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0 Richiami sugli operatori limitati

Denotiamo con X,Y, Z degli spazi di Banach complessi, con H, Hy, Hs degli spazi di Hilbert
complessi separabili (cioe con base ortonormale numerabile).

Per un operatore lineare T': X — Y le seguenti affermazioni sono equivalenti:

e T & continuo in X (cioé in ogni punto x € X).

e T ¢ continuo in x = 0.

e T ¢ limitato, cioe: IM =0 VeeX: |Tz|y <M|z|x.

e Se B={re X ||z|x <1}, allora T(B) € Y & limitato.
Scriviamo

[X(X, Y):={T: X - Y | T lineare e limitato}, Z(X) = X(X,X).]

Si ricorda che X' = Z (X, C) (spazio duale di X).

Z(X,Y) ¢ uno spazio di Banach con norma

Tx
IT) = |Theey) = sup LY up |7y
w40 [2]x  pepx=t

La composizione ST di T € Z(X,Y) e S e Z(Y, Z) appartiene a £ (X, 7) e

(15T 2x ) < 1Sl 20T 2y

Il nucleo, rispettivamente I'immagine di T' € £ (X,Y), sono

[kerT={:ceX|T:z::0}, imT:{er|EI.Q:eX:y:Tx}.J

Si ricorda che T' ¢ iniettivo se e solo se ker T' = {0}.

0.1 Teorema (di Banach). Sia T € Z(X,Y) biettivo. Allora T~' € £ (Y, X). Si chiama

T~ DVinversa di T e T si dice invertibile.

0.2 Teorema (di Riesz-Fréchet). Sia ' € H' = Z(H,C) un funzionale. Allora esiste un
unico y = y(z') € H tale che

o' (x) = (x,y) VzeH.

Vale |ly| = |«'|. L’applicazione z' — y(z') : H' — H é antilineare e biettiva.

La disuguaglianza di Cauchy-Schwarz e il Teorema di Hahn-Banach implicano

|| = sup |(z,9)ul,  lzlx = sup [2'(x)].
Iyl —1 'l =1




1 L’operatore aggiunto

Di cosa si tratta? In analisi funzionale, I’aggiunto di un operatore, chiamato
anche operatore hermitiano aggiunto, generalizza il trasposto coniugato di una
matrice quadrata al caso infinito dimensionale e il concetto di complesso coniu-
gato di un numero complesso. Ogni operatore lineare limitato su uno spazio
di Hilbert ha un corrispondente operatore aggiunto.

1.1 Definizione e proprieta fondamentali

1.1 Teorema. T € £ (H,, Hy) = Esiste un unico T* € £ (H,, Hy) tale che
(Tz,y) g, = (2, T*Y) Vexe H VYye H,.

T* si dice ['operatore aggiunto di T'.

DIMOSTRAZIONE. Siaye€ Hy e ¢,z := (Tx,y)p,.

|0y = (T2, y)u, | < |Tlu, [yl < NT |2 mly|m 2|V x e Hy
= (by € Hiv H(byH < HT||$(H17H2)||yHH2'
Teorema di Riesz = Ny =y(y)e Hy Vee H: oo =(x,u, |Ulm =0l
Definire T* : Hy — Hy, T*y = y(y).
T* e lineare:

(Z,T*(AZE + y))Hl = (TZ7 Az + y)Hz = X(TZ, I)H2 + (TZ; y)H2
= (2, \T*2)py, + (2, Ty, = (2, \T*z + T*y)p, Vze H

= T*(\x +y) = \T*z + T*y.
T* ¢ limitato:
1Tyl = 15 = [0yl < Tl lyle, — Vye He.

= ||T*H$(H2,Hl) < ||TH$(H1,H2)'

1.2 Esempio. Siano H = (*(N) e L, R € Z({*(N)) con

L(zy, 29, 23,...) = (x9, 23,24 ...) (“left shift” ),
R(ﬁl, T2,T3, .. ) = (0,27171'2, T3, .. ) ( “Tight Shlf 7 )

Allora

(L(z1, 22, ), (Y1, y2- ) = (2,23, .. ), (Y1, 92 - ) = Tayh + Taya + . ..
= ((x1,22,...),(0,y1,...)) = ((x1, 22, .. .), R(Y1,¥2 .. .)),

= L* = R. Analogamente: R* = L.
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1.3 Esempio. Per f e L*([1,2]) definiamo

(Tf)(z) = f(Vz), 1
Definisce T : L*([1,2]) — L*([1,4]) limitato con |T| < 2

N
8

N
W

5
7 e = [ VW= [y < 4110
Determiniamo T :
! () da V= =V
w10 = [ v e = [ s = (1. 1),
1
dove T*g, g € L*([1,2]) definito da

(T*9)(y) = 2y9(y*), 1<y<2

1.4 Esempio. Siano U c R", V c R"™ e k : U x V. — C misurabili. L operatore integrale T
su'V' con nucleo integrale k associa a funzioni f 1V — C la funzione Tf : U — C tramite

‘(Tf)(u) = JV k(u,v)f(v) dv, ueU.

Supponiamo che esistono ci,cy = 0 tale che

J |k(u, v)| du < ¢, J |k(u,v)| dv < ¢ quasi ovunque.
U v

(V)

Allora T € L(L*(V), L*(U)) con |T| < \/cica (“Lemma di Schur”). L’operatore aggiunto T* ¢é
'operatore integrale con nucleo k™) (v, u) := k(u,v), cioé

‘(T*g)(v) _ JU R o)g(u) du,  wve v.’

In fatti, sfruttando le ipotesi, la disuguaglianza di Cauchy-Schwarz ed il Teorema di Fubini-

Tonelli, si trova:
P = [ seosea] <| [ 1ol kol o))

< ([ wotae) | [ oniser ol

<@mewMﬂmﬁw

= Tffy < | bl lf@Pdvdus e | |0 do

= 1 | flT20)-
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La seconda affermazione € una consequenza immediata della definizione di operatore aggiunto
e del Teorema di Fubini-Tonelli. Infatti, per ogni f € L*(V), g € L*(U), si ha

r

rhaw = [ | [ o) fo)ae] st au

= k(u,v) f(v) g(u) dvdu

JUXxV

r

- [ | | Faad g = .70,

JV

con

(T*g)(v) = f Fu,0) g(u) du = f K (0, ) g(u) du.

U

1.5 Teorema. Siano S,T € £ (Hy, Hs), Re ¥(Hy, H3) e X\ € C. Allora valgono:

a) (T +8)* =T*+S*, (\T)* = XT* (cioé¢ la mappa T — T* ¢ anti-lineare).

b) (RT)* = T*R*

c) (T*)* =
)
)

d) T invertibile <= T* invertibile. In questo caso: (T*)™' = (T~1)*.

e) |T*| = |T| = |T*T|"? (in particolare, la mappa T — T* ¢ continua).

DIMOSTRAZIONE. a) (AT + S)z,y) = \M(T'x,y) + (Sz,y) = M=z, T*y) + (v, S*y)
= (x, \T*y + S*y) = (z, (NT* + S*)y).
b) (RTz,y) = (R(Tx),y) = (Tz, R*y) = (v, T*R*y) = (=,
c) (T"z,y) = (y,T*z) = (Ty,z) = (v, Ty) = (z,(T*)*y).
7= [ =TT 2 [ =1 = (T [ =TT 2L [ = [* = T*(T)*
= (T*)~' = (T7H*~.

<" Applicare =" a T*, notando che (T')» = T.
e) Sappiamo |7 < 1T

(RT)*y).

= |7 2 || < |T*) = |T] = 7).
|77 < |TNT*| = |T)* = |T*T[* < |T].

|T2|* = [(Tx, T2)| = (T*Tw,2)| < |T*Ta|z| < [T*T[|=|*  VYaeH

= |Tz|| < |T*T|"?|2| ¥ 2 = |T| < [T*T|'2. =



1.2 Operatori autoaggiunti

1.2 Operatori autoaggiunti

1.6 Definizione. Un operatore T € L (H) si dice autoaggiunto se T = T*, si dice
normale se T*T = TT*, si dice unitario se T é invertibile e T~ = T*.

1.7 Lemma. Sia T € £ (H). Allora:

a) ker T = ker (T*T), b) T normale = ker T = ker T*.

DIMOSTRAZIONE. a) z € kerT = T*Tx =T*(Tx) =0 = x € ker T*T,
reker T*T = (T*Tx,z) =0= |Tx|?> = (T2, Tz) =0=Tr =0= zekerT.

Teorema 1.5,¢)

b) ker T 2 ker T*T "2 ker T'T* ker (T*)* T* £ ker T*.

1.8 Teorema. Sia T € L (H) autoaggiunto. Allora |T'|| = sup [(T'z, x)|.
]| =1

DIMOSTRAZIONE. Prima notiamo che, per ogni T'€ Z(H), vale

HT” = sup |(Try)|
lz]=lyl=1

Quindi s(7T) := sup |(Tz,x)| < |T].

=1

Siano z,y, z € H arbitrari tali che |z| = |y = 1. Valgono

(T(z+y),z+y) — (T(x—y),r—y) =2[(Tz,y) + (Ty, )]
= 2[(Tx,y) + (T'z, y)] = 4Re (Tx,y)

(Tz,2)| = ‘(TTH H)

Legge del parallelogramma =

|2]* < s(T)]2]*.

