T pϕ0q.
Passo II. Esercizio 6.2 ñ pebxT q1 � bebxT � ebxT 1 � ebxpT 1 � bT q � ebxTf � Tebxf .

Sia g P C 1pIq con g1 � ebxf .

ñ pebxT � Tgq1 � Tebxf � Tg1 � 0

Passo I ñ D c P C : ebxT � Tg � Tc ñ T � e�bxTpg�cq � Te�bxpg�cq

Basta scegliere ypxq � e�bxpgpxq � cq.

Si dice equazione impulsiva un’equazione non-omogenea del tipo

aT 2 � bT 1 � cT � S, S P D 1pRq,
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con S una distribuzione non regolare. Tutte le soluzioni sono della forma T � Ty � pT , dove y è

la generica soluzione dell’omogenea, e pT è una soluzione particolare di PT � S.

6.21 Definizione. Ogni soluzione dell’equazione PT � δ è detta soluzione fondamentale
per l’operatore P .

6.22 Teorema. Sia P come sopra con a �� 0. Sia x0 P R e y la soluzione classica
dell’equazione Py � 0 con ypx0q � 0 e y1px0q � 1{a. Se

fpxq :�
#
0 : x   x0

ypxq : x ¡ x0

allora PTf � δx0. In caxo x0 � 0 si ottiene una soluzione fondamentale per P .

Dimostrazione. Si applica il Teorema 6.19 due volte:

Tf 1 � Tf 1 � p0� 0qδ � Tf 1 , dove f
1pxq �

#
0 : x   x0

y1pxq : x ¡ x0
,

pTfq2 � pTf 1q1 � Tf2 � py1px0q � 0qδ � Tf2 � 1
a
δx0 , dove f

2pxq �
#
0 : x   0

y2pxq : x ¡ 0
.

ñ apTf q2 � bpTf q1 � cTf � Taf2�bf 1�cf � a 1
a
δx0 .

paf2 � bf 1 � cfqpxq �
#
0 : x   x0

ay2 � by1pxq � cypxq : x ¡ x0
� 0 ñ PTf � δx0 .

6.23 Esempio. Cerchiamo una soluzione fondamentale di Py � y2�y1�2y. Allora a � b � 1,
c � �2 e x0 � 0. Polinomio caratteristico:

ppλq � λ2 � λ� 2 � pλ� 1qpλ� 2q.

Quindi

y2 � y1 � 2y � 0 ðñ ypxq � Ae�x �Be2x, A,B P C.

Determinare A e B :

yp0q � 0 ðñ A�B � 0,

y1p0q � 1 ðñ �A� 2B � 1

+
ðñ A � �1{3, B � 1{3.

Risulta la soluzione fondamentale Tf con fpxq �
#
0 : x   0

�1
3
pe�x � e2xq : x ¡ 0

.
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6.24 Esempio. Cerchiamo una soluzione di Py � y2 � 4y1 � 4y � δ2. Allora a � 1, b � �4,
c � 4 e x0 � 2. Polinomio caratteristico:

ppλq � λ2 � 4λ� 4 � pλ� 2q2.

Quindi
y2 � 4y1 � 4y � 0 ðñ ypxq � Ae2x �Bxe2x, A,B P C.

Determinare A e B :

yp2q � 0 ðñ Ae4 � 2Be4 � 0,

y1p2q � 1 ðñ 2Ae4 � 5Be4 � 1

+
ðñ A � �2e�4, B � e�4.

Risulta la soluzione y � Tf con fpxq �
#
0 : x   2

px� 2qe2px�2q : x ¡ 2.

6.5 Distribuzioni ed equazioni a derivate parziali

Sia T P D 1pRnq e α multi-indice. Analogamente alla Definizione 6.18,

BαT pϕq � p�1q|α|T pBαϕq @ ϕ P DpRnq.

definisce la distribuzione BαT P D 1pRnq. Quindi un operatore differenziale P �
m°

|α|�0

aαBα, con
aα P C8pRnq, |α| ¤ m, definisce un’applicazione lineare

P : D 1pRnq ÝÑ D 1pRnq : T ÞÑ PT �
m̧

|α|�0

aαpBαT q.

Consideriamo adesso degli operatori a coefficienti costanti, cioè tutti gli aα sono numeri comp-
lessi, |α| ¤ m.

6.25 Esempio. Con m � 2 e aα �
#
1 : α P t2e1, . . . , 2enu
0 : altrimenti

risulta

P �
ņ

k�1

B2ek �
ņ

k�1

B2xk � B2x1 � . . .� B2xn �: ∆,

il cosidetto operatore di Laplace oppure Laplaciano.

6.26 Definizione. Le soluzioni dell’equazione PT � δ sono dette soluzioni fondamentali
per l’operatore P .
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Se f P L1
locpRnq e ϕ P DpRnq, allora

pf � ϕqpxq �
»
Rn

fpyqϕpx� yq dy � Tf pϕpx� �qq, x P Rn.

Questa relazione ci porta alla seguente definizione della convoluzione:

6.27 Teorema (e Definizione). Siano T P D 1pRnq e ϕ P DpRnq.

pT � ϕqpxq :� T pϕpx� �qq, x P Rn,

definisce una funzione T �ϕ P C8pRnq. Per ogni α vale BαpT �ϕq � pBαT q �ϕ � T � pBαϕq.

Dimostrazione. Sia upxq � pT � ϕqpxq.
Continuità: Sia x0 P Rn fissato.

upx0 � hq � upx0q � T
�
ϕpx0 � h� �q � ϕpx0 � �q

�
per ogni h P Rn.

Taylor ñ rhpyq :� ϕpx0 � h� yq � ϕpx0 � yq � h �
» 1

0

∇ϕpx0 � th� yq dt
Ovviamente rh P C8pRnq per ogni h. Verificheremo:

i) D K �� Rn @hPRn

|h|¤1 : supp rh � K,

ii) Bαrh hÑ0ÝÝÑ 0 uniformemente in Rn per ogni α P Nn
0 .

Per iq si nota che D N ¡ 0 tale che suppϕ � BNp0q e
rhpyq �� 0ñ D 0 ¤ t ¤ 1 : ∇ϕpx0 � th� yq �� 0

ñ x0 � th� y P suppϕ

ñ D z P suppϕ : y � x0 � th� z

ñ |y � x0| ¤ |z| � |th|   N � 1

ñ y P BN�1px0q
ñ supp rh � K :� BN�1px0q.
Per iiq si nota: |Bαy rhpyq| ¤ |h|max

zPRn
|∇Bαϕpzq| ¤ const � |h|.

iq, iiq ñ rh
hÑ0ÝÝÑ 0 in DpRnq

ñ upx0 � hq � upx0q � T prhq hÑ0ÝÝÑ 0

Derivabilità parziale: Si procede in modo simile, scrivendo

upx0 � τejq � upx0q
τ

� pT � Bjϕqpx0q � T prτ q
con

rτ pyq :� ϕpx0 � τej � yq � ϕpx0 � yq
τ

� pBjϕqpx0 � yq � τ

» 1

0

p1� tqpB2jϕqpx0 � tτej � yq dt.
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Risulta rτ
τÑ0ÝÝÑ 0 in DpRnq e quindi T prτ q τÑ0ÝÝÑ 0, cioè

Bjupx0q � pT � Bjϕqpx0q � T ppBjϕqpx0 � �qq
� �T�Bjrϕpx0 � �qs� � pBjT qpϕpx0 � �qq � ppBjT q � ϕqpx0q.

Come sopra: Bju è continua.

L’iterazione di questo procedimento dimostra l’enunciato.

6.28 Esempio. Vale δ � ϕ � ϕ perché

pδ � ϕqpxq � δpϕpx� �qq � ϕpx� 0q � ϕpxq, x P Rn.

Se T è una soluzione fondamentale dell’operatore differenziale a coefficienti costanti P e u :�
T � ϕ, si trova

Pu � pPT q � ϕ � δ � ϕ � ϕ

pla prima identità vale perché P ha coefficienti costantiq. Quindi T � ϕ fornisce una soluzione
dell’equazione a derivate parziali Pu � ϕ.

6.29 Teorema (Malgrange-Ehrenpreis). Ogni operatore differenziale P �� 0 a coefficienti
costanti ha una soluzione fondamentale.

6.30 Teorema. Il Laplaciano ∆ in R2 ha soluzione fondamentale Tf con fpxq �
1

2π
ln |x|. Quindi una soluzione di ∆u � ϕ è

upxq � pTf � ϕqppxq �
»
R2

fpyqϕpx� yq dy � 1

2π

»
R2

ϕpyq ln |x� y| dy.

Dimostrazione. Ricordiamo la formula di Gauss-Green nel piano:»
U

divF dx �
»
BU

F � n ds, (6.1)

dove U � R2 appropriato, F � pF1,F2q campo vettoriale in due variabli di classe C 1 in un
intorno di U e n : BU Ñ R2 il versore normale esterno ad U .

Formule di Green: Siano u, v funzioni di classe C 2 in un intorno di U .

p1q
»
U

∆u �
»
BU
Dnu ds pdove Dnu � ∇u � n derivata in direzione nq,

p2q
»
U

pu∆v �∇u �∇vq �
»
BU
uDnv ds,

p3q
»
U

pu∆v � v∆uq �
»
BU
puDnv � vDnuq ds.
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Per la p1q, applicare (6.1) a F � ∇u; per la p2q, applicare (6.1) a F � u∇v. Sia p21q ottenuta
dallo scambio di u e v nella p2q. La differenza membro a membro p2q � p21q prova la p3q.
Sia ϕ P DpR2q. Si ha quindi DR ¡ 0 : suppϕ � U :� tx | |x| ¤ Ru.

Uε :� tx | ε ¤ |x| ¤ Ru ñ npxq �
#
�x{ε : |x| � ε

x{R : |x| � R.

p∆Tf qpϕq � Tf p∆ϕq �
»
U

fpxq∆ϕpxq dx � lim
εÑ0

»
Uε

fpxq∆ϕpxq dx, dato che f P L1
locpR2q.

Perché 2π∇fpxq � x{|x|2 e ∆f � 0 in R2zt0u pEsercizio!q, dalla (3) segue»
Uε

fpxq∆ϕpxq dx �
»
Uε

rfpxq∆ϕpxq � ϕpxq∆fpxqs dx

�
»
BUε

rfpxqDnϕpxq � ϕpxqDnfpxqs ds

� 1

2πε

»
|x|�ε

rϕpxq � ln ε∇ϕpxq � xs ds.

Si ha: ��� 1

2πε

»
|x|�ε

ϕpxqds� ϕp0q
��� ¤ 1

2πε

»
|x|�ε

|ϕpxq � ϕp0q| ds ¤ max
|x|�ε

|ϕpxq � ϕp0q| εÑ0ÝÝÑ 0,��� 1

2πε

»
|x|�ε

ln ε∇ϕpxq � x ds
��� ¤ 1

2πε

»
|x|�ε

| ln ε||∇ϕpxq||x| ds

� |ε ln ε| 1

2πε

»
|x|�ε

|∇ϕpxq| ds εÑ0ÝÝÑ 0|∇ϕp0q| � 0.

Ne segue p∆Tf qpϕq � ϕp0q � δpϕq, come affermato.

6.6 Il supporto delle distribuzioni

Siano S, T P D 1pΩq e U � Ω aperto. Si dice

S � T in U :ðñ Spϕq � T pϕq @ ϕ P DpUq.

6.31 Lemma. Sia T P D 1pΩq e ΩT :� Y
U�Ω aperto,
T�0 in U

U , cioè

ΩT � tx P Ω | DU � Ω intorno aperto di x t.c. T � 0 in Uu.

Allora T � 0 in ΩT . Quindi ΩT è il più grande sottoinsieme aperto di Ω dove T � 0.

Dimostrazione. Sia ϕ P DpΩT q e K :� supp ϕ.
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K compatto ñ DU1, . . . , UN : T � 0 in Uj, K � U1 Y . . .Y UN

Esistono Kj �� Uj tale che K � K1 Y . . .YKN :

z P K ñ D ε ¡ 0 D 1 ¤ j ¤ N : Bεpzq � Uj

K compatto ñ Una famiglia finita di questi Bεpzkq fornisce un ricoprimento di K.

Kj :� unione finita di Bεpzkq del ricoprimento contenuti in Uj.

Lemma 6.4 ñ D ψj P DpUjq : 0 ¤ ψj ¤ 1, ψj � 1 in un intorno di Kj.

ϕ1 :� ϕψ1, ϕk :� ϕψkp1� ψ1q � . . . � p1� ψk�1q per k � 2, . . . , N

ñ ϕk P DpUkq e ϕ�
ℓ°

k�1

ϕk � ϕp1� ψ1q � . . . � p1� ψℓq pinduzione!q

ℓ � N ñ ϕ�
N°
k�1

ϕk � 0 ñ T pϕq �
N°
k�1

T pϕkq � 0.

6.32 Definizione. Sia T P D 1pΩq. Il supporto di T è l’insieme suppT :� Ω zΩT .

6.33 Esempio. supp δ � t0u :
ϕ P DpRnzt0uq ñ ϕp0q � 0 ñ δpϕq � 0 ñ δ � 0 su Rnzt0u ñ Rnzt0u � Ωδ

δ non è zero su tutto Rn ñ Ωδ � Rnzt0u ñ supp δ � RnzΩδ � t0u.

6.34 Esempio. Sia Tf P D 1pΩq una distribuzione regolare. Allora ΩzsuppTf è il più grande
sottoinsieme aperto di Ω su quale f � 0 quasi ovunque.

6.7 Distribuzioni a supporto compatto (complemento)

Sia T P D 1pΩq con K :� suppT �� Ω. Se ψ P DpΩq è una qualsiasi funzione test con ψ � 1 in
un intorno aperto di K,

T pϕq � T pψϕq � T pp1� ψqϕq � T pψϕq @ ϕ P DpΩq
visto che p1� ψqϕ P DpΩzsuppT q e T � 0 in ΩzsuppT . Osserviamo che l’espressione a destra
ha senso non solo per ϕ P DpΩq ma per un qualsiasi ϕ P C8pΩq! Si può definire su C8pΩq
una metrica tale che una successione pϕkqk � C8pΩq converge a ϕ P C8pΩq se e solo se

Bαϕk kÑ�8ÝÝÝÝÑ Bαϕ uniformemente su ogni K �� Ω per ogni multi-indice α. Vale poi il seguente:

6.35 Teorema. Sia T P D 1pΩq a supporto compatto in Ω. Allora esiste un’unica mappa

lineare e continua rT : C8pΩq Ñ C tale che

aq rT pϕq � T pϕq per tutti ϕ P DpΩq,
bq rT pϕq � 0 per tutti ϕ P C8pΩq con ϕ � 0 in un intorno aperto di suppT .



6.7 Distribuzioni a supporto compatto (complemento) 57

Si identifica T con la sua estensione e scrive ancora T al posto di rT .
6.36 Definizione. Con E 1pΩq si denota lo sottospazio di D 1pΩq delle distribuzioni a
supporto compatto in Ω.

Se T P E 1pRnq ha senso definire T � ϕ con ϕ P C8pRnq tramite

pT � ϕqpxq � T pϕpx� �qq, x P Rn.

Si può dimostrare che T � ϕ P C8pRnq.

6.37 Lemma. Sia T P E 1pRnq e ϕ P DpRnq. Allora T � ϕ P DpRnq.

Dimostrazione. Esiste r ¡ 0 tale che suppϕ � Brp0q.
ñ suppϕpx� �q � Brpxq.
suppT compatto ñ DM ¥ 0 @ xPRn

|x|¥M : Brpxq X suppT � H.

ñ suppϕpx� �q � Rnzsupp T @ xPRn

|x|¥M ñ pT � ϕqpxq � 0 per tutti x con |x| ¥M .

6.38 Teorema. Siano S, T P D 1pRnq e almeno una dei due abbia supporto compatto.
Allora esiste un’unica distribuzione R P D 1pRnq tale che

R � ϕ � S � pT � ϕq @ ϕ P DpRnq.

Scriviamo R � S � T . Vale R � T � S.

É facile vedere che δ � T � T � δ � T per ogni T P D 1pRnq.
La convoluzione di distribuzioni induce mappe bilineari (e continue)

D 1pRnq � E 1pRnq Ñ D 1pRnq, E 1pRnq �D 1pRnq Ñ D 1pRnq, E 1pRnq � E 1pRnq Ñ E 1pRnq.

La covoluzione è commutativa e

pT1 � T2q � T3 � T1 � pT2 � T3q

se almeno due delle distribuzioni Tj hanno supporto compatto (associatività). Inoltre,

BαpS � T q � pBαSq � T � S � pBαT q, α P Nn
0 .

6.39 Teorema. Sia P �� 0 un operatore differenziale a coefficienti costanti e sia E una
sua soluzione fondamentale. Allora T :� E � S con S P E 1pRnq è soluzione dell’equazione
PT � S.
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6.8 Esercizi

Esercizio 6.1. fpxq � ln |x| appartiene a L1
locpRq. Dimostrare che pTf q1 � pv- 1

x
.

Esercizio 6.2. Siano a P C8pRq e T P D 1pRq. Definiamo aT : D 1pRq Ñ C tramite

paT qpϕq � T paϕq, ϕ P DpRq.
aq Dimostrare che aT P D 1pRq.
bq Dimostrare che paT q1 � a1 T � a T 1.

Esercizio 6.3. Sia P � b d
dx
�c con b �� 0. Sia x0 P R e y la soluzione dell’equazione by1�cy � 0

con ypx0q � 1{b e fpxq :�
#
0 : x   x0

ypxq : x ¡ x0
. Dimostrare che PTf � δx0.

Esercizio 6.4. Risolvere le seguenti equazioni impulsive:

aq T 2 � T � δ1 bq T 2 � T 1 � δ cq T 2 � 2T 1 � 2T � δ

dq T 2 � T 1 � 2T � δ eq T 1 � T � δ � δ1 fq T 2 � T � δ � δ2

gq T 2 � T 1 � δ1 hq T 2 � T 1 � δ1 iq T 2 � 9T 1 � δ1

Esercizio 6.5. Sia pTkqk � D 1pΩq tale che Tk kÑ�8ÝÝÝÝÑ T P D 1pΩq e α un multiindice. Dimostrare

che BαTk kÑ�8ÝÝÝÝÑ BαT .
Esercizio 6.6. Siano S, T P D 1pΩq e α P C. Dimostrare che

pS � T qpϕq :� Spϕq � T pϕq, pαT qpϕq :� αT pϕq, ϕ P DpΩq,
definiscono distribuzioni S � T e αT in D 1pΩq. Ovvero, D 1pΩq è uno spazio vettoriale.

Esercizio 6.7. Sia γ una curva regolare in Rn. Supponiamo che γ abbia una parametrizzazione
r tale che r�1pKq è compatto per ogni K �� Rn. Dimostrare che

δγpϕq :�
»
γ

ϕpxq ds, ϕ P DpRnq,

definisce una distribuzione δγ P D 1pRnq.
Esercizio 6.8. Sia u : R2 Ñ R definita da

upx1, x2q �
#
1 se x1 ¡ 0,

0 se x1   0.

Determinare B1Tu e B2Tu.
Esercizio 6.9. Trovare una mappa lineare T ÞÑ T : D 1pRq Ñ D 1pRq tale che Tf � Tf per ogni

distribuzione regolare Tf pqui f è il complesso coniugato della funzione fq.
Esercizio 6.10. Sia gpxq � ex e R� � p0,�8q. Trovare un’applicazione lineare

T ÞÑ T � g : D 1pR�q Ñ D 1pRq
tale che Tf � g � Tf�g per ogni distribuzione regolare Tf P D 1pR�q.
Suggerimento: Scrivere Tf�gpϕq nella forma Tf pApϕqq con un’operatore opportuno A.
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7 La trasformata di Fourier

Di cosa si tratta? La trasformata di Fourier è una trasformata integrale
che trova numerose applicazioni nella fisica, nell’ingegneria e nella matema-
tica. In particolare, è di importanza fondamentale nell’analisi di equazione a
derivate parziali e nella teoria dei segnali. Discutiamo la trasformata di Fourier
nell’ambito delle funzioni di classe L1 e L2.

La trasformata di Fourier pf di f P L1pRnq è la funzione pf : Rn Ñ C definita da

pfpξq � p2πq�n{2
»
Rn

e�ixξfpxq dx, ξ P Rn,
(7.1)

dove xξ :� x � ξ � x1ξ1 � . . .� xnξn. Osserviamo che |e�ixξ| � 1, quindi la funzione integranda
appartiene a L1pRnq per ogni ξ.

7.1 La trasformata di Fourier in L1pRnq

7.1 Lemma. Sia f P L1pRnq. Allora:
iq pf P CpRnq X L8pRnq e } pf}L8pRnq ¤ p2πq�n{2}f}L1pRnq.

In particolare: f ÞÑ pf : L1pRnq Ñ L8pRnq è lineare e limitato.

iiq pfpξq |ξ|Ñ8ÝÝÝÝÑ 0 pLemma di Riemann-Lebesgueq

Dimostrazione. iq Basta osservare che

|e�ixξfpxq| ¤ |fpxq| P L1pRn
xq @ ξ P Rn.

La continuità segue dal teorema della convergenza dominata.

iiq Impiegheremo il Lemma seguente.

Lemma. g P C8
0 pRnq ñ p1� |ξ|Nqpgpξq P L8pRnq per ogni N P N.

In particolare: pg P LppRnq per ogni p P r1,�8s.

Dimostrazione. Sia prima n � 1. Integrazione per parti ñ

|ξNpgpξq| ¤ ��� » �8

�8

� dN

dxN
eixξ

	
gpxq dx

��� � ��� » �8

�8
eixξgpNqpxq dx

��� ¤ }gpNq}L1

ñ p1� |ξ|Nq|pgpξq| ¤ CN :� }g}L1 � }gpNq}L1 e
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» �8

�8
|pgpξq|p dξ ¤ Cp

N

» �8

�8

1

1� |ξ|pN dξ   �8 se N ¡ 1{p.

Nel caso n ¡ 1 si procede similmente, utilizzando9

|ξ|2N � pξ21 � . . .� ξ2nqN �
¸

|α|�2N

aαNξ
α

con opportune costanti aαN e

|ξαpgpξq| ¤ }Bαg}L1 .

Inoltre, p1� |ξ|2pNq�1 P L1pRn
ξ q se N ¡ n{2p.

Sia dato ε ¡ 0.

Dai risultati della prima parte (Capitolo 2) ñ D g P C8
0 pRnq : }f � g}L1   ε{2

iq ñ | pfpξq � pgpξq|   ε{2 @ ξ P Rn

Lemma ñ D R ¡ 0 @ |ξ| ¡ R : |pgpξq| ¤ C1

1�|ξ|   ε{2
ñ | pfpξq| ¤ | pfpξq � pgpξq| � |pgpξq|   ε @ |ξ| ¥ R.

7.2 Lemma. Sia fpxq � e�|x|
2{2. Allora pf � f .

Dimostrazione. Consideriamo il caso n � 1. f è soluzione del problema di Cauchy

y1pxq � �xypxq, yp0q � 1.

Anche pf è una soluzione:

pf 1pξq � 1?
2π

» �8

�8

d

dξ
e�ixξfpxq dx

� 1?
2π

» �8

�8
e�ixξp�ixqfpxq dx � i

1?
2π

» �8

�8
e�ixξf 1pxq dx

� �i 1?
2π

» �8

�8

� d

dx
e�ixξ

	
fpxq dx � i2ξ

1?
2π

» �8

�8
e�ixξfpxq dx � �ξ pfpξq,

pfp0q � 1?
2π

» �8

�8
e�x

2{2 dx � 1?
2π

?
2π � 1.

Unicità della soluzione ñ f � pf .
Il caso n ¡ 1 segue facilmente pcfr. Esercizio 7.3q.

9Più precisamente, si può dimostrare, procedendo per induzione su N P N0,

px1 � � � � � xnq
N �

¸
|α|�N

N !

α!
xα, x � px1, . . . , xnq P Rn,

dove si definisce α! � pα1!q � � � pαn!q e xα � xα1
1 � � �xαn

n , con x
αj

j � 1 se αj � 0, j � 1, . . . , n.
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7.3 Teorema (Formula di inversione). Sia f P L1pRnq tale che pf P L1pRnq. Allora

fpxq � p2πq�n{2
»
Rn

eixξ pfpξq dξ quasi ovunque in Rn.

Dimostrazione. Il secondo membro della formula definisce la funzione u : Rn Ñ C.
Siano g, h P L1pRnq. Esercizio 7.5.b) e 7.4.b) ñ Per x P Rn arbitrario,»

Rn

gpξqphpξqeixξ dξ � »
Rn

peix�gqppξqhpξq dξ � »
Rn

pgpξ � xqhpξq dξ �
»
Rn

pgp�yqhpx� yq dy. (�)

Poniamo adesso Gpxq :� p2πq�n{2e�|x|2{2 e Gεpxq :� ε�nG
�
x
ε

�
, ε ¡ 0.

ñ }Gε}L1 � 1, }Gpε�q}L8 � Gp0q � p2πq�n{2 e

Gεpξq � Gεp�ξq � ε�nGp�ξ{εq 7.2� ε�n pGp�ξ{εq
� ε�np2πq�n{2

»
Rn

eixξ{εGpxq dx y�x{ε� p2πq�n{2
»
Rn

eiyξGpεyq dy � zGpε�qp�ξq.
Quindi

pGε � fqpxq �
»
Rn

Gεpξqfpx� ξq dξ �
»
Rn

zGpε�qp�ξqfpx� ξq dξ (�)�
»
Rn

Gpεξq pfpξqeixξ dξ.
Seguono:

(1) pGε � fqpxq εÑ0ÝÝÑ upxq @ x P Rn (Gp0q � p2πq�n{2 e convergenza dominata),

(2) Gε � f εÑ0ÝÝÑ f in L1pRnq.

La p2q sarebbe un risultato della prima parte del corso (Teorema 2 in Capitolo 2) se Gε fosse un
mollificatore. Gε ha tutte le proprietà di un mollificatore, salvo il fatto che suppGε non è con-
tenuto nella palla di raggio ε centrato nell’origine. Comunque, utlizzando il forte decadimento
di x ÞÑ expp�|x|2{2q, si può dimostrare che la p2q vale lo stesso (riportiamo la dimostrazione in
seguito, ma la escludiamo dallo programma d’esame).

p2q ñ D εk Ñ 0 : Gεk � f kÑ�8ÝÝÝÝÑ f puntualmente quasi ovunque in Rn.

p1q ñ f � u quasi ovunque in Rn.

Lemma Vale la p2q nelle dimostrazione del Teorema 7.3.

Dimostrazione. Lemma 6.4 ñ D ϕ P DpRnq : 0 ¤ ϕ ¤ 1, ϕpxq � 1 @ |x| ¤ 1.

ρkpxq :� ϕpx{kqGpxq, ρk,εpxq � ε�nρkpx{εq
ñ ρk P C8

0 pRnq, 0 ¤ ρk ¤ G, }ρk �G}L1
kÑ�8ÝÝÝÝÑ 0,

ck :� }ρk}L1 � }ρk,ε}L1 ¤ 1, ck
kÑ�8ÝÝÝÝÑ 1,
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per ogni k, tρk,ε{ckuε¡0 è una famiglia di mollificatori
pdai risultati della prima parte pCapitolo 2qq.

Siano f P L1pRnq e δ ¡ 0 arbitrario.

}Gε � f � f}L1 ¤ }pGε � ρk,εq � f}L1 � }ρk,ε � f � ckf}L1 � }ckf � f}L1 .

}pGε � ρk,εq � f}L1 ¤ }Gε � ρk,ε}L1}f}L1 � }G� ρk}L1}f}L1
kÑ�8ÝÝÝÝÑ 0,

}ckf � f}L1 � p1� ckq}f}L1
kÑ�8ÝÝÝÝÑ 0

ñ D N � Npδq @ ε ¡ 0 : }pGε � ρN,εq � f}L1 � }cNf � f}L1   δ{2.
Dai risultati della prima parte del corso (Capitolo 2):

}ρN,ε � f � cNf}L1 � cN} 1
cN
ρN,ε � f � f}L1

εÑ0�ÝÝÝÑ 0.

Concludiamo quindi: D ε0 � ε0pδq ¡ 0 @ ε P p0, ε0q : }ρN,ε � f � cNf}L1   δ{2.
ñ @ δ ¡ 0 D ε0 ¡ 0 @ ε P p0, ε0q : }Gε � f � f}L1   δ.

7.4 Corollario. Siano f, g P L1pRnq e pf � pg. Allora f � g quasi ovunque.

Dimostrazione. h :� f � g ñ h P L1pRnq e ph � pf � pg � 0 P L1pRnq.
Teorema 7.3 ñ h � 0 quasi ovunque.

La trasformata di Fourier inversa di f P L1pRnq è la funzione qf : Rn Ñ C con

qfpxq :� p2πq�n{2
»
Rn

eixξfpξq dξ � pfp�xq, x P Rn.
(7.2)

Il Teorema 7.3 implica che

f, pf P L1pRnq ñ qpf � p pf qq� f quasi ovunque.

Analogamente

f, qf P L1pRnq ñ pqf � p qf qp� f quasi ovunque.

In particolare (cfr. il Lemma nella dimostrazione 7.1),

f P C8
0 pRnq ñ qpf � f � pqf su Rn. (7.3)

7.2 La trasformata di Fourier in L2pRnq

7.5 Lemma (Parseval-Plancherel formula). Siano f, g P L1pRnq X L2pRnq.
Allora pf P L2pRnq, } pf}L2 � }f}L2, e p pf, pgqL2 � pf, gqL2.
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Dimostrazione. Passo I. Siano f, g P C8
0 pRnq. Esercizio 7.5.b) e pg � qg ñ

p pf, pgqL2 �
» pfpξqpgpξq dξ � »

fpξqpqgqppξq dξ (7.3)�
»
fpξqgpξq dξ � pf, gqL2 .

Passo II. Sia χk :� χtxPRn||x|¤ku (funzione caratteristica).

ñ
#
χkf

kÑ�8ÝÝÝÝÑ f in L1 e L2,

pχkfq � ρε P C8
0 pRnq e pχkfq � ρε εÑ0ÝÝÑ χkf in L1 e L2

ñ D pfkq � C8
0 pRnq : fk

kÑ�8ÝÝÝÝÑ f in L1 e L2

Passo I ñ } pfk � pfℓ}L2 � }fk � fℓ}L2

ñ p pfkq successione di Cauchy in L2

ñ D F P L2 : pfk kÑ�8ÝÝÝÝÑ F in L2.
(nota: una sottosuccessione di p pfkq converge a F puntualmente quasi ovunque)

Lemma 7.1 ñ } pfk � pf}L8 ¤ }fk � f}L1
kÑ�8ÝÝÝÝÑ 0

(cioè pfk converge a pf uniformemente in Rn, quindi anche puntualmente)

ñ pf � F P L2 e } pf}L2 � }F }L2
kÑ�8ÐÝÝÝÝ } pfk}L2

Passo I� }fk}L2
kÑ�8ÝÝÝÝÑ }f}L2

Passo III. Sia pfkq come prima e pgkq � C8
0 pRnq con gk kÑ�8ÝÝÝÝÑ g in L1 e L2.