4Re (Tx,y) < |(T(x + y),x + y)| + [(T(z — y),z — y)|

<

<s(T)(|lz +yl? + o = yl*) = 2s(T) (|l)” + |yl*) = 4s(T).
3¢ =o(x,y)eR:  |(Tz,y)| = (T, y) = (T(e"z),y)

lez|| = |zl = 1 = [(Tz,y)| = Re (T(ex),y) < s(T)

() = |T| < s(T).

1.9 Corollario. T'=T*e Z(H) = T ¢ determinato dai valori (Tx,x), x € H.
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DIMOSTRAZIONE. Sia S € Z(H) autoaggiunto con (Sz,x) = (Tx,x) Vze H.
= R:= S5 — T autoaggiunto e (Rz,z) =0 VYaxe H.

Teorema 1.8 = R = 0. [ ]

1.10 Teorema. Sia T € £ (H). Allora:

T autoaggiunto < (Tz,x)e R YrxeH.

DIMOSTRAZIONE. “=": (Tx,z) = (z,Tx) = (Tz,z) = (Tz,z) € R.
“<": SianoaeCex,ye H.

(Tz,x)+a(Ty,z) +a(Tx,y) + |a*(Ty,y)
(x 4+ ay),z + ay)

T
T(x + ay),z + ay)

Tz,z) + aly, Tx) +a(z, Ty) + |a*(Ty, y)

a=1= 1) (Ty,x)+ (Tz,y) = (y, Tx) + (x,Ty)

a=1i= (2) (Ty,x)—i(Tx,y) =i(y,Tz) —i(x,Ty)

(1) +i(2) = (Tz,y) = (z,Ty) n

-
-
-

1.3 Sottospazi complementari e proiezioni ortogonali

Siano M, N due sottospazi di H. Il complementare ortogonale di M &

(M ={zeH|e LM})={zeH|(@m)=0 YmeM)}

Scriviamo

[H=M@N:<=> H=M+N, MnN ={0}, M,Nchiusi.]

Si ricordi (prima parte): M+ & chiuso, M+ = Mo sottospazi di dimensione finita sono chiusi.
Inoltre, H = M @ M™' se M ¢ chiuso, e vale il Teorema di Pitagora:

(2 Ly= o +yl? = o+ |y]*.)

1.11 Lemma. Sia H = M + N con due sottospazi M, N. Sia (y,z) =0 per ogniy € M,
ze N. Allora N =M+ e H=M® M~ (i.e., M ¢ chiuso).

DIMOSTRAZIONE. Ipotesi = N < M*. Sia z € M e poniamo, come & possibile per le ipotesi,
r=y+zconye M, ze N. Troviamo:

r=y+zeM =0=(y,2)=Wy+2) =Wy +w=2)=yf=>z=2eN
= M+ < N= N=M"'!ed N & chiuso.
Scambiando i ruoli di M e N si ottiene M = N+ ed M & chiuso. ]
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‘ 1.12 Corollario. Sia M sottospazio di H. Allora M*++ := (M*)+ = M.

DIMOSTRAZIONE. H = M @M =M@ M* = 3 = (ML,

‘ 1.13 Lemma. T € Z(H) = (imT)* =kerT* e (kerT)* = imT*.

DIMOSTRAZIONE. Abbiamo

rekerT* < Tz =0 < (T"z,y)=0 VyeH
— (2,Ty)=0 VYyeH
— 21Ty YyeH < ze(imT)*.

Inoltre: ker T’ = ker T** = (im T*)t = (ker T)t = (im T*)** = ((im T* )4)+ = im T*.

1.14 Definizione. Sia M uno sottospazio chiuso. L’operatore Py : H — H definito da
Pyx =y, r=y+ze MM,

st dice proiezione ortogonale su M.

1.15 Teorema. Sia P e Z(H). Le sequenti affermazioni sono equivalenti:
(1) P é una proiezione ortogonale, cioe IM < H sottospazio chiuso: P = Py;;

(2) P = P* = P?;

(3) P>=P e (Pz,z) >0 per ogni x € H.

DIMOSTRAZIONE. (1) = (2):Siaz=y+zconye M,z€ M=+,
= Pr =y = P?’x = Py=y= Pux.
Siaz' =y +2 cony e M,z e M+,
{(Pa:,x’) =Wy +2)=Wwy)+ W)= wy), . p_ pr
(z, Pr') = (y+ 2,¢) = (4,9) + (,¢) = (v,¥)-
(2) = (3): (Px,x) = (P%x,2) = (Pz, P*z) = (Pz, Px) = |Px|* > 0.
(3) = (1) : Siano M :=im P e N := ker P.

i) reH= Plxt—Px)=Pr—Pr=0=z=Pr+(x—Px)e M+ N=H=M+N

ii) Siano y € M e z € N. Supponiamo « := (y,z) + 0. Sia 2’ = —2|y[*z =

0<(Ply+2)y+2) =Wy +w2) =y - EHyIIQ(y, 5=y 4
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Lemma 1.11 = (1), cioe, H=M @M+ =N@ Nt e P = Py. ]

La dimostrazione mostra che per P = P, vale

(M=imP, M‘=keP=im(1-P), H=imP®kerP.

Inoltre,
|PI = |P?| = |PP*| = |P|*

implica che ||P|| = 1 oppure P = 0 (cioe M = {0}).

1.4 Esercizi
Esercizio 1.1. Sia A € R™ " una matrice invertibile. Per funzioni f € L*(R") definiamo
(Tf)(x) = f(Ax), reR™

Dimostrare che T € Z(L*(R™)) e determinare l'aggiunto di T
Esercizio 1.2. Sia T € Z(H). Dimostrare:

T normale < |Tx| = |T"z| VzeH.
Esercizio 1.3. Sia T € £ (H). Dimostrare:

T e suriettivo <= T* ¢ iniettivo e im T € chiuso.

Esercizio 1.4. Siano P,Q € £ (H) due proiezioni ortogonali. Dimostrare:

PQ proiezione ortogonale < PQ = QP.

In questo caso, PQ ¢ la proiezione ortogonale su im P nim Q).

Esercizio 1.5. Siano P,Q € £ (H) due proiezioni ortogonali. Dimostrare:
imP cim@ < |Pzx|<|Qz VaeH.
Esercizio 1.6. Siano P,Q € £ (H) due proiezioni ortogonali. Dimostrare:
P + @ proiezione ortogonale < PQ = QP = 0.

In questo caso, P+ Q) ¢ la proiezione ortogonale su im P @ im Q).
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2 Operatori compatti in spazi di Hilbert

Di cosa si tratta? Operatori di rango finito hanno una struttura partico-
larmente semplice. La proprieta di avere immagine di dimensione finita non
e stabile sotto passaggio al limite. In uno spazio di Hilbert, la chiusura degli
operatori di rango finito definisce lo spazio degli operatori compatti. Dimostri-
amo alcune proprieta fondamentali degli operatori compatti, in particolare che
un operatore lineare ¢ compatto se e solo se I'immagine di ogni sottoinsieme
limitato del dominio € un insieme relativamente compatto del codominio.

2.1 Operatori di rango finito

2.1 Definizione. T € £(H) si dice di rango finito, se dimimT < +o0. Scriviamo

F(H) = {T e L(H) | dimimT < +o0}.

2.2 Lemma. Sia T € F(H) e n := dimim7T. Allora esistono xy,...,x, € H e
Y1, ---,Yn € H tale che

szz(m,yi)xi VzeH.
i=1
In questo caso, T* € F(H) e T*y = Z(y, x;)y; per ogni y € H.
i—1

DIMOSTRAZIONE. Sia x1,...,Z, una base ortonormale di M := imT e ,41,Tpni2, Trniz,- ..
una base ortonormale di M. Quindi {x; | i > 1} ¢ una base ortonormale di H.

—+0o0 n n
:>Tx=Z(Tx,xi)xi TziMZ Tx,z;)x; Z x,y;)x; YaxeH convy =T"x;.
i=1 i=1 =1

(x, T*y) = (Tx,y) = Zn] (,y:)(xi,y ( Z Ty ) (:L',Zn] (y, )y 1) [

i=1 i=1

2.2 Operatori compatti

2.3 Definizione. T € Z(H) si dice compatto, se esiste una successione (1;) < F(H)

tale che |T; — T —— I, 0. Seriviamo

H(H)y={Te ZL(H)|T compatto}.

Si noti che £ (H) & un sottoinsieme chiuso di .Z(H) dato che ¢ la chiusura di .#(H) in £ (H).




12 2.2 Operatori compatti

imT; = {x = (z) € * | 2 = 0 per ogni n

+OO

2 _ 2 2
I =T)al? = 3, o] < j+1 Sl < M“'

k=j+1 k=j+1

= |T-T) <1/G+1) 2520 = Te ().

2.5 Esempio. Sia A < R" e T un operatore integrale con nucleo k € L*(A x A),

@ﬁ@=[ﬁ@$ﬂ$w

Cauchy-Schwarz =
) 1/2
ol < [ kel < ( [ keRas) i,
Ty < [ [ V(e ) dsl gy dt = Wl

= T e ZL(L*(A)) con |T| < [kl r2caxa)-
Sia {ey, e, €3,...} una base ortonormale di L*(A) e
fiy(t,s) i= ei(t)es(s), 4,5 =1

= {fi; | 1,7 = 1} base ortonormale di L*(A x A) (cfr. Esercizio 2.4).

s) = Z aijei(t)e;(s), ai; = (k, fij)r2axa) (convergenza in L*(A x A))

3,j=1

¢
Definiamo T, tramite il nucleo ko(t,s) = Z a;iei(t)e;(s).
i1

¢
Tof = Z aei(f.e;) =1mTy, S ey,...,ep) = Ty e F(H).

ij—1
+o0 '
IT = To* <k = kel Foanny = Y, lagl® ——>0.
ij=1
i>0 0 j>0

= Te #(L2(A)).
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2.6 Teorema. Sia ¥ = F(H) oppure ¥V = # (H). Allora:
a) ¥ & un sottospazio di £ (H);

by T eV alloraT*eV;

c) TeV eSe Z(H), allora ST, TS e V.

DIMOSTRAZIONE. Consideriamo prima ¥ = .7 (H).

a) S,Te Z(H),aeC=im(S+7T)<imS+im7 e im(a1) < im7 hanno dimensione finita.
b) E il Lemma 2.2.

¢) imTS=TS(H)=T(S(H))<T(H)=imT = dimim 7S < dimim7T < +o0.

imST =ST(H)=S(T(H)) = Sim7T) = dimim ST < dimim T < +c0.

Le affermazioni per ¥ = J# (H) seguono tramite approssimazione e continuita. Per esempio,
siano 1 € #(H) e T; — T. Allora

* % * j—+
| T = T*| = |(T; = T)*|| = |T; = T| === 0,
jor+o0

|ST; = ST| = 15(T; = D) < ISIT; = T| —— 0.

Siccome T, ST; € F (H), abbiamo provato che T, ST € J (H). u

2.3 Caratterizzazioni della compattezza

Ricordiamo che, in uno spazio metrico completo, per un sottoinsieme {2 le seguenti affermazioni
sono equivalenti:

a) Q & relativamente compatto (cioe & compatto);

b) Qe totalmente limitato, cioe per ogni e > 0 esiste un numero finito di elementi z1, ..., xy €
Q tale che Q € B.(x1) U ... U B.(xy) (una cosiddetta e-rete), dove Bs(p) = {xr € X |
d(z, p) < 0};

¢) Ogni successione in {2 contiene una sottosuccessione convergente.

Un insieme compatto € sempre limitato e chiuso. In uno spazio vettoriale di dimensione finita
(quindi isomorfo a C™ per qualche n) vale anche I'opposto: cioe, un insieme limitato e chiuso &
compatto.

2.7 Teorema. Siano T € L (H) e B={x e H | ||z| < 1}. Allora si ha:

T e #(H) < T(B) relativamente compatto.

DIMOSTRAZIONE. “=": Sia dato un € > 0.



14 2.3 Caratterizzazioni della compattezza

TexX(H)=3SeZH): |T-S5|<e/2.
Y :=im S sottospazio chiuso di dimensione finita _
_ = S(B) ¢ compatta in Y.
S(B) c Y limitato e chiuso }
=3dneN Jy,...,y,€S(B): S(B)c B;;Q(yl) U... uBg;Q(yn),
dove By (y;) = {y e Y | |y — u:l < o}
Sia x € B arbitrario.
=3die{l,...,n}: Sze B§2(yi).
= [T =yl < Tz = Sz + [Sz —y| < 5lef + 5 <&
= Tx e B(y;) (qui Be(y;) ={z€ H ||z —ui| <e}).
= T(B) € B(y1) U ... U B(yy)
= J e-rete per T(B).
= T'(B) relativamente compatto.
“<": Sia dato un € > 0.
T(B) relativamente compatto = 3neN Jy,...,y, e H: T(B)< B:(y1) V... U B(yn).
M :=p,...,yny = T. := PyT e F(H).
Sia x € B arbitrario.
dke{l,...,n}: [T —y| <e. Quindi
(T2 = Tyl < [Tz — gl + g — Tl = | PuTa — Purll + g — Tl
< |PullTz —yill + yn — Tl < 2e.
= |T.-T| = sup (T. — T)z| < 2e.
e

e=1/j = |T - Ty <2/ &5 0.

Negli spazi di Banach, si definiscono gli operatori compatti tramite il Teorema 2.7.

Definizione. Siano X,Y spazi di Banach e B = {z € X | |z| < 1}. L’operatore T €
Z(X,Y) si dice compatto se T'(B) & relativamente compatto in Y.

Un operatore che ¢ limite di operatori di rango finito risulta essere compatto (con la stessa
dimostrazione), ma il risultato opposto vale solo in spazi di Hilbert! Si puo dimostrare che
(X,Y') & uno sottospazio chiuso di Z(X,Y).

2.8 Teorema. Per T € L (H) le sequenti affermazioni sono equivalenti:
a) Te ¥ (H).

b) Se () € una qualsiasi successione limitata, allora (Txy) contiene una sottosucces-
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sione convergente.

¢) Se (xx) € H & una qualsiasi successione debolmente convergente, allora (Txy) con-
verge in H.

DIMOSTRAZIONE. a)=>b): Sia ||z;|| < C Vk.
yri=a/C = (y) € B={ye H[]y| <1}

Teorema 2.7 = (T'y;) contiene una sottosuccessione convergente.

<
<

Sia Ty, EmasN y. Ne segue
Yk,

j—+0o0 . .
Try, —— Cy = (T'zy) contiene una sottosuccessione convergente.

b) = a) : Ogni successione in T'(B) ¢ della forma (Txy) con ||x| < 1.

Ipotesi = Ogni successione in T'(B) contiene una sottosuccessione convergente

= T(B) ¢ relativamente compatto.

Teorema 2.7 = T compatto.

a) = c) : Sia x, — x. In particolare, (z,) ¢ limitata.

?eH =2 oTeH =2 (Tr,) = (@' oT)(x,) — (2 oT)(z) = 2/ (Tx)

= Ty, —Tx.

Dimostriamo T'x,, — T'x. Per assurdo, supponiamo che sia vero il contrario. Si ha quindi
de>0 I (zn,): |Top,—Tz|=e (¢).

(xn,) limitata

2.8
=d(x,, ),y: Tx, —
T compatto } ( Zﬂ') Y o5 Y

Tey —Te = Tey, —Tr=y=Tr=Tr,, —Tu é (contraddice (*)).

c) = a) : Sia (x;) limitata.

Teorema di Eberlein-Smulian (H ¢ riflessivo!) = 3 (zy,) debolmente convergente.
Ipotesi = (T'zy,) convergente = (T'z;) contiene una sottosuccessione convergente.

Allora c) implica b) e quindi a). n

2.9 Corollario. Sia I : H — H l'operatore identita (cioé Ix = x per ogni x € H). Allora:

le #(H) < dimH < +o0.

DIMOSTRAZIONE. “<”:dimim /[ =dim H < +00 = [ € #(H) < # (H).
“=”: Supponiamo dim H = 400 con base ortonormale {ej, e, €3, .. .}.
(ex) = B ={z | |lz] = 1}.

k€= Jew —ed* = llex]* + [le]* = 2
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= (Iey) = (ex) non contiene nessuna sottosuccessione convergente.

Teorema 2.8 = [ non e compatta. é [

Di consequenza, in uno spazio H di dimensione infinita, un operatore compatto non ¢ mai
invertibile (perché altrimenti [ = TT~" sarebbe compatto).

2.4 Esercizi

Esercizio 2.1. Sia T € Z(H). Dimostrare: T € # (H) < T*T € X (H).

Esercizio 2.2. Sia T € Z(H) e V uno sottospazio chiuso di H con T'(V) < V. Mostrare:

a) T autoaggiunto = T(V+L) < V*+.
by T compatto = T|y : V — V compatto.

Esercizio 2.3. Sia (a,) © C una successione convergente ad a e sia T : (*(N) — (?(N) definito
da

T(Jfl, X2, X3,T4, . - ) = (alxla 22, A3T3, Agdy, . - )

Dimostrare che al — T é un operatore compatto.
Esercizio 2.4. Sia {e, e, ¢3,...} una base ortonormale di L?*(A). Dimostrare che le funzioni
f]k(87t) = Gj(S)Gk(t), j7k = ]-7

definiscono una base ortonormale {f;i. | j,k = 1} di L*(A x A).

Suggerimento. Si utilizzi il sequente teorema: Un sistema ortonormale {x1, x93, ...} in uno
spazio di Hilbert ¢ una base ortonormale se, e solo se,

+00
Jol® = > [z, z)?  VaeH
k=1

Osservazione. Siccome

{e1, e, e3,...} ¢ una base ortonormale di L*(A)
=

{e1,e3,€3,...} ¢ una base ortonormale di L*(A),

in modo simile si dimostra che, posto fjk(s,t) =e;(s)ex(t), j, k=1, {]F]k | j,k =1} € una base
ortonormale di L*(A x A).
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3 Operatori di Fredholm

Di cosa si tratta? Introduciamo la classe degli operatori di Fredholm (anche
detti operatori ad indice). Sono operatori che hanno nucleo di dimensione
finita e immagine di co-dimensione finita. In altre parole, se T € Z(X,Y) &
un operatore di Fredholm, lo spazio delle soluzioni dell’equazione omogenea
Tx = 0 ha dimensione finita, mentre I’equazione inomogenea T'x = y e solubile
per quasi tutti y, salvo un difetto di dimensione finita.