ñ p pf, pgqL2
kÑ�8ÐÝÝÝÝ p pfk, pgkqL2

Passo I� pfk, gkqL2
kÑ�8ÝÝÝÝÑ pf, gqL2 .

7.6 Teorema (di Plancherel). Esiste un’unica F P L pL2pRnqq con le seguente proprietà:

aq F è invertibile, F �p� pcioè, coincide con la trasformata di Fourier (7.1)q e F�1 �q�
pcioè, coincide con la trasformata di Fourier inversa (7.2)q in L1pRnq X L2pRnq.

bq F è un operatore unitario, cioè

pFf,FgqL2pRnq � pf, gqL2pRnq @ f, g P L2pRnq.

Dimostrazione. f P L2 ñ D pfkq � L1 X L2 : fk
kÑ�8ÝÝÝÝÑ f in L2

pper esempio, fk � fχk con χk la funzione caratteristica di tx P Rn | |x| ¤ kuq.
Esistenza. Sia f P L2 e pfkq come detto.

Lemma 7.5 ñ p pfkq successione di Cauchy in L2.

Definiamo Ff :� lim
kÑ�8

pfk in L2.

F è ben definita. Sia phkq � L1 X L2 una qualsiasi altra successione tale che hk
kÑ�8ÝÝÝÝÑ f in

L2, analoga a pfkq. Troviamo

}Ff � phk}L2 ¤ }Ff � pfk}L2 � } pfk � phk}L2
Lemma 7.5� }Ff � pfk}L2 � }fk � hk}L2

kÑ�8ÝÝÝÝÑ 0.
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Nota bene: per f P L1 X L2 si può scegliere fk :� f ñ Ff � pf .
Continuità e iniettività. }Ff}L2

kÑ�8ÐÝÝÝÝ } pfk}L2
Lemma 7.5� }fk}L2

kÑ�8ÝÝÝÝÑ }f}L2

ñ }Ff}L2 � }f}L2 ñ F iniettiva e }F }L pL2q � 1.

Suriettività. Siano g P L2 e pgkq � C8
0 pRnq con gk kÑ�8ÝÝÝÝÑ g in L2.

Lemma nella dimostrazione del Lemma 7.1 e (7.3) ñ
fk :� qgk � pgkp� �q P L1 X L2 e pfk � gk

kÑ�8ÝÝÝÝÑ g in L2

Lemma 7.5 ñ }fk � fℓ}L2 � } pfk � pfℓ}L2 � }gk � gℓ}L2

ñ pfkq successione di Cauchy in L2 ñ D f P L2 : fk
kÑ�8ÝÝÝÝÑ f in L2

ñ Ff � limkÑ�8 pfk � limkÑ�8 gk � g

Inversa. Teorema 0.1 ñ F�1 P L pL2q.
Siano g P L1 X L2 e pgkq � C8

0 pRnq con gk kÑ�8ÝÝÝÝÑ g in L2.

gk � pqgk e qgk P L1 X L2 ñ Fqgk � pqgk � gk

ñ F�1gk � qgk � phk dove hk :� gkp� �q P C8
0 pRnq

hk
kÑ�8ÝÝÝÝÑ h in L2 dove h � gp� �q P L1 X L2 ñ

F�1g
kÑ�8ÐÝÝÝÝ F�1gk � phk � Fhk

kÑ�8ÝÝÝÝÑ Fh � ph � pgp� �qqp� qg.
Formula. Siano pfkq, pgkq � C8

0 pRnq con fk Ñ f e gk Ñ g in L2.

pFf,Fgq kÑ�8ÐÝÝÝÝ pFfk,Fgkq � p pfk, pgkq Lemma 7.5� pfk, gkq kÑ�8ÝÝÝÝÑ pf, gq.

La scelta di fk � χkf nella dimostrazione dell’esistenza di Ff implica il seguente:

7.7 Corollario. Se f P L2pRnq allora Ff � limkÑ�8 fk in L2pRnq, dove

fkpξq � p2πq�n{2
»
|x|¤k

e�ixξfpxq dx, ξ P Rn.

Nota. È di uso comune l’abuso di notazione pf per la trasformata di Fourier, indipendentemente
dal contesto funzionale (o distribuzionale) adottato, tenendo presenti, ovviamente, i diversi
significati di tale simbolo nella definizione data dalla (7.1) per f P L1pRnq e dall’estensione
fornita dal Teorema 7.6 per f P L2pRnq (cfr. anche la Sezione 8.2.3).

7.3 Esercizi

Esercizio 7.1. aq Sia f P L1pRq con fpxq � ?
2πe�|x|. Verificare che pfpξq � 2

1� ξ2
.

bq Sia f P L1pRq con fpxq �
#?

2π : |x| ¤ 1

0 : altrimenti
. Verificare che pfpξq � 2

sin ξ

ξ
.
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Esercizio 7.2. Dimostrare che, se c   p2πq�1{2, la stima } pf}L8pRq ¤ c}f}L1pRq è falsa, fornendo
un controesempio. Dunque, } pf}L8pRq ¤ p2πq�1{2}f}L1pRq è ottimale.

Esercizio 7.3. Sia f P L1pRnq con fpxq � e�|x|
2{2. Dimostrare che pfpξq � e�|ξ|

2{2.

Suggerimento: Usare xξ � x1ξ1 � . . .� xnξn e fpxq � Gpx1q � . . . �Gpxnq con Gptq � e�t
2{2.

Esercizio 7.4. Siano u P L1pRnq, y P Rn, A una matrice n � n reale invertibile e tA la sua
trasposta. Dimostrare:

aq Se vpxq � upx� yq � pτyuqpxq allora pvpξq � e�iy�ξpupξq.
bq Se vpxq � eix�yupxq allora pvpξq � pupξ � yq � pτypuqpξq.
cq Se vpxq � upA�1xq allora pvpξq � | detA|puptAξq.
dq Se vpxq � upxq allora pvpξq � pup�ξq.

Ricordando che u è radiale se upxq � φp|x|q con φ funzione definita su r0,�8q, o, equi-
valentemente, upxq � upAxq per ogni matrice ortogonale A, dimostrare che

eq Se u è radiale allora pu è radiale.

Esercizio 7.5. Siano f, g P L1pRnq. Dimostrare:

aq zf � g � p2πqn{2 pf pg. (Suggerimento: Si ricordi che e�ixξ � e�ipx�yqξe�iyξ.q

bq
»
Rn

pfpξqgpξq dξ � »
Rn

fpξqpgpξq dξ.
Esercizio 7.6. Sia f P C8

0 pRnq. Dimostrare:

yBxjfpξq � iξj pfpξq, Bξj pfpξq � �iyxjfpξq.
Nota: Iterando queste formule si trova quindiyBαxfpξq � i|α|ξα pfpξq, Bαξ pfpξq � p�iq|α|yxαfpξq,
per ogni multi-indice α.

Esercizio 7.7. aq Calcolare
» �8

�8

dξ

pξ2 � 1q2 . bq Calcolare
» �8

�8

sin2 ξ

ξ2
dξ.

Suggerimento: Usare l’Esercizio 7.1 e il Teorema di Plancherel.

Esercizio 7.8. Calcolare la trasformata di Fourier della funzione

upxq �
#
|x|α, se |x|   1,

0, se |x| ¡ 1,

dove α ¡ �3, x P R3, cos̀ı che u P L1pR3q.
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8 Complementi

8.1 Analisi in spazi metrici completi

8.1.1 Teoremi di punto fisso e applicazioni

Ricordiamo il seguente fondamentale risultato.

8.1 Teorema (del punto fisso di Banach-Caccioppoli). Sia pX, dq uno spazio metrico
completo e A : X Ñ X una contrazione stretta su X, ovvero

D L P r0, 1q @ x, y P X : dpAx,Ayq ¤ Ldpx, yq.

Allora, A ammette un unico punto fisso p P X, ovvero D! p P X tale che Ap � p. Inoltre,
scelto x0 P X arbitrario e posto xn�1 � Axn � An�1x0, n P N, la successione pxnqn è di
Cauchy in X e si ha xn Ñ p per nÑ �8.

La procedura descritta nel teorema si dice anche il metodo di soluzione per approssimazioni
successive. Una prima, semplice applicazione riguarda una classe di equazioni integrali non
lineari, associate a nuclei regolari.

8.2 Teorema. Sia k P C pra, bs2 � Rq tale che, per ogni z, z1 P R, x, y P ra, bs,

|kpx, y, zq � kpx, y, z1q| ¤M |z � z1|,

per una costante M ¥ 0, indipendente da x e y. Assumiamo L � |λ|Mpb � aq   1 e
φ P C pra, bsq. Allora, l’equazione pdi Fredholmq

fpxq � λ

» b

a

kpx, y, fpyqq dy � φpxq, x P ra, bs,

ammette un’unica soluzione f P C pra, bsq.

Dimostrazione. Definiamo, per h P C pra, bsq,

pAhqpxq � λ

» b

a

kpx, y, hpyqq dy � φpxq, x P ra, bs.

Le ipotesi implicano che Ah P X � C pra, bsq e che A è una contrazione stretta sullo spazio
metrico completo pX, dq con dpg, hq � max

ra,bs
|g � h| � }g � h}8. Infatti, per g, h P C pra, bsq,

dpAg,Ahq � max
xPra,bs

|pAgqpxq � pAhqpxq| ¤ |λ|
» b

a

|kpx, y, gpyqq � kpx, y, hpyqq| dy

¤ |λ|
» b

a

M |gpyq � hpyq| dy ¤ |λ|Mdpg, hq
» b

a

dy � Ldpg, hq.
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Il risultato segue quindi dal Teorema 8.1, e la soluzione è il limite (uniforme) delle fn date da

f0 P C pra, bsq arbitraria, fn�1pxq � λ

» b

a

kpx, y, fnpyqq dy � φpxq, x P ra, bs, n P N.

8.3 Commento. Consideriamo l’equazione (integrale lineare) di Volterra

fpxq � λ

» x

a

kpx, yqfpyq dy � φpxq, x P ra, bs, (8.1)

con k continua su ra, bs�ra, bs e λ P R. Adattando la dimostrazione della Proposizione 8.2,
considerando un nucleo Lpx, yq � χΩpx, yq kpx, yq, χΩ funzione caratteristica dell’insieme

Ω � tpx, yq P R2 : x P ra, bs, y P ra, xsu,

si potrebbe dimostrare l’esistenza di un’unica soluzione della (8.1) per |λ| sufficientemente
piccolo. Tuttavia, la (8.1) si può risolvere senza alcuna restrizione su λ P R, grazie al
successivo Teorema 8.4.

8.4 Teorema. Siano pX, dq uno spazio metrico completo e A : X Ñ X tale che B � Aν

è una contrazione stretta su X per qualche ν P Nzt0u. Allora, A ammette un unico punto
fisso p P X.

Dimostrazione. Se q � Aq si ha anche q � Aνq, quindi q è l’unico punto fisso di B. Sia
allora p � Bp, e scegliamo x0 � Ap, xn � Bnx0 Ñ p per nÑ �8. Troviamo

p � lim
nÑ�8

Bnx0 � lim
nÑ�8

BnpApq � lim
nÑ�8

ApBnpq � lim
nÑ�8

Ap � Ap,

cioè p è punto fisso di A. Inoltre, per ogni x0 P X, Anx0 Ñ p � Ap. Infatti,

Akν�jx0 � BkpAjx0q kÑ�8ÝÝÝÝÑ p, j � 0, . . . , ν � 1,

per l’arbitrarietà del dato iniziale nel metodo delle approssimazioni successive.

8.5 Teorema. Sia k P C pra, bs2q tale che |kpx, yq| ¤ M , px, yq P ra, bs2, λ P R, φ P
C pra, bsq. Allora, l’equazione (8.1) ammette un’unica soluzione in C pra, bsq.

Dimostrazione. Definiamo, per h P C pra, bsq,

pAhqpxq � λ

» x

a

kpx, yqhpyq dy � φpxq, x P ra, bs.
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Si ha A : X Ñ X con X � C pra, bsq. Inoltre, per g, h P C pra, bsq, x P ra, bs,
|pAgqpxq � pAhqpxq| ¤ |λ|Mdpg, hqpx� aq ¤ r|λ|Mpb� aqsdpg, hq

ñ dpAg,Ahq ¤ r|λ|Mpb� aqsdpg, hq,

|pA2gqpxq � pA2hqpxq| ¤ p|λ|Mq2dpg, hq
» x

a

py � aq dy � p|λ|Mq2dpg, hqpx� aq2
2

ñ dpA2g, A2hq ¤ r|λ|Mpb� aqs2
2

dpg, hq,
. . .

ñ dpAνg, Aνhq ¤ r|λ|Mpb� aqsν
ν!

dpg, hq, ν P Nzt0u.

Dato che
Kν

ν!
νÑ�8ÝÝÝÝÑ 0 per ogni K P R, si ha che Aν è una contrazione stretta per ν sufficien-

temente grande, per ogni λ P R. Il risultato segue dunque dal Teorema 8.4.

Un’ulteriore, classica applicazione del Teorema 8.4 è la dimostrazione dell’esistenza e unicità
della soluzione locale del Problema di Cauchy per un sistema di equazioni differenziali ordi-
narie del primo ordine in forma normale, nelle usuali ipotesi di Lipschitzianità, illustrata nella
successiva Proposizione 8.6.

8.6 Teorema. Si consideri il Problema di Cauchy per un sistema di equazioni differen-
ziali ordinarie del primo ordine in forma normale,#

y1jpxq � fjpx, y1pxq, . . . , yNpxqq, j � 1, . . . , N

yjpx0q � yj0, j � 1, . . . , N,
(8.2)

o, equivalentemente, #
y1pxq � fpx, ypxqq
ypx0q � y0,

(8.3)

con y P C pI,RNq, I � px0 � δ, x0 � δq, δ ¡ 0, e f P C pK,RNq, K � R � RN compatto,
px0, y0q P K�. Inoltre, f è Lipschitziana in y, uniformemente rispetto a x, ovvero

|fpx, yq � fpx, zq| ¤ L|y � z| @ px, yq, px, zq P K,

dove |.| è una norma su RN . Allora, esiste ed è unica la soluzione locale di (8.3), i.e., per
un opportuno δ ¡ 0,

D!y P C 1pI,RNq che soddisfa (8.3).

Dimostrazione. Sia M tale che |fpx, yq| ¤M per ogni px, yq P K. Definiamo

X � tph P C prx0 � δ, x0 � δs,RNq : |hpxq � y0| ¤M |x� x0|, x P rx0 � δ, x0 � δsu,
dove δ ¡ 0 è scelto, come è possibile, in modo che

R � tpx, yq P R� RN : |y � y0| ¤M |x� x0|, x P rx0 � δ, x0 � δsu � K.
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Si vede facilmente che X è uno spazio metrico completo rispetto alla metrica usuale, indotta
dalla norma L8pĪq. Definiamo, per h P X,

pAhqpxq � y0 �
» x

x0

fpt, gptqq dt.

Allora, (8.3) è equivalente a y � Ay. Osserviamo che A : X Ñ X ed è continua. Inoltre,

|pAgqpxq � pAhqpxq| ¤
����» x

x0

rfpt, gptqq � fpt, hptqqs dt
���� ¤ L|x� x0|dpg, hq.