Nel seguito, I = Iy indica l'operatore identita X — X, cioe I(z) =2z Vze X.

3.1 Invertibilita di operatori

3.1 Teorema (Serie di Neumann). Sia T'€ Z(X) con |T|| < 1. Allora I - T € L(X) ¢

mvertibile con
+o0

I-T)'=YT-=I+T+T°+...,
k=0

1
=T

dove la serie converge (assolutamente) in £ (X). In particolare, |(I —T) | <

+00 400
DIMOSTRAZIONE. ||[T*| < |TF = X |T%| < X |T|* = 177 < +0
k=0 k=0
+00
= > T* assolutamente convergente in .Z(X).
k=0

X Banach = .Z(X) spazio di Banach = 3Se Z(X): S,:= 3 TF 2% S in 2(X).
k=0

|7 < |TF 2225 0 =

(I-T)S &2 (1 =T)S = (I ~T)I+T + T+ ... +T") = - T 2%

=~ (I-T)S=1
Analogamente: S(I —T) =1
= (I —T) invertibile, (I = T)~! = S. n

3.2 Corollario. Siano S,T € Z(X,Y). Allora:

1
T invertibile e |S| < T = S+ T invertible.

In particolare: L~ X,Y) :=={T € L(X,Y) |T invertibile} ¢ aperto in £(X,Y).
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DIMOSTRAZIONE. S+ T =T(I +T7'S).

IT1S| < |T-Y|S| <12 I+7T 'S invertibile.
= (S+T) ' =T +T7'9)"'T. =

3.3 Corollario (Continuita dell’inversione). Sia T E2A0 T i £ (X,Y) eT e tutti Ty,
siano invertibili. Allora T;" E2ES, 71 i 2(Y, X).

Teorema 3.1 .
DIMOSTRAZIONE. [T T = (I = TMT = T))7| < pmitryy —— > L
. n - - — _ k—+
= T = T7Y = |T, (T = T)T Y < |T, ' T Tk — TNT Y == 0. .

3.2 Operatori di Fredholm

3.4 Definizione. T € Z(X,Y) ,X,Y spazi di Banach, si dice (operatore di) Fredholm
oppure operatore ad indice, se dimkerT < +o0 e codimim7T = dim (Y/im7T') < +co. Si
definisce

ind7T" := dimker 7" — codimim 7. (indice di T').

Scriviamo

Fred(X,Y) :={T € Z(X,Y) | T Fredholm}, Fred(X) := Fred(X, X),

3.5 Esempio. Sia T : €*([a,b]) — € ([a,b]) con Tu = u' (derivata prima).

e Tu=0 < u' =0 < u=const. = kerT = {u=c| ceC} ha dimensione 1.

T

e Dato v e €([a,b]), allora v =Tu con u(x) = J v(t) dt + const = T' suriettivo.

a

Ne seque T' Fredholm, con indT =1—0 = 1.

3.6 Esempio. Sia T : €,

2w —per

(R) = Gar—per (R) (funzioni 2mw-periodiche) con Tu = u'.

Come sopra, dimker T = 1.

2T
v=ueimT = f v(6)df = u(2m) — u(0) = 0.
0

2w T

v(0)dl =0 = u(z) = J v(0) df + const & 2m-periodica

U € Gor—per(R) con J
0

0
2

= im7T = {U € Gar—per(R) | J v(0)db = O}, Cor—per(R) =ImT ®{u=c|ceC}.
0

Ne seque T' Fredholm, con indT =1—1 = 0.
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Nota (somma diretta): Sia X @Y = {(z,y) |r€ X, ye Y}.

(1) X,Y Banach = X @Y Banach con norma ||(z,9)|| = |z|x + |y]y;

(2) X,Y Hilbert = X @Y Hilbert con prodotto interno

{1,91), (22,92)) = (21, 72)x + (Y1, Y2)y-

3.7 Teorema (Lemma di Kato). Sia T € Z(X,Y) con codimimT < +co. Allora imT
¢ chiuso. In particolare, T € Fred(X,Y) = imT chiuso.

DIMOSTRAZIONE. (1) Supponiamo che T sia iniettivo.

SiaY =imT + Z, dim Z = codimim7T < 400 = (Z,| - ||y) spazio di Banach.
SiaS: X®Z-Y,S(x,z) =Tz + =

Ovviamente S e suriettivo.

S & iniettivo: S(z,2) =0=Ter=——2eimTnZ={0}=>Tr=2=0=2=2=0.
S & continuo: (xg, z;) — (0,0) = xp —> 0, zx > 0= S(zy, 2x) = Txg + 2, — 0.
Dunque, S € Z(X @ Z,Y) & biiettivo.

Teorema 0.1 = S™'e (Y, X @ 7)

= (S71)71(A) = S(A) (pre-immagine di A sotto S™!) chiuso per ogni A ¢ X @ Z chiuso.
X x {0} chiuso in X ® 7 = S(X x {0}) = T(X) = imT chiuso in Y.

(2) Sia X = H spazio di Hilbert. Si ha allora

H=%erT @ (ker T')*.

Posto H := (ker T)*, T := Tz, segue

Te ‘,2”([?[, Y), T iniettivo, im T = im 7.

i) = im T chiuso.

(Non dimostriamo il caso in cui X ¢ spazio di Banach.)! u

3.8 Corollario. T e Fred(H) = H =imT@® (imT)*t =imT @ ker T* ¢

indT = dimker T — dim ker T*.

In particolare: T € Fred(H) autoaggiunto = ind T = 0.

1La dimostrazione ¢ analoga, utilizzando lo spazio quoziente X := X /ker T con norma ||[z]| = infyexer 7 |7 +
v|x dove [z] = x + kerT. Allora X & uno spazio di Banach e T[z] := Tz definisce un operatore iniettivo
Te Z(X,Y)conimT =imT. Se X & spazio di Hilbert, X /ker T = (ker T')*.
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3.3 Proprieta fondamentali

3.9 Teorema. Per T € Z(H) le sequenti affermazioni sono equivalenti:
(1) T € Fred(H);
(2) 3Se Z(H) FRy,RieZF(H): ST=I1-Ry, eTS=1-Ry

3) 38 e ZH) IR, R,e¥(H): ST=I-R) ¢TS =1I1-R,.

DIMOSTRAZIONE. (1)= (2): X :=kerT eY :=imT chivsi= H=X® Xt =Y @Y<L

Teorema 0.1

Ty :=T|x: € L(X1)Y) biiettivo =~ Tyt e Z(Y, X1).
S:=Ty'Pye Z(H) =
TS =TTy Py = TyTy'Py = Py = [ — Py,
ST =Ty 'PyT =Ty ' T =Ty 'T(Px + (1 — Px)) = Ty, ' TPxy = Ty 'Ty Py = I — Py.
(2)=1):zekerT =0=STer= (I — Ry)r =2 — Ryx = = = Ryr € im Ry
= kerT' € im Ry ha dimensione finita.

r=Rix+(I—R)rx=Rux+TSx YVe=H=imR+imTS=imR;+imT
——
CimT

= codimim T < dimim Ry < +o0.

(2) = (3) : Immediato, poiché .Z#(H) < ¥ (H).

(3) = (2) : Sia F{ € F(H) con |R| — Fj| < 1.

Teorema 3.1 = A, := [ — (R, — F}) invertibile

= S'T=1—-Ry=A— F) = (A,'S"T =1 — (A,'F})

= ST =1—Rycon S:=A,'S" e Ry:= A, ' Fje F(H).

Analogamente: 35 € Z(H) 3Re Z(H): TS =1I— R. Troviamo:
S—8=8—(ST+Ry)S=5—S8(I—-R)+RoS=SR+ RS =: Fe.Z(H)

= TS=T(S—F)=I—R—TF=1—Ry con R, := R+TF e .Z(H). n
Esplicitamente: un operatore T € Z(H) ¢ Fredholm se e solo se & invertibile modulo operatori

compatti (oppure di rango finito), ovvero se e solo se ammette una paramtrix modulo operatori
compatti (oppure di rango finito).

3.10 Corollario. T € Fred(H) = T* € Fred(H) e indT* = —ind T

DIMOSTRAZIONE. Teorema 3.9 = T invertibile modulo ¢ (H).
Teorema 1.5, b), Teorema 2.6, b) = T* invertibile modulo ¢ (H).
Teorema 3.9 = T Fredholm.
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3.8 = ind T* = dim ker T* — dim ker T** = —(dimker T — dim ker T*) = —ind T..

3.11 Teorema. Per T € £ (H) le sequente affermazioni sono equivalenti:
(1) T € Fred(H);
(2) 3m,neNy I Ae ZL(C" H) iniettivo I Be L(H,C"):

TA_g_)g_xl_)TA z\ (Tz+ Az
B 0)" cn o \? B 0)\z) Bz ’

e invertibile.

In questo caso indT = m — n.

DIMOSTRAZIONE. La dimostrazione si basa su due risultati:

Lemma 1 (Esercizio 3.4). Siano T} : Hy — H;, j = 1,2, lineari.

Hy
<%> : Hy — @ biiettivo <= T, : Hy — H, suriettivo e T} : ker Ty — H; biiettivo.
H,

Lemma 2. Siano T € Z(H) e U,V sottospazi chiusi di H con dimU < 400 e
UnV ={0}. Se T € Fred(V, H) allora T € Fred(V ® U, H) e

ind(T:VeU - H)=ind(T:V — H) +dimU.