Procedendo come nella dimostrazione della Proposizione 8.5, si trova che Aν è una contrazione
stretta per un esponente ν sufficientemente grande. Per il Teorema 8.4, A ammette quindi un
unico punto fisso y P X, che è il limite uniforme della successione$'&'%

yn�1pxq � y0 �
» x

x0

fpt, ynptqq dt, n P N,

y0 P X arbitraria (p.es., y0pxq � y0).

Concludiamo questa sezione con una variante del Teorema del punto di fisso di Banach-
Caccioppoli, in cui è presente un parametro, da cui il problema di punto fisso dipende con
contionuità. La sua applicazione ai problemi trattati nelle Proposizioni 8.2, 8.5 e 8.6 permette
di dimostrare che le soluzioni dipendono con continuità dai dati, ovvero, φ e, rispettivamente,
px0, y0q. I dettagli sono lasciati come esercizio.

8.7 Teorema. Sia pX, dq uno spazio metrico completo, Y uno spazio topologico, f : X �
Y Ñ X tale che:

iq y ÞÑ fpx, yq è una funzione continua da Y a X per ogni x P X;

iiq D L P r0, 1q @ y P Y @ x1, x2 P X : dpfpx1, yq, fpx2, yqq ¤ Ldpx1, x2q.
Allora, se xy � fpxy, yq, y P Y , la mappa y ÞÑ xy è continua da Y a X.

Dimostrazione. Per le ipotesi e il Teorema 8.1, la mappa y ÞÑ xy è ben definita.

Fissato y0 P Y , si ha

dpxy, xy0q � dpfpxy, yq, fpxy0 , y0qq ¤ dpfpxy, yq, fpxy0 , yqq � dpfpxy0 , yq, fpxy0 , y0qq
¤ Ldpxy, xy0q � dpfpxy0 , yq, fpxy0 , y0qq.

Otteniamo allora

p1� Lqdpxy, xy0q ¤ dpfpxy0 , yq, fpxy0 , y0qq ñ dpxy, xy0q   ε,

se y P Uy0 , intorno opportuno di y0 in Y (dipendente da ε).
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8.1.2 Differenziabilità di funzioni fra spazi normati

La seguente Definizione 8.8 estende la nozione di differenziabilità a funzioni fra spazi normati
non necessariamente di dimensione finita.

8.8 Definizione. Siano f : Ω � E Ñ F , E,F spazi normati, Ω aperto di E, x0 P Ω. Se
per h P E tale che x0 � h P Ω si ha, con A P LpE,F q e lim

hÑ0
φphq � 0,

fpx0 � hq � fpx0q � Ah� φphq}h}, (8.4)

si dice che f è differenziabile psecondo Fréchetq in x0 e A � f 1px0q è la derivata di f in
x0, mentre dfx0 � f 1px0q : h ÞÑ f 1px0qh è il differenziale di f in x0.

8.9 Commento. iq Se esiste f 1px0q, allora, per ogni v P E,

lim
τÑ0

fpx0 � τvq � fpx0q
τ

� f 1px0qv.

iiq Se, per ogni v P E, esiste

lim
τÑ0

fpx0 � τvq � fpx0q
τ

� Lv,

e si ha L P LpE,F q, allora L è detto differenziale di Gâteaux di f in x0.

iiiq Diversi risultati della teoria delle funzioni differenziabili fra spazi Euclidei si es-
tendono alle funzioni differenziabili fra spazi normati generali. Per esempio, è una
conseguenza immediata della (8.4) che se f è differenziabile in x0 allora è continua
in x0. Inoltre, se g : Ω

1 � F Ñ G, G normato, Ω1 aperto in F , e g è differenziabile in
y0 � fpx0q P Ω1, con f nelle ipotesi della Definizione 8.8, allora vale l’analogo della
“regola di derivazione a catena”, cioè, la funzione composta g �f è differenziabile in
x0 e pg � fq1px0q � g1pfpx0qq � f 1px0q. Il successivo risultato è l’analogo del Teorema
di Fermat in questo ambito.

8.10 Teorema. Sia f : E Ñ R, E normato, x0 P Ω � E, Ω aperto, punto di estremo
locale per f . Assumiamo che f sia differenziabile in x0. Allora, dfx0 � f 1px0q � 0.

Dimostrazione. Sia, per esempio, r ¡ 0 tale che x P Brpx0q implica fpxq   fpx0q. Il caso
di un massimo in senso largo o di un minimo si trattano in modo analogo. Scelto h P E con
}h} � 1, poniamo φptq � fpx0 � thq, t P I � p�r, rq. Le ipotesi implicano che φ : I Ñ R è
differenziabile in t � 0 e, per il punto iii) del Commento 8.9, dφ0 � dfx0phq. Inoltre, 0 P I è un
punto di massimo per φ interno all’intervallo I. Per il Teorema di Fermat, dφ0 � 0. Dunque,
@h P E | }h} � 1: dfx0phq � 0ñ }dfx0} � 0ô dfx0 � 0.

Il Teorema di Lagrange, vero per le funzioni reali di una variabile reale, non vale, in generale,



8.1 Analisi in spazi metrici completi 71

per funzioni a valori vettoriali, neppure nel caso di dimensione finita. Infatti, sia, per esempio,
g : r0, 1s Ñ C � R2 : t ÞÑ e2πit ñ gp0q � gp1q. Non esiste θ P p0, 1q tale che g1pθq � 2πie2πiθ � 0,
dunque non esiste θ P p0, 1q tale che 0 � gp1q � gp0q � g1pθqp1� 0q. Il Teorema 8.11 è una sua
versione più debole.

8.11 Teorema (degli incrementi finiti). Sia f : Ω � E Ñ F continua, E,F normati, Ω
aperto di E, x0 P Ω, h P E tale che x0 � h P Ω. Denotiamo

rx0, x0 � hs � tx � x0 � th : t P r0, 1su,
sx0, x0 � hr � tx � x0 � th : t P p0, 1qu,

e assumiamo rx0, x0�hs � Ω. Inoltre, assumiamo che f 1pxq esista per ogni x Psx0, x0�hr,
ed esista M ¡ 0 tale che @x Psx0, x0 � hr }f 1pxq}LpE,F q ¤M . Allora,

}fpx0 � hq � fpx0q} ¤M}h}.

Dimostrazione. Poniamo, come sopra, φptq � fpx0� thq, t P r0, 1s. Allora, φ P C pr0, 1s, F q,
φ1ptq � f 1px0 � thqh e }φ1ptq} ¤M}h} �: a, t P p0, 1q. Sia

Aε � tt P r0, 1s : }φptq � φp0q} ¤ pa� εqt� εu.

Per continuità di φ, Aε è chiuso, e, posto µ � supAε, si ha µ ¡ 0. Sia, per assurdo, µ   1.
Allora, per definizione di differenziale, esiste δ ¡ 0 tale che

}φpµ� δq � φpµq � φ1pµqδ}
δ

  εñ }φpµ� δq � φpµq} ¤ }φ1pµq}δ � εδ ¤ pa� εqδ.

Siccome µ P Aε (ð Aε è chiuso),

}φpµq � φp0q} ¤ pa� εqµ� ε

da cui segue
}φpµ� δq � φp0q} ¤ pa� εqpµ� δq � ε. (8.5)

La (8.5) contraddice µ � supAε, dato che implica µ � δ P Aε. Si deve pertanto avere µ � 1, e
quindi

@ε ¡ 0 }φp1q � φp0q} ¤ a� 2ε,

cioè,
}fpx0 � hq � fpx0q} ¤M}h}.

8.12 Esempio. Siano F uno spazio vettoriale normato su R e

L : pt, y, zq P rt0, t1s �A ÞÑ Lpt, y, zq P R,
A aperto di F�F . Assumiamo L continua e derivabile rispetto a py, zq con derivata L1 continua
(cioè, ByL e BzL sono continue). C 1pra, bs, F q è lo spazio di Banach delle funzioni f continue da
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I � ra, bs a valori in F con derivata f 1 continua10, e norma }f} � }f}8 � }f 1}8 � max
I
}f}F �

max
I
}f 1}F . Allora,

Ω � tf P C 1prt0, t1s, F q : @t P rt0, t1s pfptq, f 1ptqq P Au
è un aperto di C 1prt0, t1s, F q. Consideriamo il funzionale I : ΩÑ R definito da

Ipfq �
» t1

t0

Lpt, fptq, f 1ptqq dt

(funzionale di azione). Si vede facilmente che I P C 1pΩ,Rq e I 1pf0q P LpC 1prt0, t1s, F q;Rq è
dato da

I 1pf0qg �
» t1

t0

�BL
By pt, f0ptq, f

1
0ptqq �

BL
Bz pt, f0ptq, f

1
0ptqq

�
gptq dt.

Se f0 e L sono di classe C 2 sui rispettivi domini di definizione, allora

I 1pf0qg�
�BL
Bz pt, f0ptq, f

1
0ptqq gptq

�t1
t0

�
» t1

t0

�BL
By pt, f0ptq, f

1
0ptqq �

d

dt

BL
Bz pt, f0ptq, f

1
0ptqq

�
gptq dt.

Se nella definizione di Ω si richiede anche fpt0q � fpt1q, allora f0 è un punto di stazionarietà
di I se soddisfa l’equazione di Eulero-Lagrange

d

dt

BL
Bz pt, f0ptq, f

1
0ptqq �

BL
By pt, f0ptq, f

1
0ptqq � 0.

Concludiamo questa sezione con il Teorema delle funzioni implicite nell’ambito degli spazi
normati completi. La dimostrazione, che non riportiamo in dettaglio11, si può ottenere tramite
i Teoremi 8.7 e 8.11. Con la notazione Dxfpx, yq indichiamo qui il differenziale parziale della
funzione f rispetto alla variabile x.

8.13 Teorema (delle funzioni implicite). Siano f : Ω � E �F Ñ G, Ω aperto, E spazio
topologico, F,G spazi di Banacha, f P C pΩ, Gq. Assumiamo:

iq pa, bq P Ω e fpa, bq � c P G;
iiq Dyf : ΩÑ LpF,Gq è continua;

iiiq Q � pDyfqpa, bq P GLpF,Gqb.
Allora, esistono A � F , B � G aperti, tali che a P A, b P B, e

@x P A D!y P B fpx, yq � c. (8.6)

Definita φ : A Ñ B : x ÞÑ y � φpxq, con px, yq P A � B che soddisfa (8.6), cioè vale
fpx, φpxqq � c per ogni x P A, si ha φ P C pA,Bq. Inoltre, se assumiamo anche che

10Più precisamente, si dovrebbe dire f 1ptq � 1, essendo f 1ptq P LpR, F q � F .
11L’argomentazione è analoga a quella seguita in J.P. Cecconi, G. Stampacchia, Analisi Matematica, 2�

Volume, Funzioni di più variabili, Liguori (1983), Cap. IV, n. 27.2.
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ivq Dxf : ΩÑ LpE,Gq è continua,

allora si ha φ P C 1pA,Bq e dφx � �rpDyfq�1 � pDxfqspx, φpxqq.
aÈ sufficiente G spazio normato.
bCioè, esiste Q�1. Se G non è completo, va richiesto Q�1 P LpG,F q.

8.1.3 Soluzione di alcuni problemi di evoluzione

1. Sia E uno spazio di Banach e A P LpEq. Definiamo, per t P R,

etA �
¸
n¥0

ptAqn
n!

� lim
NÑ�8

Ņ

n�0

ptAqn
n!

. (8.7)

Dato che, posto SN �
Ņ

n�0

ptAqn
n!

, per ogni ε ¡ 0 e M ¥ 0,

}SN�M � SN}LpEq ¤
N�M̧

n�N

p|t| � }A}LpEqqn
n!

  ε,

per N sufficientemente grande, la serie (8.7) converge assolutamente, e si ha etA P LpEq con
}etA} ¤ e|t|�}A}. Grazie alla convergenza assoluta, troviamo, per t, s P R, eps�tqA � esAetA. Infatti,
ricordando le proprietà del prodotto di serie assolutamente convergenti,

esAetA �
¸
n¥0

¸
m¥0

psAqn
n!

ptAqm
m!

�
¸
n¥0

An

n!

¸
j�k�n

n!

j! k!
sj tk �

¸
n¥0

rps� tqAsn
n!

� eps�tqA.

Pertanto, petAqtPR è un gruppo di operatori invertibili di LpEq, con
lim
tÑ0

etA � e0A � I e petAq�1 � e�tA.

È immediato anche mostrare che AetA � etAA. Innanzitutto, osserviamo che la Definizione 8.8
di derivata rispetto a t è equivalente alla definizione usuale (t P R � E), e si ha

d

dt
etA � lim

hÑ0

ept�hqA � etA

h
� etA lim

hÑ0

ehA � I

h

� etA lim
hÑ0

�
A� h

¸
n¥2

hn�2An

n!

�
� AetA.

(8.8)

Infatti, notiamo che, posto

pptq �
¸
n¥2

tn�2p}A}qn
n!

,

vale pptq � et}A} � 1� t}A}
t2

, t �� 0, si vede che la serie che compare nella (8.8) è (totalmente)

convergente per h P r�1, 1s, e si può passare al limite per h Ñ 0. Dunque, scelto x0 P E



74 8.1 Analisi in spazi metrici completi

arbitrario e posto xptq � etAx0, quanto provato sopra implica che xptq risolve il problema di
Cauchy $'&'%

d

dt
xptq � Axptq

xp0q � x0.

Per esempio, la soluzione di$'&'%
Bfpt, xq
Bt �

» b

a

kpx, yqfpt, yq dy � Afpt, xq

fp0, xq � φpxq,
sotto ipotesi opportune su k e φ, è data da fpt, xq � etAφpxq.

2. Sia T � T � un operatore lineare, continuo e autoaggiunto sullo spazio di Hilbert H, con spet-
tro σpT q costituito unicamente da una successione di autovalori tλkuk � R con base ortonormale
associata pekqk. Poniamo, per t P R e x P H,

Aptqx �
¸
k

eitλkpx, ekqek ñ pAptqx, ejq � eitλjpx, ejq. (8.9)

Quindi, ¸
j

|pAptqx, ejq|2 �
¸
j

|eitλjpx, ejq|2 �
¸
j

|px, ejq|2 � }x}2   �8,

e ne segue che, per ogni t P R, Aptq P LpHq con }Aptq} ¤ 1. Inoltre, si dimostra facilmente
che A P C pR,LpHqq e, in effetti, che A P C8pR,LpHqq. Direttamente dalla definizione, si ha
Ap0q � I. Per ogni s, t P R, ApsqAptq � Aps� tq. Infatti, per ogni x P H,

ApsqAptqx � Apsq
�¸

k

eitλkpx, ekqek
�
�
¸
j

eisλj

�¸
k

eitλkpx, ekqek, ej
�
ej

�
¸
j

eisλjeitλjpx, ejqej �
¸
j

eips�tqλjpx, ejqej � Aps� tqx.

Dunque, per ogni t P R, pAptqq�1 � Ap�tq. Derivando termine a termine, ricordando che λk P R,
e sfruttando le proprietà di convergenza della serie che definisce Aptq, troviamo anche

BtAptqx � i
¸
k

λke
itλkpx, ekqek � i

¸
k

eitλkpx, Tekqek �
¸
k

eitλkpTx, ekqek � iAptqTx

� i
¸
k

eitλkpx, ekqTek � iT

�¸
k

eitλkpx, ekqek
�

� iTAptqx,

cioè, BtAptq � iTAptq � iAptqT . Ne segue, similmente a quanto già osservato al punto 1., che
la funzione xptq � Aptqx0, x0 P H, è soluzione del problema di Cauchy$'&'%

d

dt
xptq � iTxptq

xp0q � x0.
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Dato che
d2

dt2
xptq � �T 2xptq, se S � T 2 P LpHq (cfr. Esercizio 4.7), la medesima funzione xptq

risolve anche il Problema di Cauchy$'''&'''%
d2

dt2
xptq � Sxptq � 0

xp0q � x0

x1p0q � iTx0.

8.14 Commento. Definendo Bptq � eitT come nella (8.7), con itT al posto di tA, si
ottiene, con dimostrazioni del tutto analoghe, un gruppo di operatori invertibili tali che

Bp0q � I, Bps�tq � BpsqBptq, pBptqq�1 � Bp�tq, d
dt
Bptq � iTBptq, s, t P R. Si dimostra

che che la famiglia di operatori Aptq definita tramite la (8.9) soddisfa Aptq � Bptq. Infatti,
sia Aptq che Bptq soddisfano il problema di Cauchy$'&'%

d

dt
W ptq � iTW ptq

W p0q � I.

Posto allora Qptq � AptqBp�tq, si trova Qp0q � I e, utilizzando la regola di derivazione
a catena,

d

dt
Qptq �

��
d

dt
Aptq



Bp�tq

�
�
�
Aptq

�
d

dt
Bp�tq


�
� iTAptqBp�tq � Aptqp�iTBp�tqq

� iTQptq � iTQptq � 0,

dato che, come nel punto 1., TAptq � AptqT . Dunque, @t P R Qptq � AptqBp�tq � I, e,
componendo a destra con Bptq, si ottiene Aptq � Bptq, t P R, come affermato. Quanto
illustrato brevemente in questa sezione suggerisce come sia possibile (e utile) definire fpT q,
sotto opportune ipotesi, con T operatore lineare e f funzione. Ciò può essere ottenuto sia
“direttamente”, come nel punto 1. pquando è disponibile, per esempio, uno sviluppo in
serie di potenze di f), sia “indirettamente”, operando sullo spettro di T , come nel punto
2. (in spazi di Hilbert, quando lo spettro di T è discreto e formato solo da autovalori, con
un’associata base di autovettoriq.

8.2 Serie e trasformate di Fourier

8.2.1 Il principio di indeterminazione di Heisenberg

8.15 Teorema. Siano φ P DpRq e x0, ξ0 P R. Allora

}φ}2L2pRq ¤ 2}px� x0qφpxq}L2pRq}pξ � ξ0qpφpξq}L2pRq.
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Dimostrazione. Passo I. Sia x0 � ξ0 � 0. Integrazione per parti ñ

}φ}2L2pRq �
»
φpxqφpxq dx � �

»
xpφφq1pxq dx � �

»
xpφ1φ� φφ1qpxq dx

� �2
»
xRe

�
φ1pxqφpxq� dx.

Disuguaglianza di Cauchy-Schwarz ñ

}φ}2L2pRq ¤ 2

»
|xφpxq||φ1pxq| dx ¤ 2}xφpxq}L2pRq}φ1}L2pRq.

Quindi

}φ1}L2pRq
Teorema 7.6� }pφ1}L2pRq

p�q� }ξ pφ}L2pRq,

dove l’uguaglianza p�q vale grazie all’Esercizio 7.6.

Passo II. Sia ψpxq :� e�ixξ0φpx� x0q. Si calcola }ψ}L2pRq � }φ}L2pRq e

}xψpxq}L2pRq � }px� x0qφpxq}L2pRq, }ξ pψpξq}L2pRq � }pξ � ξ0qpφpξq}L2pRq.

Applicando la formula con x0 � ξ0 � 0 dimostrata al Passo I a ψ si ottiene l’enunciato.

Enunciamo, senza dimostrazione, il seguente risultato:

8.16 Teorema (Amrein, Berthier). Siano E,F � R misurabili e di misura finita. Allora

D C ¥ 0 @ f P L2pRq : }f}L2pRq ¤ C
�}f}L2pRzEq � }Ff}L2pRzF q

�
.

In particolare: f e Ff hanno simultaneamente supporto compatto se e solo se f � 0.

8.2.2 Serie trigonometriche ed integrali di Fourier

Dai risultati della prima parte (Capitolo 9), sappiamo che è possibile approssimare funzioni
periodiche L2 attraverso polinomi trigonometrici12,

TNpxq � a0
2
�

Ņ

n�1

pan cosnx� bn sinnxq, N P N, (8.10)

dove a0, an, bn, n P N, sono i coefficienti della serie trigonometrica. In questa sezione, f denota
inizialmente una funzione a valori in C, definita su p�π, πq, estesa a Rztp2k � 1qπukPZ come
funzione periodica di periodo 2π. Il successivo Teorema 8.17, la cui dimostrazione è lasciata per
esercizio, è un risultato notevole sui polinomi trigonometrici.

12Una dimostrazione di questo fatto si trova, per esempio, in W. Rudin, Analisi Reale e Complessa, §4.23-4.25.
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8.17 Teorema. Sia f P L2p�π, πq. Poniamo

a0 � 1

π

» π

�π
fptq dt, an � 1

π

» π

�π
fptq cosnt dt, bn � 1

π

» π

�π
fptq sinnt dt, n P N.

I coefficienti di Fourier an e bn cos̀ı definiti rendono minima la quantità

1

2π

» π

�π

����fpxq � ã0
2
�

Ņ

n�1

pãn cosnx� b̃n sinnxq
����2dx, ã0, ãn, b̃n P C.

Si dimostra anche che

"
1?
2π
,
cosnx?

π
,
sinnx?

π

*
nPN

è un sistema ortonormale completo in L2p�π, πq,
ovvero, si può considerare lo sviluppo di f in serie di Fourier (trigonometrica),

fpxq � a0
2
�

�8̧

n�1

pan cosnx� bn sinnxq,

con convergenza nel senso di L2p�π, πq. Essendo

cosnx � einx � e�inx

2
, sinnx � einx � e�inx

2
, n P N0,

troviamo

TNpxq � a0
2
�

Ņ

n�1

�
an
einx � e�inx

2
� bn

einx � e�inx

2i




� a0
2
�

Ņ

n�1

einx
�
an
2
� bn

2i



�

Ņ

n�1

e�inx
�
an
2
� bn

2i



� a0

2
�

ņ

n�1

an � ibn
2

einx �
ņ

n�1

an � ibn
2

e�inx.

Definendo

cn �

$'''''&'''''%

an � ibn
2

per n ¥ 1,

a0
2

per n � 0,

a�n � ib�n
2

per n ¤ �1,

(8.11)

si ha

TNpxq �
Ņ

n��N
cne

inx.

Passando al limite per N Ñ �8, troviamo

fpxq �
¸
nPZ

cne
inx, (8.12)



78 8.2 Serie e trasformate di Fourier

sempre nel senso della convergenza in L2p�π, πq. La (8.12) è la serie di Fourier di f in forma
complessa. Esaminiamo ora una condizione per la convergenza puntuale. Dalle (8.11) si ricava

an � cn � c�n, n P N0,

bn � ipcn � c�nq, n P N,

cn � 1

2π

» π

�π
fptqe�int dt, n P Z.

Come è noto,

"
einx?
2π

*
nPZ

è un sistema ortonormale completo in L2p�π, πq. Ponendo enpxq �
einx?
2π

, i coefficienti sono

fn � pf, enqL2p�π,πq � 1?
2π

» π

�π
fptq e�int dt � cn

?
2π, n P Z,

e definiamo, per N P N0,

SNpxq �
Ņ

n��N
fn
einx?
2π

� 1

2π

» π

�π
fptq

Ņ

n��N
einpx�tq dt. (8.13)

Calcoliamo, per eiz �� 1,

DNpzq � 1

2π

Ņ

n��N
einz � 1

2π
e�iNz

2Ņ

n�0

einz � 1

2π
e�iNz

eip2N�1qz�1

eiz � 1

� 1

2π

eipN�
1
2
qz � e�ipN�

1
2
qz

ei
z
2 � e�i

z
2

� 1

2π

sin
�
N � 1

2

�
z

sin z
2

,

ed estendiamo DN per continuità, ove eiz � 1, ponendola uguale a
2N � 1

2π
. La funzione DN è

detta Nucleo di Dirichlet, ed ha le seguenti proprietà:

(i) DN è una funzione periodica di periodo 2π, a valori reali, definita su tutto R;

(ii) DN è una funzione pari;

(iii)

» π

�π
DNpzq dz � 1.

Dalla (8.13), sfruttando la parità di DN e la periodicità della funzione integranda, con il cambio
di variabile t � x� z ô z � �x� t, otteniamo

SNpxq �
» π

�π
fptqDNpx� tq dt �

» π�x

�π�x
fpx� zqDNpzq dz �

» π

�π
fpx� zqDNpzq dz,

da cui segue, grazie alla (iii),

SNpxq � fpxq � 1

π

» π

�π

fpx� zq � fpxq
z

z

2 sin z
2

sin

�
2N � 1

2
z



dz.
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8.18 Lemma (di Riemann-Lebesgue). g P L1pa, bq ñ lim
λÑ�8

» b

a

gpzq sinpλzq dz � 0.

Dimostrazione. Per g � φ P C1
0pra, bsq � L1pa, bq, la dimostrazione è immediata:» b

a

gpzq sinpλzq dz �
�
�φpzq cospλzq

λ

�b
a

�
» b

a

φ1pzq cospλzq
λ

dz
λÑ�8ÝÝÝÝÑ 0.

Per g arbitraria in L1pa, bq, l’enunciato si ottiene dalla densità13 di C1
0pra, bsq in L1pa, bq (cfr.

risultati della prima parte). Infatti, per ogni ε ¡ 0, esiste φ P C1
0pra, bsq tale che }g�φ}L1pa,bq  

ε

2
, ed esiste Λ tale che, per ogni λ ¡ Λ,

����» b

a

φpzq sinpλzq dz
����   ε

2
. Dunque, per λ ¡ Λ,

����» b

a

gpzq sinpλzq dz
���� ¤ ����» b

a

rgpzq � φpzqs sinpλzq dz
����� ����» b

a

φpzq sinpλzq dz
����

¤ }g � φ}L1pa,bq � ε

2
  ε.

8.19 Teorema. Sia f P L1p�π, πq, estesa per periodicità a Rztp2k�1qπukPZ, x P p�π, πq,
ed esista δ ¡ 0 tale che » δ

�δ

����fpx� zq � fpxq
z

dz

����   �8 (8.14)

pCondizione di Diniq. Allora, lim
NÑ�8

SNpxq � fpxq.

Dimostrazione. Per la Condizione di Dini, posto hxpzq � fpx� zq � fpxq
z

, risulta hx P
L1p�π, πqz. Pertanto, applicando il Lemma 8.18 con λ � N � 1

2
, troviamo

SNpxq � fpxq � 1

π

» π

�π

fpx� zq � fpxq
z

PL8p�π,πqhkkikkj
z

2 sin z
2looooooooooooooomooooooooooooooon

PL1p�π,πq

sin

�
2N � 1

2
z



dz

NÑ�8ÝÝÝÝÑ 0.

13In alternativa, si osserva che per g � χrα,βs, rα, βs � ra, bs, si ha

» b

a

gpzq sinpλzq dz �

» β

α

sinpλzq dz �
1

λ
rcospλαq � cospλβqs

λÑ�8
ÝÝÝÝÑ 0,

e la famiglia di funzioni tχrα,βsua¤α¤β¤b è totale in L1pa, bq.
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Osservazioni. Vi sono funzioni, anche continue, definite su I � p�π, πq, la cui serie di Fourier
non converge in ogni punto di I (cfr. W. Rudin, Analisi Reale e Complessa, §5.11). Pertanto, per
garantire la convergenza puntuale, è effettivamente necessario imporre condizioni sulla funzione
f , quali, per esempio, la Condizione di Dini.

Operando separatamente a sinistra ed a destra di x P p�π, πq, il Teorema 8.19 si generalizza
facilmente come segue.

8.20 Corollario. Sia f come nel Teorema 8.19. Poniamo, per x P p�π, πq, fpx � 0q �
lim
εÑ0�

fpx� εq P C, ed esista δ ¡ 0 tale che

» 0

�δ

����fpx� zq � fpx� 0q
z

dz

����   �8 e

» δ

0

����fpx� zq � fpx� 0q
z

dz

����   �8.

Allora lim
NÑ�8

SNpxq � fpx� 0q � fpx� 0q
2

.

8.21 Definizione. Una funzione f è detta regolare a tratti nell’intervallo ra, bs se è
continua e derivabile a tratti nell’intervallo ra, bs, cioè se:

� @x0 P pa, bq esistono finiti lim
xÑx�0

fpxq e lim
xÑx�0

f 1pxq;

� esistono finiti lim
xÑa�

fpxq, lim
xÑa�

f 1pxq, lim
xÑb�

fpxq, lim
xÑb�

f 1pxq.

8.22 Teorema (di Dirichlet). Se la funzione f : R Ñ C, periodica di periodo 2π, è
regolare a tratti nell’intervallo r�π, πs, la sua serie di Fourier converge in ogni punto
x P R, ovvero, per ogni x P R esiste finito lim

NÑ�8
SNpxq, con SNpxq definita nella (8.13).

Esplicitamente, si ha

lim
NÑ�8

SNpxq � fpx� 0q � fpx� 0q
2

.

In particolare, la serie di Fourier di f converge a fpxq in ogni punto x P R ove f è
continua.

Dimostrazione. Immediata, osservando che una funzione regolare a tratti soddisfa le ipotesi
del Corollario 8.20, e che le ipotesi permettono di estendere il risultato anche agli estremi
dell’intervallo r�π, πs.

Osservazioni. Abbiamo provato che una funzione f , periodica di periodo 2π, che soddisfa le
condizioni di Dini (in particolare, che è regolare a tratti) si può rappresentare tramite la sua
serie di Fourier, cioè, come una sovrapposizione di infiniti termini oscillanti p“armoniche”q. La
mappa

f ÞÑ pfnqnPZ, fn � 1?
2π

» π

�π
fptq e�int dt,
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rappresenta tale decomposizione in termini oscillanti, dove il parametro discreto n P Z è associ-

ato alla frequenza delle oscillazioni. La formula fpxq � 1?
2π

¸
nPZ

fne
inx rappresenta l’inversa di

tale mappa (“formula di ricostruzione”). Vogliamo ora estendere tale tipo di rappresentazione a
funzioni non periodiche. Osserveremo che ciò è possibile, sotto condizioni opportune, e conduce
alla definizione dei concetti di integrali di Fourier e trasformata di Fourier.

Assumiamo ora che f : R Ñ C soddisfi f P L1pRq e la Condizione di Dini (8.14) in ogni punto
x P R. Considerando la restrizione di f all’intervallo p�l, lq, l ¡ 0, e la sua successiva estensione
per periodicità, con un cambio di scala sull’asse delle ascisse è possibile scriverne lo sviluppo in
serie di Fourier, nella forma

fpxq � a0
2
�

�8̧

n�1

�
an cos

�nπ
l
x
	
� bn sin

�nπ
l
x
	�
, x P p�l, lq, (8.15)

dove

an � 1

l

» l

�l
fptq cos

�nπ
l
t
	
dt, bn � 1

l

» l

�l
fptq sin

�nπ
l
t
	
dt, n P N0.