DIMOSTRAZIONE. Per induzione su n := dimU.
n = 0 : vero.
Supponiamo che I'enunciato sia vero per ogni U con dimU = n € Nj.
n=mn+1:8iau,...,u,1 base di U, U :=uy, ..., up).
Vii=VeU =nd(T: V' - H)=ind(T:V - H) +n.
Primo caso: Sia T'u, 1 € T(V'). Otteniamo
v eV Tv =Tup
= T(V' @ uns1)) = T(V'),
ker(T : V' @ {upi1) — H) =ker(T : V' - H) @ {upyq — ') 2
= ind(T: VU - H) =dimker(T : V' - H) + 1 — codim T'(V")
=ind(T:V' - H)+1=ind(T:V - H)+n+ 1.

ZPer ”C” si osserva: v = vj) + aup1 € ker T con v) € V' = v = (v} + av’) + a(up41 — ')
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Secondo caso: Sia Tu, 1 ¢ T(V'). Ne segue
T(V' @ (unsr)) = T(V') @ Tunya),
ker(T : V' @ upy1) > H) =ker(T: V' — H)
= ind(T: V@®U — H) = dimker(T : V' — H) — [codim T(V") — 1]
=ind(T:V - H)+n+ 1. ]

(1) = (2) : m :=dimker T, n := codimim T’ = dim (im T)*.
= 3Ae Z7YC", (imT)"), B' e £ (kerT,C™).

Con B := B'Pir vale (2) (applicare Lemma 1 con Hy = H® C", Hy = H, H, = C" e
T,=(T A),T,=(B 0)).

ker B
(2) = (1) : Lemma 1 = B : H — C™ suriettivo, (T A): @& — H invertibile
C?’L
= H =T(ker B)® A(C™), T': ker B — H iniettivo.
= T : ker B — H Fredholm con indice —dim A(C") = —n.
U := (ker B)* = B :U — C™ biettivo = dimU = n.
Lemma 2 = ind7T = ind(T : ker BOU — H) =ind(T : ker B - H) + dimU = m —n. n

3.12 Teorema. Fred(H) ¢é un sottoinsieme aperto di £ (H) e ind : Fred(H) — Z ¢
localmente costante (in particolare, continuo).

DIMOSTRAZIONE. Sia T € Fred(H) e T := (B 0

r A) come nel Teorema 3.11.b).

Siano e = 1/|T 1|, Se L(H) con |S —T| <ce S := (g /3) Allora
S—-T 0
s-71=] (55T 0)|-1s-11 <6
Corollario 3.2 = § e invertibile.
Lemma 3.11 = S € Fred(H) con ind S =m —n =ind 7. m

3.13 Teorema. Valgono le sequenti proprieta.
a) Sia T :]0,1] - ZL(H) continua e T(t) € Fred(H) per ogni t. Allora

ind 7(0) = ind T'(1).

b) Siano T € Fred(H) e K € # (H). Allora T + K € Fred(H) e

ind(T + K) = ind 7.
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DIMOSTRAZIONE. a)t — indT'(¢) : [0,1] — Z & continuo e quindi costante.
b) T invertibile modulo ¢ (H) = T + tK invertibile modulo ¢ (H) = T + tK € Fred(H).
Si conclude applicando il punto a) alla famiglia continua di operatori T'(t) := T + tK. [

3.14 Corollario. SiaT € # (H) e A £ 0. Allora \I =T € Fred(H) con ind(\[ —T) = 0.
Quindi, ’equazione
M —-T)x =y

ha un’unica soluzione per ogni y € H, oppure l’equazione
M-T)x=0

ha una soluzione non-triviale (x % 0).

3.15 Teorema. S,T € Fred(H) = ST € Fred(H) e ind ST =ind S + ind T

DIMOSTRAZIONE. i) La composizione di operatori Fredholm ¢ Fredholm:
Ty, T5 invertibili modulo J# (H) = T1T5 invertibile modulo J# (H) = T1T; € Fred(H).

H H
ii) (g ?) , (é ’2) : @ — @ Fredholm =
H H

0= (5 1) (it Tomian) (o 7) 0= <o)

e continua e Fredholm per ogni ¢, dato che I'operatore al centro della composizione e invertibile.

Teorema 3.13.a) = ind (g g) =ind7(0) =ind 7(1) = ind (? _gT).

Esercizio. Ti,T; € Fred(H) = ho 0 , 0 1 € Fred(H @ H) con
0 Ty 7, 0

. v 0\ . 0 T\ . .
ind <O T2> = ind (T2 0) = ind 7T} + ind 75.

Troviamo quindi®

ind S +ind7 = ind (g ;) = ind (? _gT) =ind (=ST) +ind I = ind ST. n

3K immediato provare ”T & Fredholm < —T & Fredholm”, e si ha ind T = ind (=T).
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3.4 Esercizi

Esercizio 3.1. Sia T € Z(H) nilpotente, cioé esiste N € N tale che T = 0. Dimostrare che
I =T ¢ invertibile.

Esercizio 3.2. Nei sequenti casi determinare dimkerT" e codimim 7T :

1) T = £ : ¢%(a,b]) — € ([a,b]).

dx?

2) T =5 . 4%(S") - Z(S).
3) T e L(*(N)) con T(x1,x9,73,...) = (0,29, 73,...).
Esercizio 3.3. Sia T € Z(C™,C"). Determinare l'indice di T

Esercizio 3.4. Siano T; : H — Hj, j = 1,2, lineari. Dimostrare che

H,y
(?) : H — @ bitettivo < T, : H — H, suriettivo e T : ker Ty, — H; biiettivo.
2
Hy
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4 Teoria spettrale

Di cosa si tratta? Lo spettro di un operatore T' € Z(X), X Banach, puo
essere considerato come una generalizzazione dell’insieme degli autovalori di
una matrice quadrata al caso infinito dimensionale. Consiste di tutti i valori
A € C tali che AI — T non ¢ invertibile. Il teorema spettrale per gli operatori
compatti e autoaggiunti in uno spazio di Hilbert generalizza il fatto che le
matrici autoaggiunte sono diagonalizzabili. Determiniamo, in particolare, lo
spettro degli operatori di rango finito in uno spazio di Hilbert.

4.1 Spettro e risolvente di operatori limitati

4.1 Definizione. Sia T € £(X), X Banach. L’insieme risolvente di T ¢é
p(T) :={ e C| A =T é invertibile}.
L’operatore risolvente di T e
RO\T) =\ -T) 1, e p(T).
1l complementare dell’insieme risolvente si chiama lo spettro di T,
o(T) :=C\p(T) = {\e C| A — T non ¢& invertibile}.

A€ o(T) si dice autovalore se

ker (Al = T) ={xe X | Tz = Az} + {0} (autospazio di \).

Se A € o(T) non & un autovalore, allora
ker (A —T) = {0}, im (M —T) ¢ X (inclusione stretta),

cioe A\l — T ¢ iniettivo ma non suriettivo.

Definizione. Piu in generale, si possono dare le seguenti definizioni:
(1) spettro puntuale: A € 0,(T") < ker(Al —T') & {0} (A & un autovalore di T').
(2) Se ker(A —T') = {0} (cioe AI —T & iniettivo):

(i) spettro continuo: A € 0.(1") © Al — T non & suriettivo ma il suo immagine &
denso in X.

(ii) spettro residuale: A € 0,(7') & I'immagine di Al — T non ¢ denso in X.
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Per definizione, si ha quindi

o(T) = 0,(T) U 0o(T) L 0, (T) = C\p(T).

4.2 Esempio. Sia X := %([a,b]) e T € L(X) loperatore di moltiplicazione per h € X, cioé

(THE) =hO)f#),  feX, te]ab].

T ¢ limitato:
1T fo = max WO O] < [hlollfllo ¥V feEX = |T|2x) < [h]oo-

Perge X,

M —T)f =g — f(t)z)\i(—z)(t) Vte [a,b].

Se X ¢ h(la,b]), = € C([a,b]) e X =T ¢ biiettivo.
Sia A € h([a,b]). Se g =1, f non appartiene a C([a,b]); quindi \I — T non é suriettivo.

Pertanto,
Aeo(T) < 3Jtea,b]: h(t)=X < Xeh(|a,b]).
Per X € p(T), Uinverso (A —T)~! ¢ l"operatore di moltiplicazione per la funzione ﬁ

Esempio. Siano X = L*([a,b]) e T : X — X definito da (T'f)(z) = z- f(x) (cio¢ T & 'operatore
di moltiplicazione per la funzione h(z) = x).

C:=max{lal, [bl} = [(Tf)(x)] < C[f(x)] Vzela,b] = |T|zux) <C.
Per X € C,
(x —A) f(x) =0 q.o. [a,b] = f(zx) =0 q.0. [a,b] & f =0« ker(\ —T) = {0},
cioe A\I — T & sempre iniettivo. Per g € X,

9(x)
A—1a’

M-T)f=g< f(z) = q.o. [a,b].

Se A ¢ [a, b], ﬁ e continua su [a, b e quindi f & ben definita ed appartiene a X. Quindi A\ =T
e suriettivo e A € p(T).