Sostituendo le espressioni di an, bn, n P N0, nella (8.15), otteniamo

fpxq � 1

2l

» l

�l
fptq dt

�
�8̧

n�1

�
1

l

» l

�l
fptq cos

�nπ
l
x
	
cos

�nπ
l
t
	
dt� 1

l

» l

�l
fptq sin

�nπ
l
x
	
sin

�nπ
l
t
	
dt

�
� 1

2l

» l

�l
fptq dt� 1

π

�8̧

n�1

π

l

» l

�l
fptq cos

�nπ
l
pt� xq

�
dt, x P p�l, lq. (8.16)

Seguiamo, euristicamente, un primo procedimento, puramente formale, e consideriamo il limite
per l Ñ �8 della (8.16). Per l’ipotesi f P L1pRq, il primo termine tende a 0. Il secondo termine
può essere considerato un analogo di una somma di Riemann associata alla funzione

F pτq �
» l

�l
fptq cosrτpt� xqs dt

per l’integrale » �8

0

F pτq dτ,

scegliendo τn � nπ

l
e µpInq � π

l
. Il passaggio formale al limite per l Ñ �8 nella (8.16)

suggerisce quindi l’uguaglianza

fpxq � 1

π

» �8

0

"» �8

�8
fptq cosrτpt� xqs dt

*
dτ, (8.17)

che è la rappresentazione integrale cercata. Ponendo

aτ � 1

π

» �8

�8
fptq cospτtq dt, bτ � 1

π

» �8

�8
fptq sinpτtq dt,
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si può scrivere la (8.17) nella forma seguente, che “ricorda le serie di Fourier”14:

fpxq �
» �8

0

raτ cospτxq � bτ sinpτxqs dτ. (8.18)

Abbiamo ottenuto la (8.18), detta formula di Fourier, grazie ad un passaggio formale al limite.
Diamone una dimostrazione diretta15.

8.23 Teorema. Assumiamo che f P L1pRq soddisfi la condizione di Dini nel punto x P R.
Allora si ha

fpxq � 1

π

» �8

0

"» �8

�8
fptq cosrτpt� xqs dt

*
dτ.

Dimostrazione. Poniamo

JpAq � 1

π

» A

0

"» �8

�8
fptq cosrτpt� xqs dt

*
dτ, (8.19)

e dimostriamo che lim
AÑ�8

JpAq � fpxq. Le ipotesi implicano che l’integrale interno è assoluta-

mente convergente per ogni τ, x P R, cos̀ı come l’integrale doppio per ogni A, x P R. Applicando
il Teorema di Fubini-Tonelli ed il cambio di variabile z � t� x, troviamo

JpAq � 1

π

» �8

�8

» A

0

fptq cosrτpt� xqs dτdt � 1

π

» �8

�8
fptqsinrApt� xqs

t� x
dt

� 1

π

» �8

�8
fpx� zqsinpAzq

z
dz.

L’uguaglianza
1

π

» �8

�8

sinpAzq
z

dz � 1, A ¡ 0, permette di scrivere

JpAq � fpxq � 1

π

» �8

�8

fpx� zq � fpxq
z

sinpAzq dz

� 1

π

» �N

�N

fpx� zq � fpxq
z

sinpAzq dz (8.20)

� 1

π

»
|z|¥N

fpx� zq
z

sinpAzq dz (8.21)

� fpxq
π

»
|z|¥N

sinpAzq
z

dz. (8.22)

I termini in (8.21) e (8.22) sono uniformemente convergenti rispetto ad A ¥ 1, e possono

entrambi essere resi minori di
ε

3
in modulo, ε ¡ 0, scegliendo N sufficientemente grande. Con

tale N fissato, il termine in (8.20) è infinitesimo per A Ñ �8, grazie alla Condizione di Dini
ed al Lemma 8.18. Pertanto, si ha lim

AÑ�8
rJpAq � fpxqs � 0, come affermato.

14Cioè, sostituendo il simbolo di serie ed il corrispondente indice (discreto) con un integrale esteso all’intervallo
r0,�8q rispetto alla variabile (reale) τ .

15Il procedimento formale di “passaggio al limite” illustrato per ottenere la (8.17) a partire dalla (8.16) si
potrebbe rendere rigoroso, ma la dimostrazione diretta del Teorema 8.23 è più agevole.
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Dato che l’integrale interno nella (8.17) è una funzione pari, possiamo riscriverla nella forma

fpxq � 1

2π

» �8

�8

"» �8

�8
fptq cosrτpt� xqs dt

*
dτ. (8.23)

D’altra parte, l’ipotesi f P L1pRq implica che l’integrale

» �8

�8
fptq sinrτpt� xqs dt esiste finito,

ed è una funzione dispari di τ . Pertanto,

1

2π

» �8

�8

"» �8

�8
fptq sinrτpt� xqs dt

*
dτ � 0, (8.24)

purchè l’integrale in τ venga considerato nel senso del suo valor principale, cioè come limite, per
N Ñ �8, dell’integrale esteso all’intervallo r�N,N s. Sommando membro a membro la (8.23)
e la (8.24) moltiplicata per �i, otteniamo infine l’uguaglianza

fpxq � 1

2π

» �8

�8

"» �8

�8
fptqe�iτpt�xqdt

*
dτ,

(8.25)

detta formula di Fourier complessa. La (8.25) può essere rappresentata tramite le due uguaglianze

gpτq � 1?
2π

» �8

�8
e�itτ fptq dt

e

fpxq � 1?
2π

» �8

�8
eixτ gpτq dt.

Osserviamo che la prima ha senso per ogni funzione f P L1pRq, e produce la trasformata di

Fourier pf introdotta nella (7.1). La seconda, che esprime la formula di inversione, è più delicata,
dato che, in questo approccio, è valida solo nel senso del valore principale e sotto la condizione
di Dini. Il Teorema 7.3 nella Sezione 7.1 dimostra la validità della formula di inversione sotto
“ipotesi simmetriche” su f e pf . Come già sottolineato sopra, nell’ambito L1 non è possibile
evitare di richiedere ipotesi opportune per la validità della formula di inversione, a differenza
di quanto accade, per esempio, nell’ambito L2. Quest’ultimo è quindi più adatto, in linea di
principio, per le applicazioni. Tuttavia, perdiamo la possibilità di esprimere pf , in generale, nella
forma integrale di partenza (salvo il fatto di poterla impiegare, per esempio, su domini sferici
e poi passare al limite, cfr. Corollario 7.7).

La procedura illustrata sopra, che mostra come arrivare alle formule integrali di Fourier ed alla
definizione di trasformata di Fourier, a partire dalle classiche serie di Fourier trigonometriche,
rende anche conto dell’interpretazione di pf , di uso comune, in termini di una “decomposizione
di f rispetto a termini oscillanti”, con un range di frequenze continuo. Similmente, si evince
la necessità di imporre condizioni opportune per garantire la validità di una “formula di ri-
costruzione puntuale” (quasi ovunque), fornita dai teoremi di inversione, in analogia a quanto
osservato per la convergenza puntuale delle usuali serie di Fourier trigonometriche.
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8.2.3 Trasformata di Fourier e distribuzioni

Per f P L1pRnq e ϕ P DpRnq vale

T
pf pϕq �

»
Rn

pfpξqϕpξq dξ � »
Rn

fpξqpϕpξq dξ � Tf ppϕq.
Questo suggerisce di definire la trasformata FT � pT di una distribuzione T P D 1pRnq tramite

pT pϕq :� T ppϕq, ϕ P DpRnq.

Sfortunatamente questa definizione non ha senso, poiché pϕ R DpRnq se ϕ �� 0.

8.24 Lemma. Sia ϕ P DpRq e pϕ P DpRq. Allora ϕ � 0.

Dimostrazione. Consideriamo la funzione f : CÑ C con fpzq � p2πq�1{2
»
R
e�ixzϕpxq dx.

Utilizzando |e�ixz| � exIm z e il fatto che ϕ ha supporto compatto, f definisce una funziona

intera (i.e. olomorfa in tutto C). Ovviamente fpξq � pϕpξq per tutti ξ P R.

supp pϕ compatto ñ D a P R @ ξ ¡ a : fpξq � pϕpξq � 0.

Principio di identità per le funzioni olomorfe ñ fpzq � 0 per tutti z ñ pϕ � 0.

Teorema 7.3 ñ ϕ � 0 quasi ovunque in R.
ϕ continua ñ ϕ � 0 in R.

Gli spazi DpRnq e D 1pRnq quindi non sono adatti alla trasformata di Fourier. Per questo motivo
si introduce lo spazio S pRnq di tutte le funzioni φ P C8pRnq per le quali

}φ}pNq :� sup
xPRn,

k�|α|¤N

|x|k|Bαxφpxq|   �8 @ N P N.

S pRnq è detto spazio di Schwartz oppure spazio delle funzioni a decrescenza rapida. Ovvia-
mente, DpRnq � S pRnq. Si può dimostrare che

p: S pRnq ÝÑ S pRnq

è un’isomorphismo con inversa q. Si definisce poi lo spazio delle distribuzioni temperate S 1pRnq
di tutte le applicazioni lineari T : S pRnq Ñ C che sono continue, nel senso che

D N � NpT q D C � CpT q @ φ P S pRnq : |T pφq| ¤ C}φ}pNq.

Per T P S 1pRnq si può definire la trasformata di Fourier pT P S 1pRnq come indicato, cioè

pT pφq :� T ppφq, φ P S pRnq.
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Analogamente si definisce qT tramite qT pφq � T pqφq. Si ottiene un isomorphismo T ÞÑ pT in

S 1pRnq con inversa T ÞÑ qT .
Per f P LppRnq, 1 ¤ p ¤ �8, si definisce la distribuzione regolare Tf P S 1pRnq,

Tf pφq :�
»
Rn

fpxqφpxq dx, φ P S pRnq.

Per f P L1pRnq e per f P L2pRnq vale xTf � T
pf , dove

pf è definita come nelle Sezioni 7.1 e

7.2, rispettivamente (cioè, xTf � TFf per f P L2pRnq). Cos̀ı come la distribuzione regolare Tf ,

f P L1
locpΩq, viene spesso indicata semplicemente con f , xTf è generalmente indicata con pf ,

indifferentemente per f P L1pRnq o f P L2pRnq (ed anche, nel senso di S 1pRnq, per f P LppRnq,
p P p1, 2q Y p2�8s).
Le distribuzioni temperate e le loro trasformate di Fourier vengono studiate dettagliatamente
nel corso Analisi Superiore.
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9 Soluzioni degli esercizi

9.1 Capitolo 1

Esercizio 1.1. Utilizziamo il cambio di variabili y � Ax, dy � | detA| dx.

}Tf}2L2 �
»
|fpAxq|2 dx � | detA|�1

»
|fpyq|2 dy � |detA|�1}f}2L2 .

Quindi T P L pL2q con }T } ¤ | detA|�1{2. Inoltre

pTf, gq �
»
fpAxqgpxq dx �

»
fpyq| detA|�1gpA�1yq dy.

Quindi pT �gqpyq � | detA|�1gpA�1yq, g P L2.

Esercizio 1.2. S :� T �T � TT � è autoaggiunto. Allora

T normale ðñ T �T � TT � ðñ S � 0
1.7ðñ pSx, xq � 0 @ x P H

ðñ pT �Tx, xq � pTT �x, xq @ x P H
ðñ pTx, Txq � pT �x, T �xq @ x P H
ðñ }Tx}2 � }T �x}2 @ x P H.

Esercizio 1.3. “ð”: imT � imT � pimT qKK � pkerT �qK � t0uK � H

“ñ”: kerT � � pimT qK � HK � t0u ñ T � iniettivo.

imT � H è ovviamente chiuso.

Esercizio 1.4. “ñ”: PQ proiezione ortogonale ñ PQ � pPQq� � Q�P � � QP .

“ð”: PQ � QP ñ
#
pPQq2 � PQPQ � PPQQ � PQ,

pPQq� � pQP q� � P �Q� � PQ
ñ PQ proiezione ortogonale.

Sia PQ una proiezione ortogonale.

x P imPQ ñ D y P H : x � PQy � P pQyq � QpPyq ñ x P imP X imQ.

x P imP X imQ ñ PQx � Px � x ñ x P imPQ.

Esercizio 1.5. H � imQ` kerQ

Quindi: x P imQ ðñ Qx � x.

Quindi: imP � imQ ðñ QP � P .

� QP � P ñ P � P � � pQP q� � P �Q� � PQ

ñ }Px} � }PQx} ¤ }P }}Qx} ¤ }Qx} @ x P H.

� }Px} ¤ }Qx} @ x P H ñ }P p1�Qqy} ¤ }Qp1�Qqy} � 0 @ y P H
ñ P p1�Qq � 0 ñ P � PQ ñ P � P � � pPQq� � Q�P � � QP .
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Esercizio 1.6. Osserviamo che pP �Qq� � P � �Q� � P �Q.

“ð:” PQ � QP � 0 ñ pP �Qq2 � P 2 � PQ�QP �Q2 � P �Q.

“ñ:” P �Q � pP �Qq2 � P 2 � PQ�QP �Q2 ñ PQ�QP � 0

ñ PQ � �QP p�q
Componendo con P a destra ed a sinistra ñ PQ � �PQP e �QP � PQP

ñ PQ � QP p��q
p�q, p��q ñ PQ � QP � 0.

Sia P �Q una proiezione ortogonale.

x P imP X imQ ñ x � Px � P pQxq � 0 ñ imP X imQ � t0u.
Ovviamente, im pP �Qq � imP � imQ.

x P imP � imQ ñ D y, z P H : x � Py �Qz

ñ pP �Qqx � P 2y � PQz �QPy �Q2z � Py �Qz � x

ñ x P im pP �Qq



88 9.2 Capitolo 2

9.2 Capitolo 2

Esercizio 2.1. “ñ”: T P K pHq, T � P L pHq Teorema 2.6,cqñ T �T P K pHq
“ð”: Sia pxnq � H successione limitata, M :� supn }xn}.
T �T P K pHq ñ D pxnk

q : pT �Txnk
q è convergente.

Osserviamo che

}Tx� Ty}2 � pT px� yq, T px� yqq � |px� y, T �T px� yqq| ¤ }x� y}}T �Tx� T �Ty}.

Ne segue

}Txnk
� Txnℓ

}2 ¤ 2M}T �Txnk
� T �Txnℓ

}2
ñ pTxnk

q successione di Cauchy, quindi convergente.

Teorema 2.8 ñ T P K pHq.

Esercizio 2.2. aq Sia x P V K e y P V arbitrario.

Ty P V , T � T � ñ pTx, yq � px, Tyq � 0 ñ Tx P V K.

bq Sia pvnq � V successione limitata.

pvnq limitata in H, T P K pHq ñ D pvnk
q : pTvnk

q convergente in H.

pTvnk
q � V , V chiuso ñ pTvnk

q convergente in V .

Teorema 2.8 ñ T |V P K pV q.

Esercizio 2.3. Sia S :� aI � T . Allora

Spx1, x2, x3, x4, . . .q � ps1x1, s2x2, s3x3, s4x4, . . .q

con la successione sn � a� an. Nota che sn Ñ 0 per nÑ �8.

M :� supn |sn|
ñ }Sx}2 � °

n |snxn|2 ¤M2
°
n |xn|2 �M2}x}2 @ x P ℓ2pNq.

ñ S P L pℓ2pNqq con }T } ¤M .

Sia SN P F pℓ2pNqq definito da SNx � ps1x1, s2x2, . . . , sNxN , 0, 0, . . .q.
Sia dato ε ¡ 0.

psnq infinitesima ñ D N0 P N @ n ¥ N0 : |sn|   ε

ñ }SNx� Sx}2 �
8°

n�N�1

|snxn|2   ε2
8°

n�N�1

|xn|2 ¤ ε2}x}2 @ N ¥ N0 @ x P ℓ2pNq

ñ }SN � S}   ε @ N ¥ N0

ñ SN
NÑ�8ÝÝÝÝÑ S

ñ S P K pℓ2pNqq.
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Esercizio 2.4. Si ha

pfij, fkℓqL2pA�Aq �
¼
A�A

fijps, tqfkℓps, tq dsdt �
»
A

eipsqekpsq ds
»
A

ejptqeℓptq dt

� pei, ekqL2pAqpej, eℓqL2pAq �
#
1 i � k, j � ℓ

0 altrimenti

ñ tfiju sistema ortonormale.

Sia g P L2pA� Aq. Calcoliamo

}g}2L2pA�Aq �
»
A

� »
A

|gps, tq|2 ds
	
dt �

»
A

}gp�, tq}2L2pAq dt

�
»
A

�¸
j

| pgp�, tq, ejqL2pAqloooooooomoooooooon
�:Gjptq

|2
	
dt �

¸
j

»
A

|Gjptq|2 dt

�
¸
j

}Gj}2L2pAq �
¸
j

¸
k

|pGj, ekqL2pAq|2

�
¸
j,k

��� »
A

Gjptqekptq dt
���2 �¸

j,k

��� »
A

»
A

gps, tqejpsqekptq dsdt
���2

�
¸
j,k

|pg, fjkqL2pA�Aq|2.
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Esercizio 3.1. S :� I�T � . . . TN�1 ñ SpI�T q � pI�T qS � I�TN � I ñ pI�T q�1 � S.

Esercizio 3.2. 1q f2 � 0 ðñ fpxq � px� q pp, q P Cq
ñ kerT � tfpxq � px� q | p, q P Cu, dimkerT � 2.

f P C pra, bsq data, gpxq :�
» x

a

» y

a

fptq dt dy ñ g P C 2pra, bsq e g2 � f .

ñ T suriettivo, codim imT � 0.

2q Come prima, ma tenendo conto della periodicità (che impone p � 0), troviamo:
kerT � tfpxq � q | q P Cu, dimkerT � 1.

Verifichamo che imT �
!
f P C pS1q |

» 2π

0

fpxq dx � 0
)
:

”�”:
» 2π

0

Tfpxq dx �
» 2π

0

f2pxq dx � f 1p2πq � f 1p0q � 0.

”�”: Sia data f con

» 2π

0

fpxq dx � 0.

Sia gpxq :�
» x

0

» y

0

fptq dt dy � cx con c � � 1

2π

» 2π

0

» y

0

fptq dt dy. Osserviamo

d

dx
pgpx� 2πq � gpxqq � d

dx

� » x�2π

x

» y

0

fptq dt dy � 2πc
	

�
» x�2π

x

fptq dt �
» 2π

0

fptq dt � 0.

ñ gpx� 2πq � gpxq � cost

gp2πq � gp0q � 0 ñ g è 2π-periodica. Si ha quindi f � g2 P imT .

Inoltre, codim imT � 1 (cfr. Esempio 3.6).

3q kerT � tpx1, 0, 0, . . .q | x1 P Cu, dimkerT � 1,

imT � tx P ℓ2pNq | x1 � 0u, codim imT � 1.

Esercizio 3.3. Vale Cm{kerT � imT e quindi

codim imT � n� dimCm{kerT � n� pm� dimkerT q.

Quindi indT � m� n.
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Esercizio 3.4. Sia T �
�
T1
T2



.

“ð”: Tx � 0 ðñ T1x � T2x � 0 ðñ x P kerpT1 : kerT2 Ñ H1q ðñ x � 0

ñ T iniettivo.

px1, x2q P H1 `H2 ñ D x P H con T2x � x2 e x1 P kerT2 con T1x
1 � x1 � T1x.

ñ T px� x1q � px1, x2q ñ T suriettivo.

“ñ”: Dato x2 P H2,

T suriettivo ñ D x P H : p0, x2q � Tx � pT1x, T2xq ñ T2x � x2 ñ T2 suriettivo.

Dato x1 P H1,

T suriettivo ñ D x P H : px1, 0q � Tx � pT1x, T2xq.
ñ x P kerT2 e T1x � x1 ñ T1 : kerT2 Ñ H1 suriettivo.

Sia x P kerT2 X kerT1.

ñ Tx � p0, 0q ñ x � 0 pdato che T iniettivoq
ñ T1 : kerT2 Ñ H1 iniettivo.
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Esercizio 4.1. Secondo quanto illustrato nell’Esempio 4.3, si trova σpT q � hpr�1, 1sq.
Quindi σpT q � r�2, 2s nel caso aq, e σpT q � r0, 2s nel caso bq.
Supponiamo λ sia un autovalore e f un’autofunzione, cioè

hpxqfpxq � λfpxq @ x P r�1, 1s.
aq Sia x0 P r�1, 1s. Supponiamo fpx0q �� 0.

f continua ñ D ε ¡ 0 @ xPr�1,1s,
|x�x0| ε : fpxq �� 0

ñ 2x � λ @ xPr�1,1s,
|x�x0| ε  

ñ f � 0 su r�1, 1s ñ Non esiste nessun autovalore/autofunzione.

bq Come sopra con x0 ¡ 0 si vede che per ogni autofunzione f vale fpxq � 0 @ 0 ¤ x ¤ 1.

Viceversa, fpxq � 0 @ 0 ¤ x ¤ 1 implica pTfqpxq � hpxqfpxq � 0.

ñ λ � 0 unico autovalore con kerT � tf P Cpr�1, 1sq | fpxq � 0 @ 0 ¤ x ¤ 1u.
Esercizio 4.2. aq Sia λ P C.
λI � T � � pλI � T q�, λI � T � pλI � T �q�
Teorema 1.5,dqñ λI � T � invertibile ðñ λI � T invertibile

ñ λ P ρpT q ðñ λ P ρpT �q
ñ λ P σpT q � CzρpT q ðñ λ P σpT �q � CzρpT �q.
bq T �T � I ñ 1 � }T �T } Teorema 1.5,eq� }T }2 ñ }T } � 1

Teorema 4.3ñ σpT q � tλ | |λ| ¤ 1u.
Si ha anche

TT � � I ñ λI � T � �T pI � λT �q.
Ne segue

|λ|   1 ñ }λT �} � |λ|}T �} � |λ|}T }   1
Teorema 3.1ñ pI � λT �q invertibile

ñ λI � T invertibile

ñ tλ | |λ|   1u � ρpT q ñ σpT q � tλ | |λ| � 1u.
Esercizio 4.3. Sappiamo che T � è dato da T �px1, x2, x3, . . .q � px2, x3, x4, . . .q.
Esempio 4.4 ñ σpT �q � tλ | |λ| ¤ 1u.
Esercizio 4.2 ñ σpT q � σpT ��q � tλ̄ | |λ| ¤ 1u � tλ | |λ| ¤ 1u.
kerT � t0u ñ λ � 0 non è autovalore.

Sia λ �� 0.

Tx � λx ðñ p0, x1, x2, x3, . . .q � pλx1, λx2, λx3, . . .q ðñ x � 0

ñ λ non è autovalore.
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Esercizio 4.4. Seguire il procedimento riportato negli appunti. Nel seguito, T sia l’operatore
integrale in L2 con nucleo kpx, yq.

aq kpx, yq � xy � r1pxqs1pyq con r1pxq � s1pxq � x.

pNota: kpy, xq � yx � xy � kpx, yq ñ T autoaggiunto.q
σpT q � t0, pr1, s1qu

pr1, s1q �
» 1

0

x2 dx � 1

3

,.- ñ σpT q �
!
0, 1

3

)
.

kerT � xs1pxqyK, ker p13I � T q � xr1pxqy.

rpλI � T q�1gspxq � gpxq
λ

� x

λpλ� 1{3q
» 1

0

gpyqy dy, λ R σpT q.

bq kpx, yq � xy � x2y2 � r1pxqs1pyq � r2pxqs2pyq
con r1pxq � s1pxq � x e r2pxq � s2pxq � x2.

pNota: kpy, xq � yx� y2x2 � xy � x2y2 � kpx, yq ñ T autoaggiunto.q
kerT � xs1pxq, s2pxqyK � xx, x2yK.

T �
�pr1, s1q pr2, s1q
pr1, s2q pr2, s2q



� . . . �

�
2{3 0
0 2{5



ñ 2{3, 2{5 autovalori di T con autospazi xp1, 0qy e xp0, 1qy, rispettivamente

ñ σpT q � t0, 2
3
, 2
5
u.

ker p2
3
I � T q � x1r1pxq � 0r2pxqy � xr1pxqy,

ker p2
5
I � T q � x0r1pxq � 1r2pxqy � xr2pxqy.�

b1pλ, gq
b2pλ, gq



� pλI �Tq�1

�pg, s1q
pg, s2q



�
�
1{pλ� 2

3
q 0

0 1{pλ� 5
2
q

�pg, s1q

pg, s2q


,

rpλI � T q�1gspxq � gpxq
λ

� x

λpλ� 2
3
q
» 1

�1

gpyqy dy � x2

λpλ� 5
2
q
» 1

�1

gpyqy2 dy.

cq kpx, yq � x� y � r1pxqs1pyq � r2pxqs2pyq
con r1pxq � x, s1pxq � r2pxq � 1 e s2pxq � �x.
kerT � xs1pxq, s2pxqyK � x1, xyK.

T �
�pr1, s1q pr2, s1q
pr1, s2q pr2, s2q



� . . . �

�
1{2 1
�1{3 �1{2



ñ detpλI �Tq � λ2 � tracciapTqλ� detT � λ2 � 1

12

ñ � i?
12
, i?

12
autovalori di T con autospazi

A�
1, i?

12
� 1

2

	E
e
A�

1,� i?
12
� 1

2

	E
ñ σpT q � t0,� i?

12
, i?

12
u.

ker p� i?
12
I � T q �

A
1r1pxq �

�
i?
12
� 1

2

	
r2pxq

E
�
A
x� i?

12
� 1

2

E
,
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ker p i?
12
I � T q �

A
1r1pxq �

�
� i?

12
� 1

2

	
r2pxq

E
�
A
x� i?

12
� 1

2

E
.�

b1pλ, gq
b2pλ, gq



� pλI �Tq�1

�pg, s1q
pg, s2q



� 1

λ2 � 1
12

�
λ� 1

2
1

�1
3

λ� 1
2


�pg, s1q
pg, s2q



,

rpλI � T q�1gspxq �
� gpxq

λ
� 1

λ

�
b1pg, λqr1pxq � b2pg, λqr2pxq

�
� gpxq

λ
� 1

λpλ2 � 1
12
q
!��

λ� 1

2

	
pg, s1q � pg, s2q

�
x� 1

3
pg, s1q �

�
λ� 1

2

	
pg, s2q

)
.

dq kpx, yq � sin y � r1pxqs1pyq con r1pxq � 1, s1pxq � sinx.

pr1, s1q �
» 2π

0

sin y dy � 0 ñ σpT q � t0u.
Si cerca la soluzione di fpxq � pTfqpxq � gpxq con gpxq � �x:
pI � T qf � g ðñ f � r1pf, s1q � g

pr1, s1q � 0ñ pf, s1q � pf, s1q � pr1, s1qpf, s1q � pg, s1q
ñ f � g � r1pg, s1q, cioè

fpxq � �x�
» 2π

0

y sin y dy � �x� �
sin y � y cos y

����y�2π

y�0
� 2π � x.

pIn alternativa, si puó utilizzare la formula per la soluzione pλI � T q�1g con λ � 1 e
gpxq � �x.q

Esercizio 4.5. λ� µ � pλI � T q � pµI � T q
ñ Rpλ, T qpλ� µq � Rpλ, T qrpλI � T q � pµI � T qs � I �Rpλ, T qpµI � T q
ñ Rpλ, T qpλ� µqRpµ, T q � rI �Rpλ, T qpµI � T qsRpµ, T q � Rpµ, T q �Rpλ, T q.

Esercizio 4.6. }pλkI � T q � pλI � T q} � }pλk � λqI} � |λk � λ| kÑ�8ÝÝÝÝÑ 0.

Continuità dell’inversione pCorollario 3.3q ñ pλkI � T q�1 kÑ�8ÝÝÝÝÑ pλI � T q�1.

Esercizio 4.7. Teorema spettrale ñ H ammette una base ortonormale tx1, x2, x3 . . .u di au-
tovettori di T . Sia Txj � λjxj.

0 ¤ pTxj, xjq � pλjxj, xjq � λj}xj}2 � λj ñ λj ¥ 0

ñ ha senso definire Sx :�
�8̧

j�1

a
λjpx, xjqxj, x P H.

�8̧

j�1

|
a
λjpx, xjq|2 ¤ pmax

j
λjq

�8̧

j�1

|px, xjq|2 ¤ }T }}x}2

ñ Sx ben definita pserie convergente in Hq e }Sx}2 ¤ }T }}x}2 @ x P H
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ñ S P L pHq e }S} ¤ }T }1{2.

pSx, xkq �
�8̧

j�1

a
λjpx, xjqpxj, xkq �

a
λkpx, xkq @ k

ñ SpSxq �
�8̧

j�1

a
λjpSx, xjqxj �

�8̧

j�1

a
λj
a
λjpx, xjqxj �

�8̧

j�1

λjpx, xjqxj � Tx.

Esercizio 4.8. Definiamo Sy �
�8̧

j�1

1

λ� λj
py, xjqxj, y P H.

0 P σpT q ñ λ �� 0.

σpT q ha nessun punto di accumulazione oppure 0 è l’unico punto di accumulazione.

ñ M :� sup
j

��� 1

λ� λj

���   �8

ñ
�8̧

j�1

��� 1

λ� λj
py, xjq

���2 ¤M2
�8̧

j�1

|py, xjq|2 �M2}y}2

ñ La serie converge in H per ogni y P H e }Sy} ¤M}y}.

ñ S P L pHq e TSy �
�8̧

j�1

1

λ� λj
py, xjqTxj �

�8̧

j�1

λj
λ� λj

py, xjqxj

ñ pλI � T qSy � λSy � TSy �
�8̧

j�1

� λ

λ� λj
� λj
λ� λj

	
py, xjqxj �

�8̧

j�1

py, xjqxj � y @ y P H.

ñ pλI � T qS � I.

Analogamente SpλI � T q � I.

La seconda formula segue immediatamente dal fatto che
1

λ� λj
� 1

λ
� 1

λ

λj
λ� λj

.

Esercizio 4.9. Utilizzando le notazioni dell’Esercizio 2.4, scegliendo, come é possibile, la base

data da fijpt, sq � eiptq ejpsq, i, j � 1, 2, . . . , si ha }k}2L2pA�Aq �
�8̧

i,j�1

|pk, fijq|2.

Dato che

pk, fijq �
¼

kpt, sqfijpt, sq dtds �
¼

kpt, sqeiptqejpsq dtds

�
»
pKejqptqeiptq dt � λj

»
ejptqeiptq dt � λjpej, eiq � δijλj,

concludiamo
�8̧

i,j�1

|pk, fijq|2 �
�8̧

j�1

|λj|2.
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Esercizio 6.1. Sia ϕ P DpRq.

fϕ P L1pRq ñ Tf pϕq �
» �8

�8
fpxqϕpxq dx � lim

εÑ0�

»
Rzr�ε,εs

fpxqϕpxq dx

Quindi

pTf q1pϕq � �Tf pϕ1q � � lim
εÑ0�

»
Rzr�ε,εs

ln |x|ϕ1pxq dx

� � lim
εÑ0�

�
pln εqϕp�εq � pln εqϕpεq �

»
Rzr�ε,εs

1

x
ϕpxq dx

	
.

|ϕp�εq � ϕpεq| ¤ 2ε max
�ε¤x¤ε

|ϕ1pxq| ¤ 2ε}ϕ}1 ñ pln εqpϕp�εq � ϕpεqq εÑ0ÝÝÑ 0

ñ pTf q1pϕq � lim
εÑ0�

»
Rzr�ε,εs

ϕpxq
x

dx � pv-
1

x
pϕq.