Sia allora A € [a,b]. Se g = 1, f non appartiene ad X; quindi A\l — T non & suriettivo. Ma se
¢ = 0 in un intorno di A in [a,b], f ¢ ben definita ed appartiene a X. Tali g sono dense in
X. Infatti, posto, pern » 1, g, = ¢ - [1 — X(,\_l,,\+l)} xg funzione caratteristica di £ € R,
g€ X, siha g, =0in un intorno di A, g, € X, e, per il Teorema della Convergenza Dominata,

n—-+o0

lgn — gllx — 0. Pertanto, im (Al — T') & densa in X. Concludiamo che \ € o.(T') per ogni
A€ |a,b] e quindi o(T") = 0.(T) = [a, b].
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4.3 Teorema. Sia T € £(X), X Banach. Allora
a) p(T) € C é aperto, o(T) < C ¢ chiuso. Inoltre
#(T) € {re N < 71}

1

O 1 =D > G5 o @)

per ogni A € p(T).

DIMOSTRAZIONE. Sia A\g € p(T) e € := 1/||(A\l — T)7Y.
M—=T=MNI=T)+ A=) =Nl =T)I+\=X)(Aol —-T)7")
IN=Xo| <e= A=)l —T)7'| <1

22 M — T invertibile V \ € U:-(Xo)

p(T) aperto, o(T") = C\p(T) chiuso,

ia@”gwm:{mw%maw>a=uud—ﬂ*ﬂ

N > [T = [T/ <12 (\I—T) = \(I — T/\) invertibile. n

4.4 Esempio. a) Sia T € Z((*(N)) definito da T(x1,T2,...) = (0,21, T2,...).
Allora 0 € 0,(T) perché ker(0-I —T) =kerT = {0} eim (0-I—T) =imT = {z € (*(N) |
x1 = 0} non ¢é densa in (*(N).

b) Sia T € Z((*(N)) definito da T(x1,xa,...) = (T2, T3...).

Allora o(T) = {Ae C| |\ <1} e A é un autovalore se e solo se |\| < 1. Infatti:
IT[=1=0o(T) = {iN <1}
(.1’2, 3. . ) = T(Z’l, To, .. ) = )\(xl, T, .. ) — (:Cl, To2,T3 .. ) = xl(l, )\, )\2, .. )
(LAXN L )el <= Y MY <+ <= AP <1 < |\ <1 (serie geometrica).

ggizzdﬂ}ﬁdﬂ=ﬂM<n

4.5 Teorema. T € L (H) autoaggiunto = o(T) < R.

DIMOSTRAZIONE. Sia A =« + ¢ con 3 £ 0.

= |\ = T)z|? = (ax + iz — Tx,ar + ifx — Tz) = |ax — Tx|? + | Bz|?.
= [|(M = T)z| = [Bl|z] VzeH.

= Al — T iniettivo.

im (A — T') & chiuso: Sia y, = (M — Tz — .
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lzx — el < 5

=3dreH: z—ozr=y=lim, AN —T)rp=N—-T)zx=yeim(N —T).

(N =T)(zp — )| = ﬁ“fyk — y¢|. = (1) successione di Cauchy

Al — T normale:

M —=T)YMN -T) =N —-T)MN ~T) =M —T)YN —T) = (M —T)*(\ - T)
= (im (M — T))* = ker (A — T)* "2 ker (AT — T)) = {0}.
= H={0}t = (im\ -T))** =im(\ -T) =im(\ - T).

= M\l — T invertibile. ]

4.6 Teorema. Sia T € Z(H) autoaggiunto. Siano A\ + Ao due autovalori di T'. Allora:

uy € ker (M I —1T), ug € ker (Aol —T) = uy L us.

DIMOSTRAZIONE. Grazie al fatto che T'=T" e \; e R, j = 1,2, troviamo
Ar(ur, ug) = (Tur, ug) = (u1, Tug) = Xo(ur,ug) = (A1 — Ag) (ur, uz) = 0.

Pertanto, /\1 :+: )\2 = (Ul,U,Q) = 0. |

4.2 Lo spettro degli operatori compatti autoaggiunti

La teoria spettrale per operatori compatti autoaggiunti si basa sul seguente risultato:

4.7 Teorema. Sia T € Z(H) autoaggiunto. Valgono:
a) Almeno uno dei valori —|T| o |T|| appartiene a o(T).

b) Se T € # (H) allora almeno uno dei valori —|T|| o |T| € un autovalore di T .

DIMOSTRAZIONE: Il caso T' = 0 & banale, quindi assumiamo |T'|| > 0.
Teorema 1.8: [T = supy,_; [(T'z, 7)|
=3 (2,) S H:||z| =1V n e [(Tzp, 2,)| =55 ||T.

(Tz,z) e R Y = Spdg* (T2, ,) =5 a4 0cona=—|T|oa=|T|
(altrimenti passiamo ad una sottosuccessione).

0 < (T — al)z,|? = |Tz|? = 20(Tzp, ) + 02 < 202 — 20(Tzp, ) —55 0
= (T = al)z,| =2 0.

a) Supponiamo « € p(T). Allora 1 = ||z,|| < |(T — o) Y I(T — o)z, | =20 é

4Senza perdere di generalita.
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b) T compatto = Spdg 3ye H: Tz, SimaiaN
(altrimenti passiamo ad una sottosuccessione)
1 n— 1
= 1, = —((OJ — Tz, + Ta;n) D2EE, Ty
o o)
= gy E2TE T, 2 T(%y) = éTy =Ty = ay.
jal = [aza| == lyl = [yl = o] > 0=y + 0. u

4.8 Teorema (Teorema spettrale). Sia T € # (H) autoaggiunto e dim H = +o0. Allora
O'(T) = {O, )\1, )\2, )\3, .. }

con un numero finito o infinito di autovalori reali A\, £ 0 con autospazi Vy, := ker(A\ I —T)

di dimensione finita. Nel caso di un numero infinito di autovalori, A\, —— 0. Unendo

le base ortonormali di kerT" e di tutti i Vi, si ottiene una base ortonormale di H.

DIMOSTRAZIONE. Notiamo:
e Teorema 4.5: o(T) < R.

e 0 € o(T) perché altrimenti I =TT € # (H) é (Corollario 2.9)
e 0% Aeo(T) = X autovalore con dimker(A/ —T) < 400 (per I’Alternativa di Fredholm).

Ci serve il seguente

Lemma.’ Sia T'€ ¢ (H) autoaggiunto e V un sottospazio di H con T(V) S V.
Allora T(V+4) € VY e Ty € (V1Y) autoaggiunto con |T|yo| < ||T.

Teorema 4.7 = 3 A\ € {—|T|,|T||} : Vi =ker(\MI —T) + {0}.
Abbiamo H =V, @ H, con H, := Vit e T(V}) € V).
Lemma = T} := Ty, € 2 (H,) autoaggiunto, |1} | < |71
Supponiamo T; & 0.
Teorema 4.7 = 3 Ay € {—|T1|, |T1]} : ker(Aof —T7) £ {0}.
Ao F+ A1 perché altrimenti
ker(\ol — Th) = ker(M I — Ty) € Hy A ker(MI —T) = Vi- A Vi = {0} 4 .
Teorema 4.6 = ker(A\ol — T') € V;* = Hy = ker(\ol — Ty) = Va.
Abbiamo H, = Vo @ Hy con Hy := V- (complementare in Hy) e Ty := Ty, .
Nota che H =V, @ H, = (V1 ® Vo) ® Hy, cioe Hy = (V1 ® V) (complementare in H).

Iterazione di questo procedimento genera una successione (che, eventualmente, assume solo una

quantita finita di valori distinti) di autovalori i, Ag, A3, ..., diversi tra di loro con

5Veda Esercizio 2.2.
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(i) Vo =ketOnI —T), Hy = (Vi® ... ® V)% e Ayt = [Tl

Si verifica necessariamente una delle due situazioni trattate di seguito.

Primo caso: La procedura si ferma, cio¢ T'|y, =0 perun ne N = H, < kerT.

zekerT eyeVy = M(y,x) = (Ty,z) = (y,Tx) zOAngJ_Vk

=ker TS (Vi®...®V,)!t =H,.
== H,=kerTe H=V®..®V,DkerT.

Secondo caso: La procedura non si ferma.

= 3 (Tp)nen :  Tn € Vi, |zn| = 1.

Te#(H) Teorela 28 5 ¢ ottosuccessione convergente (7', ).

Tan =My € Ty Ly perndm= X + A\, = |Tx,, —Txy,|? i N
(|An]) decrescente, quindi convergente

ton = [\ 50 = 0, 250,
n _— >
| An| 0

Sia {ey, €3, ...} ottenuta dall'unione delle basi di tutti i Vj e sia H = span{ey, e, .. .}.
Come sopra: ker T' < spanfey, ey, ...}= = HL.

Sia z € HL.

= w € Vit = H, per ogni n e |T| = [T,z < |Tm,[|2] = Pusil|z] =0
= xekerT.

Concludiamo quindi che kerT' = H'eH=H @kerT. m

4.9 Esempio. Sia T € # ((*(N)) con T(x1,z2,23,...) = (x1,79/2,23/3,...). Ovviamente 0
non ¢ un autovalore. Gli autovalori sono 1,1/2,1/3,... con autovettori ey, e, es, . . ..