Esercizio 6.2. aq Disuguaglianza di controllo pTeorema 6.9q ñ
@ K �� Ω D C � CpKq D j � jpKq @ ϕPDpRq,

supp ϕ�K : |T pϕq| ¤ C}ϕ}j.
ϕ P DpRq ñ aϕ P DpRq e supp aϕ � supp ϕ ñ

@ K �� Ω D C � CpKq D j � jpKq @ ϕPDpRq,
supp ϕ�K : |paT qpϕq| ¤ C}aϕ}j.

Osserviamo

}aϕ}j � max
xPR,k¤j

|paϕqpkqpxq| ¤ max
xPR,k¤j

ķ

i�0

�
k

i



|apk�iqpxq||ϕpiqpxq|

¤ max
xPK,k¤j

|apkqpxq|}ϕ}j max
k¤j

ķ

i�0

�
k

i



� 2j max

xPK,k¤j
|apkqpxq|}ϕ}j �: DK}ϕ}j.

ñ |paT qpϕq| � |T paϕq| ¤ C}aϕ}j ¤ pCDKq}ϕ}j � rCK}ϕ}j @ ϕPDpRq,
supp ϕ�K.

Disuguaglianza di controllo pTeorema 6.9q ñ aT P D 1pRq.
bq Sia ϕ P DpRq arbitrario.

paT q1pϕq � �paT qpϕ1q � �T paϕ1q � �T ppaϕq1 � a1ϕq
� �T ppaϕq1q � T pa1ϕq � T 1paϕq � T pa1ϕq
� paT 1qpϕq � pa1T qpϕq � paT 1 � a1T qpϕq.

Esercizio 6.3. Teorema 6.19 ñ pTf q1 � Tf 1 � ypx0qδx0
ñ PTf � bpTf q1 � cTf � Tbf 1�cf � δx0

bf 1 � cf �
#
0 : x   x0

by1pxq � cypxq : x ¡ x0
� 0 ñ PTf � δx0.
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Esercizio 6.4. aq-dq : Si procede come discusso a lezione.

eq : Si risolvono separatamente T 1�T � δ e T 1�T � δ1. La soluzione cercata è la somma delle
due soluzioni.

fq : Analogamente ad eq.
gq : Si risolve T 1 � T � δ. Derivando membro a membro, si osserva che T è la soluzione
dell’equazione proposta.

hq, iq : Analogamente a gq.

Esercizio 6.5. Sia ϕ P DpΩq. Si ha, per l’ipotesi Tk
kÑ�8ÝÝÝÝÑ T ñ Tkpϕq kÑ�8ÝÝÝÝÑ T pϕq,

pBαTkqpϕq � p�1q|α|TkpBαϕq kÑ�8ÝÝÝÝÑ p�1q|α|T pBαϕq � pBαT qpϕq.

Dato che ϕ è arbitraria, concludiamo BαTk kÑ�8ÝÝÝÝÑ BαT .
Esercizio 6.6. Ovviamente S � T e αT sono mappe lineari DpRq Ñ C.
Sia ϕk Ñ ϕ in DpRq. Allora

pS � T qpϕkq � Spϕkq � T pϕkq ÝÑ Spϕq � T pϕq � pS � T qpϕq,
pαT qpϕkq � αT pϕkq ÝÑ αT pϕq � pαT qpϕq.

Esercizio 6.7. Sia K �� Rn e ϕ P DpRnq con supp ϕ � K.

Ipotesi ñ r�1pKq compatto.

ñ |δγpϕq| �
��� »

I

ϕprptqq|r1ptq| dt
��� ¤ max

xPRn
|ϕpxq|

»
r�1pKq

|r1ptq| dt �: CK}ϕ}0

Disuguaglianza di controllo pTeorema 6.9q ñ δγ P D 1pRnq.
Esercizio 6.8. Sia ϕ P DpR2q. Troviamo

pB2Tuqpϕq � �TupB2ϕq � �
» �8

�8

» �8

�8
upx1, x2q pB2ϕqpx1, x2q dx1dx2

� �
» �8

0

�» �8

�8
pB2ϕqpx1, x2q dx2

�
dx1 � �

» �8

0

�
ϕpx1, x2q

��8
x2��8

dx1

� 0 ùñ B2Tu � 0,

e

pB1Tuqpϕq � �TupB1ϕq � �
» �8

�8

» �8

�8
upx1, x2q pB1ϕqpx1, x2q dx1dx2

� �
» �8

�8

�» �8

0

pB1ϕqpx1, x2q dx1
�
dx2 � �

» �8

�8

�
ϕpx1, x2q

��8
x1�0

dx2

�
» �8

�8
ϕp0, x2q dx2 ùñ B1Tu � δγ,

con γ � Ox2 � tr : I � p�8,�8q Ñ R2 : t ÞÑ rptq � p0, tq pcfr. Esercizio 6.7q.
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Esercizio 6.9. Per ϕ P DpRq vale

Tf pϕq �
»
fpxqϕpxq dx �

»
fpxqϕpxq dx � Tf pϕq.

Sia T P D 1pRq. Definiamo

T pϕq :� T pϕq, ϕ P DpRq.
Ovviamente T : DpRq Ñ C lineare.

Siano K �� R. Esistono C ¥ 0 e k P N0 tali che

|T pϕq| ¤ C}ϕ}k @ ϕPDpRq,
supp ϕ�K.

Allora
|T pϕq| �

���T pϕq��� � |T pϕq| ¤ C}ϕ}k � C}ϕ}k @ ϕPDpRq,
supp ϕ�K.

Disuguaglianza di controllo pTeorema 6.9q ñ T P D 1pRq.
Esercizio 6.10. Sia f P L1

locpR�q e ϕ P DpRq. Allora

Tf�gpϕq �
» �8

�8
fpexqϕpxq dx �

» �8

0

fpyqϕpln yq
y

dy � Tf pApϕqq,

dove rApϕqspyq � ϕpln yq{y. Dato che

rApϕqspyq �� 0 ðñ ϕpln yq �� 0 ðñ y P tex | x P R, ϕpxq �� 0u � exp
�tx | ϕpxq �� 0u�,

troviamo
suppApϕq � exppsuppϕq � gpsuppϕq.

ñ A : DpRq Ñ DpR�q povviamente A lineareq.
Per T P D 1pR�q definiamo

T � g : DpRq Ñ C, ϕ ÞÑ pT � gqpϕq :� T pApϕqq.
ñ T � g : DpRq Ñ C lineare.

K �� R ñ Kg :� gpKq �� R�.

Disuguaglianza di controllo pTeorema 6.9q ñ
D C � CpKgq � CpKq, j � jpKgq � jpKq @ ϕPDpRq

suppϕ�K : |T pApϕqq| ¤ C}Apϕq}j.
Si osserva che

dk

dyk
rApϕqspyq � 1

yk�1

�
a0kϕpln yq � a1kϕ

1pln yq � . . .� akkϕ
pkqpln yq�

con costanti universali aik che non dipendono da ϕ.

ñ D D � Dpjq ¥ 0 @ ϕ P DpRq : }Apϕq}j ¤ D}ϕ}j
ñ |pT � gqpϕq| � |T pApϕqq| ¤ C}Apϕq}j ¤ CD}ϕ}j @ ϕPDpRq

suppϕ�K.

Disuguaglianza di controllo pTeorema 6.9q ñ T � g P D 1pRq.
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Esercizio 7.1. aq Calcoliamo

pfpξq � lim
aÑ�8

» a

�a
e�ixξe�|x| dx � lim

aÑ�8

» 0

�a
exp1�iξq dx�

» a

0

e�xp1�iξq dx

� lim
aÑ�8

exp1�iξq

1� iξ

���x�0

x��a
� e�xp1�iξq

1� iξ

���x�a
x�0

� 1

1� iξ
� 1

1� iξ
� 2

p1� iξqp1� iξq �
2

1� ξ2
.

bq Calcoliamo

pfpξq � » 1

�1

e�ixξ dx
ξ ��0� 1

�iξ e
�ixξ

���x�1

x��1
� 1

ξ

e�iξ � eiξ

�i � 2

ξ

eiξ � e�iξ

2i
� 2

sin ξ

ξ
, pfp0q � 2.

Esercizio 7.2. Detta f la funzione dell’Esercizio 7.1.aq, si trova } pf}L8pRq � fp0q � 2 e

}f}L1pRq �
» 1

�1

?
2π dt � 2

?
2π. Pertanto, } pf}L8pR � 2 ¤ 2c

?
2π � }f}L1pR è falsa se c  

p2πq�1{2. Ne segue che la costante che compare nella stima delle norme nell’enunciato del
Lemma 7.1 è ottimale.

Esercizio 7.3. Si ha fpxq � Gpx1q � . . . � Gpxnq con Gptq � e�t
2{2. Quindi, utilizzando ripetu-

tamente il Teorema di Fubini-Tonelli e il Lemma 7.5,

pfpξq � p2πq�n{2
»
Rn

e�ipx1ξ1�...�xnξnqGpx1q � . . . �Gpxnq dx1 . . . dxn

�
�
p2πq�1{2

»
R
e�ix1ξ1Gpx1q dx1

�
� . . . �

�
p2πq�1{2

»
R
e�ixnξnGpxnq dxn

�
� pGpξ1q � . . . � pGpξnq � e�ξ

2
1{2 � . . . � e�ξ2n{2 � e�|ξ|

2{2.

Esercizio 7.4. � pvpξq � p2πq�n{2
»
e�ixξupx� yq dx � p2πq�n{2

»
e�ipz�yqξupzq dz �

� e�iyξp2πq�n{2
»
e�izξupzq dz � e�iyξpupξq;

� pvpξq � p2πq�n{2
»
e�ixξeixyupxq dx � p2πq�n{2

»
e�ixpξ�yqupzq dz � pupξ � yq �

� pτypuqpξq;
� pvpξq � p2πq�n{2

»
e�ixξupA�1xq dx � p2πq�n{2

»
e�ipAyqξupyq| detA| dy �

� | detA|p2πq�n{2
»
e�iyp

tAξqupyq dy � | detA| puptAξq;
� pvpξq � p2πq�n{2

»
e�ixξupxq dx � p2πq�n{2

»
e�ixp�ξqupxq dx � pup�ξq ô pu � p̌u;
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� con una matrice n� n ortogonale Añ tA � A�1 ñ | detA| � 1, ricordando che upAxq �
upxq, x P Rn, troviamopupAξq � p2πq�n{2

»
e�ixpAξqupxq dx � p2πq�n{2

»
e�ip

tAxqξupxq dx �

� p2πq�n{2
»
e�ipA

�1xqξupxq dx � p2πq�n{2
»
e�iyξupAyq| detA| dy �

� p2πq�n{2
»
e�ixξupxq dx � pupξq,

ovvero, pu è radiale.

Esercizio 7.5. Siccome e�ixξ � e�ipx�yqξe�iyξ, utilizzando il teorema di Fubini-Tonelli ed un
cambio di variabili (lineare), si ha

zf � gpξq � p2πq�n{2
»
e�ixξ

� »
fpx� yqgpyq dy

	
dx

� p2πq�n{2
»
e�iyξgpyq

� »
e�ipx�yqξfpx� yq dx

	
dy

� p2πqn{2 p2πq�n{2
»
e�iyξgpyq

�
p2πq�n{2

»
e�izξfpzq dz

�
dy � p2πqn{2 pfpξq � pgpξq.

Utilizzando il teorema di Fubini-Tonelli,» pfpξqgpξq dξ � » �
p2πq�n{2

»
e�ixξfpxq dx

�
gpξq dξ

�
» �

p2πq�n{2
»
e�iξxgpξq dξ

�
fpxq dx �

» pgpxqfpxq dx.
Esercizio 7.6. Utilizzando l’integrazione per parti, troviamo:

yBxjφpξq � p2πq�n{2
»
e�ixξpBxjφqpxq dx � �p2πq�n{2

» �Bxje�ixξ�φpxq dx
� iξjp2πq�n{2

»
e�ixξφpxq dx � iξj pφpξq,

Bξj pφpξq � p2πq�n{2Bξj
»
e�ixξφpxq dx � p2πq�n{2

» �Bξje�ixξ�φpxq dx
� �p2πq�n{2

»
e�ixξixjφpxq dx � �zixjφpξq.

Esercizio 7.7. aq Sia f la funzione dell’Esercizio 7.1.aq. Grazie al Teorema di Plancherel, si
ha » �8

�8

dξ

p1� ξ2q2 �
1

4
} pf}2L2pRq �

1

4
}f}2L2pRq �

1

4

» �8

�8
2πe�2|x| dx

� π

2

�» 0

�8
e�2|x| dx�

» �8

0

e�2|x| dx


� π

» �8

0

e�2x dx � π

�
e�2x

�2
��8
0

� π

2
.
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bq Sia f la funzione dell’Esercizio 7.1.bq. Grazie al Teorema di Plancherel, si ha» �8

�8

sin2 ξ

ξ2
dξ � 1

4
} pf}2L2pRq �

1

4
}f}2L2pRq �

1

4

» 1

�1

2π dx � π.

Esercizio 7.8. Posto x1 � ρ cos θ cosφ, x2 � ρ cos θ sinφ, x3 � ρ sin θ, ρ P r0,�8q, φ P r0, 2πs,
θ P r�π{2, π{2s, si ha dx � dx1dx2dx3 � ρ2 cos θ dρdφdθ e½

R3

|u| �
½
B1p0q

|x|α dx �
» 1

ρ�0

» π
2

θ��π
2

» 2π

φ�0

ραρ2 cos θ dρdφdθ � 4π lim
aÑ0�

�
ρα�3

α � 3

�1
ρ�a

� 4π

α � 3
p1� lim

aÑ0�
aα�3loooomoooon

�0ðα�3¡0

q � 4π

α � 3
  �8,

quindi u P L1pR3q, come affermato. Dall’Esercizio 7.4, dato che u è radiale, segue che pu è radi-
ale. Dunque, denotata con pe1, e2, e3q la base canonica di R3, usando coordinate polari sferiche
come sopra, troviamo, per ξ �� 0,

pupξq � up|ξ|e3q � p2πq�3{2
½
R3

e�i|ξ|xe3upxq dx � p2πq�3{2
½
B1p0q

e�i|ξ|x3 |x|α dx

� p2πq�3{2
» 1

ρ�0

» π
2

θ��π
2

» 2π

φ�0

e�i|ξ|ρ sin θραρ2 cos θ dρdφdθ

� p2πq�1{2
» 1

ρ�0

�
e�i|ξ|ρ sin θ

�i|ξ|
�π

2

θ��π
2

ρα�1 dρ � 2p2πq�1{2|ξ|�1

» 1

ρ�0

eiρ|ξ| � e�iρ|ξ|

2i
ρα�1 dρ

� 2p2πq�1{2|ξ|�1

» 1

ρ�0

ρα�1 sinpρ|ξ|q dρ � 2p2πq�1{2|ξ|�α�3

» |ξ|

0

tα�1 sin t dt.

Osserviamo che l’integrale ottenuto nell’ultimo passaggio è convergente, dato che tα�1 sin t �
tα�2, tÑ 0� e α � 2 ¡ �1. Abbiamo quindi, per ogni ξ P R3, ξ �� 0,

pupξq � pup|ξ|q � 2p2πq�1{2|ξ|�α�3

» |ξ|

0

tα�1 sin t dt.