4.10 Corollario. Sia T € J# (H) autoaggiunto. Allora H ha una base ortonormale di
autovettori {x1, xa, x3,...}. Se Tx; = Njx; per ogni j, allora

00
Tz = Z Aj(, 25)x; Vexe H (forma diagonale di T').

i=1

Il teorema spettrale rimane parzialmente valido per un operatore compatto non autoaggiunto
oppure in uno spazio di Banach: lo spettro ¢ numerabile ed ¢ composto da 0 e solo autovalori
con autospazi di dimensione finita. 0 ¢ I'unico eventuale punto di accumulazione.
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4.3 Lo spettro degli operatori di rango finito

Un operatore T' € .Z(H) di rango finito n > 1 ha la forma

n

Tx = Z(:c, Y;); VeeH

j=1

con z;,y; € H. Supponiamo che sia x1,...,x, sia yi,...,y, siano linearmente indipendenti.®
Allora

im7T = {xq,...,2,), ker T = (Y1, ..., Yn)™

Determiamo gli altri autovalori. Gli autovettori appartengono necessariamente a im7". Dobbi-
amo quindi studiare

T:imT — im7T.

Possiamo utilizzare tutti i mezzi dell’algebra lineare. La rappresentazione di T rispetto alla base
xr1,...,x, diimT e la matrice

(151,?/1) U (‘rnayl)
T .= (tij)léi,jén = ((xj7yi))1<i,j<n — : :
(:Ehyn) T ($n7yn)

Gli autovalori di T sono quelli di T che corrispondono agli zeri del polinomio caratteristico.
Risulta

[O(T) = {0} u {autovalori di T} = {0, A\, ..., )\n},]

dove i A\; non devono essere necessariamente diversi fra di loro (in caso di zeri di molteplicita
piu grande di 1). Se a = (ay,...,a,) € un autovettore di T per I'autovalore )y, allora x =
a1Ty + ...+ apx, soddisfa Tx = \,x.

4.11 Esempio. Sia T un operatore integrale in A < RN con nucleo k(x,y) = Y, r;(x)s;(y),

Jj=1

THE = Y@ [ fsGdy,  zea

Supponiamo chery,...,r, € S1,...,8, stano linearmente indipendenti. Gli autovalori di T sono
0 e gli autovalori della matrice (t;;) con

t, = L ri(2)5:(2) dz.

6Questo non & una limitazione: Secondo Lemma 2.2, dato T € .% (H), possiamo scegliere gli x; come base
ortogonale di imT" e y; := T*x;. Y, a;y; = 0 implica Y}, a;x; € ker T* = (im T)*. Allora Yoy = 0 e quindi
a; = 0 per tutti <.
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Per A ¢ o(T) esiste (\[ —T)~!. Sia data y € H. Cerchiamo = € H con

M-Tr=y < x—-Tr=y < Ax—Z(x,yj)ijy-

j=1
Passando al prodotto interno con y; per tutti gli ¢, troviamo il sistema

Az, i) 237% x5, Yi) = (Y, Yi), i=1,...,n.

In forma matriciale questo significa

(z,91) (y, 1) (z,91) (y, 1)
M-T) : = : — o= =T
(T, Yn) (%, Yn) (z,Yn) (Y, Yn)
Quindi, definendo
bi(y, \) (y, 1)
: =\ =-T) |,
bn(y, M) (Y, Yn)

troviamo la soluzione

(M -T) Yy = §§] (4:A

4.12 Esempio. Con la notazione dell’Esempio 4.11 e g € L*(A) troviamo

(AL - T) g)(a) = L Z

4.13 Esempio. Studiare, in L*([0,27]), [’equazione integrale

2

Aﬂ@—J;k@wﬁ@ﬁ@=g@% 0< <2,

dove k(x,y) = sinxsiny + 2 cos x cosy. Nella notazione introdotta sopra, n =2 e

ri(r) = s1(x) = sinz, ro(x) = sy(z) = V2 cos .

2m
In particolare, l'operatore (T f)(x) = j k(x,y)f(y) dy é autoaggiunto.
0

Calcoliamo T = (7(; 2(;), che ha autovalori e 27, con rispettivi autospazi ((1,0)) e {(0,1)).

Risulta o(T') = {0, m, 27} con

ker T = (s, 850", ker (nl —T) = {s1), ker(2m —T) = {s5).
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Per A ¢ {0, 7,27} calcoliamo

(o) = (0™ il an) ().

Risulta
_ -1 1 (9,81)z2 . ﬂ(9752)L2
f(x) =[(M -T)"g](x) = Xg(x) + msmx + 2 cos T
1 inz 2 2 €T 2
= Xg(x) + ﬁfo g(y)siny dy + ﬁfo g(y) cosy dy.

4.4 Esercizi

Esercizio 4.1. Sia T : €([—1,1]) — €([—1,1]) loperatore di moltiplicazione per la funzione
h e €(-1,1]), cioé (Tf)(x) = h(x)f(x). Nei sequenti casi calcolare spettro, autovalori e
autofunzioni di T :

a) h(x) = 2x.

b) h(xz) =0 per x <0, h(x) =x per x > 0.
Esercizio 4.2. Sia T € £ (H). Dimostrare:

a) o(T*) = o(T) = {(X| Ae o(T)}.

b) T unitario = o(T) < {\e C ||\ =1}.

Esercizio 4.3. Sia T € Z({*) con T(x1,x9,...) = (0,21, 2o, ...). Dimostrare che o(T) = {\ €
C | |A] < 1} e che T non ha nessun autovalore.

Esercizio 4.4. Determinare autovalori, autofunzioni e risolvente degli operatori integrali in L?
con nucleo k :

a) k(z,y) = wy in [0,1],
b) k(z,y) = zy +2°y* in [-1,1],

¢) k(x,y) =x—y in [0,1].

Trovare la soluzione f in L? della sequente equazione integrale:

d) J 7rSinyf(y) dy — f(x) = x in [0, 27].

0
Esercizio 4.5. Siano T € £ (H) e A\, u € p(T). Dimostrare che

R(p, T) = RN T) = (A = ) RO\, T) R(p, T).
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Esercizio 4.6. Sia T € £ (H). Dimostrare che A+ R(\,T) : p(T) — Z(H) é continua.

Esercizio 4.7. Sia T € # (H) autoaggiunto tale che (T'x,x) = 0 per ogni x € H. Dimostrare
che esiste un S € Z(H) tale che S? =

Esercizio 4.8. Sia T € ' (H) autoaggiunto e {x1,xq,x3,...} base ortonormale di autovettori,
Txj = Nz;. Sia A¢ o(T) ey e H. Dimostrare che

+0 1 1 o
(M =T)" Z y,a:] = X XZ y,xj

Esercizio 4.9. Sia K un operatore integrale con nucleo k € L*(A x A), cf. Esempio 2.5. Sup-
poniamo che k(s,t) = k(t,s), quindi K ¢é autoaggiunto. Sia {ej, es, €3, ...} una base ortonormale
di L*(A) di autofunzioni di K con Ke; = \;je; per ogni j. Dimostrare che

+00
%122 gaa) = 25 1Nl
j=1
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5 Operatori di Toeplitz

Di cosa si tratta? Studiamo i cosidetti operatori di Toeplitz nello spazio di
Hardy delle funzioni 27-periodiche. Caraterizziamo gli operatori Fredholm e
troviamo una “formula topologica” che esprime l'indice in forma di un indice
di avvolgimento.

Lo spazio L*(S') = L3

sr—per(R) degli funzioni 27-periodiche e integrabili al quadrato su [0, 27]
con prodotto interno

1 2

(f;9)2 = 5 | fl@)g(x)dx

21 Jo

ha la base ortonormale {e,, | n € Z}, dove

[en(x) = ™M, ne Z.J

Ogni f € L*(S") ha la rappresentazione (serie di Fourier, convergenza in L?*(S'))

+o R o
=Y fmen f<n>=<f,en>p(§1):% f e~ f () da.

n=—a

Se p € €(S') = Gan—per(R), ciot una funzione continua e 27-periodica, allora
Myf:=¢-f,  felL*S),
definisce I'operatore M, € Z(L*(S")) con | M| 2ty < @] :

1

1
M1 = o ;

2 27
L p(@)f(@)Pdz < max |p(a)Pm f F@)P dr = |l 12

0<z<2r 27

Inoltre ¢ facile da vedere che (M,)* = M.

Nota: Vale perfino |M,|| = ||¢|«. Infatti, sia |p(xo)| = [|¢| (Weierstrass!). Sia x; 'estensione
27-periodica della funzione caratteristica dell'intervallo [zq — h, x + h] moltiplicato per 1/v/2h.
Allora || x|z = 1/4/27 e, vista la continuita di ¢,

| Moxnlge _ 1 ("

h—0+
- e 220 |
xulz: 2k Jupn

o () o(x0)* = lloll2,

5.1 Definizione (Hardy space). Si definisce

H*(SY) = {f e L*(S") | j?(n) = 0 per ogni n < 0} = span{eo, €1, €2, €3, .. .}.
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Denotiamo con P = Pp2s1y la proiezione ortogonale con im P = H?(S'), cioe

P( Y, fen) = 3, Fmye
n=—w n=0
Ovviamente o »
(=P Y Fmen) = Y F(men

5.2 Definizione. Sia ¢ € €(S'). Allora

T,f = PM,f = P(pf),  feH(S),

definisce T, € L (H*(S")), il cosidetto operatore di Toeplitz associato a .

Valgono | T, < [ P[[| M| < [lo]o € (Ty)" = T, dato che

(T, f,9) = (PMy, g) = (f, MzPg) = (Pf, Mpg) = (f, PMgg) = (f,T59),
per ogni f = Pf,g = Pge H*(SY).

5.1 Proprieta di Fredholm

5.3 Teorema. ¢ € ¢(S') = (I — P)M,P, PM,(I — P) € ¢ (L*(S")).

DIMOSTRAZIONE. 1. passo: Sia ¢ = e, con L € Z. Allora
o o +oo
M@Pf =e€r Z f(n)en = Z f(n)enJrL = Z f(n - L)en
n=0 n=0 n=L
L>0= (I—-P)M,P =0.

-1
L<0=({I—-P)M,Pf=> f(n—L)e,eler,ers1,...,6-1).
n=L

= (I - P)M,Pe Z(LX(S") < # (LX(S))).

N
2. passo: Sia ¢y =p= >, aue, un polinomio trigonometrico.
n=—N
N
1. passo = (I — P)M,P = >, a,(I — P)M,, P e F(L*S")).
n=—N

3. passo: Sia ¢ € €(S'). Teorema di Stone-Weierstrass =

. . . . . . .. k—+o
Esiste successione (py) di polinomi trigonometrici con |[pg — ¢l —— 0.
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k—
= (I = P)My, P — (I = PYMyP| = |(I = P)My,_P|| < |px = ¢llcc = 0.
= (I — P)M,P e limite di operatori di rango finito, quindi & compatto.
Teoremi 1.5 € 2.6 = PM,(I — P) = ((I — P)M!P)" = ((I — P)MP)" compatto. m
5.4 Corollario. ¢,¢ € €(S') = T,T; = T, modulo & (H*(S')).
DIMOSTRAZIONE. M, = M, My e Teorema 5.3 =
S = PM,, — PM,PM, = PM,(I — P)M, € 2 (L*S")).
S(H?*(SY)) € H*(S') = T,Ty — Ty = Sluzesry € H (H*(S')). n
5.5 Lemma. Per he R e f e L3(S') definiamo (Sif)(z) := f(x + h). Allora:
i) Sp € L(LA(SY) e Sy € L(H?*(SY)) sono invertibili con (S,)™' = S 4.
ZZ) ShP = PSh (& TShcp = ShT¢S_h.
DiMOSTRAZIONE. Calcoliamo i coefficienti di Fourier di S, f:
o 1 2 ) 1 2 ) ) -
S = 5= | e = o [ e dy = e o),
Seguono i) e S, P = PSy. Inoltre, Sy(f - g) = (Snf) - (Shg) e SpS—, = I implicano
Ms,of = Snp - | = Sule - S-nf) = (SpMyS-p)f.
= MSM& = ShMgosfh = TShcp = PMShga = PS}ZMQDS,}Z = ShPMQDS,h = SthpS,h |

5.6 Teorema. Sia p € € (S'). Allora:

T, € Fred(H*(S")) <= ¢ non ha degli zeri.

DIMOSTRAZIONE. “<": 1 :=1/p e € (Sh).

Corollario 5.4 = T,,Ty, =T,y = 11 = I modulo operatori compatti.
Analogamente: T}, T,, = I modulo operatori compatti.

= T, invertibile modulo operatori compatti.

Teorema 3.9 = T,, Fredholm.

“=”: 1. passo: Supponiamo che ¢ =0 in [xg — 7/N,z¢ + 7/N]| per un N € N.

Definiamo
(pn:S—Qﬂ'n/NSO, n:O,,N_]_
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©n =01in [(zo + 2mn/N) — /N, (zo + 2nn/N) + 1/N] = o - ... on—1 =0 in R.
Corollario 5.4 = T, ---T, =T

N1 vo-.on_1 = 0 modulo operatori compatti.

Lemma 5.5 = T, = S_oxi/NT,Soxk/n Fredholm.
Teorema 3.15 = T, --- T, Fredholm.

PN-1
= T, Ty, € H(H(SY) A Fred(H2(SY)) §

(dato che J# (H) n Fred(H) = & per ogni H con dim H = +0).
2. passo: Supponiamo che esista un xq tale che ¢(xq) = 0.

Possiamo supporre che zy = 0 (altrimenti consideriamo S_,,¥).

0 0<z<1/2%
Sia x}, 2m-periodica con i (z) = < 2kx — 1 12k <z < 1/k.
1 1/k<x<2rm

k—+c0 .
Xkp — @ uniformemente:

max |((10_Xk(;0)($)| = maXx |(1—Xk,)(x)||(10)($)| < max |¢(x)| k—4o0 0.

0<e<2m 0<e<2m 0<z<1/k

o(x) 0<x<1/2k
p(x) = xu(@)p(r) = § 2(1 —ka)p(z) 12k <x<1/k
0 1k <z <27

= max |(p = xxp)(2)] < max [p(x)] 0.

0<z<2m 0<z<1/k

k—
= [ Tyo — To| < X2 — ¢l LimasNy()

Fred(H2(S')) aperto in Z(HX(SY) = 3K Vk=>K: Ty, € Fred#*SY)

(¢ in contraddizione con l'affermazione del primo passo) |

Usermo il seguente risultato senza dimostrazione:

Indice di avvolgimento: Sia ¢ € €(S') senza zeri. Allora esistono un unico numero L € Z e
una 1) € € (S') tale che

[(,0(3:) = 'Lz e¥(@) N xJ

7(¢) := L & detto indice di avvolgimento di ¢. Se ¢ € €(S') vale

5.7 Teorema (Gohberg-Krein). Sia ¢ € €(S') senza zeri. Allora indT,, = —7(¢p).
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DIMOSTRAZIONE. Definiamo ¢, (z) := e%et¥@ 0 <t < 1.

¢ non ha zeri 2 T,, Fredholm.

t— o [0,1] > €(S') continuo.

= t— T, :[0,1] = Z(L*(S")) continuo.

Teorema 5.6, Teorema 3.13, a) = ind T, = indT},, = indT,,, = ind T, .
L>0:Sia f e H2(SY).

T.. f = P(eL Z f(n)en) = f(n — L)e,.
n=0 n=L
= T, iniettivo e im T,, = {f e HXSY) [ f(0)=...= f(L—1) = o}

= codimimT,, = LeindT,, = —L = —7(yp).
L<0:(T,) =Ty=T.,

= indT,, "2 —ind (T,,)* = —indT,_, "£° —(=(=L)) = —L = —7(y). n
5.2 Lo spettro degli operatori di Toeplitz (complemento)

~ I
Nel seguito scriviamo f(n) = 2—[ e f(x)dx, n € Z, per f e L'(S') (si noti che L(S) <
™ Jo

LP(S)se 1 < p<q<+w0).

5.8 Lemma. Sia f € L'(S'). Allora valgono:

~

a) f(n)=0 VneZ= f=0 quasi ovunque.

~ ~

b) f awvalorireali e f(n) =0 Vn>=1= f=f(0) quasi ovunque.

2m
DIMOSTRAZIONE. a) Ipotesi = J p(z) f(x) dz = 0 per tutti i polinomi trigonometrici.
0

27

Stone-Weierstrass Theorem = J o(x)f(z)dr =0 Voe?(Sh
0

= f =0 quasi ovunque (veda Teorema 6.12).

b) Siac=f(0)eg:=f—c
= §n) = Fn) ~ (e.ea)iz =0 Ym0

g a valori reali = g(—n)=g(n) =0 Vn=0.

a) = g = 0 quasi ovunque.
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5.9 Lemma. Siano f,ge L*(S'). Allora fge L*(S') e Z Fln—

k=—00

DIMOSTRAZIONE. Disuguaglianza di Holder = fg € L'(S") con | fg|rist) < || fllzzsn gl 2

2
| fg(n)] <f0 |f(@)llg(@)| do < 27| f| L2sn)llg] L2y
Se s,(f,g) denota la serie, allora

sl o)l < X F =013 < (S 1F0=0E) (X a0F)* = | fluelal e

keZ keZ keZ

Quindi .
(f.9) = T(f,9) := fg(n) — su(f.9) : L*(SH D L*(S") — C

¢ bilineare e continua, cioe esiste C' = 0 con

T(f,9)| < C|fllezeyllglrzey ¥ foge L(SY.

Per p=-e,. e q=-esconr,seZvale

Pg(n) = (€rqsy€n)r2 = Orisn (simbolo di Kronecker),
Q) = Zﬁ(n - k:)(’]\(k) = Z 5n—k,r6k,s = 5n—s,r = 5T+s,n =~ T(p’ q) =0.
keZ keZ

T bilineare = T'(p,q) = 0 se p, ¢ polinomi trigonometrici.

N . N
Siano f,g € L*(S') arbitrari e py := ( Yer, gy = Y, g(k)es
[—

@mefeqwmginP(Sl)
T(f. 9)
= T(f,9) = 0 = fg(n) = sn(f, g) per ogni f, g e L*(S"). n

T continuo = 0 = T'(pn, qn) Mot

5.10 Lemma. Sia {0} + V < L*(S') sottospazio chiuso con M, (V) SV e QOM (V) =
{0}. Allora esiste u € L*(S') tale che

V = M,(H*(SY)) = {uf | f e H*(S")}, lu| =1 quasi ovunque.

DIMOSTRAZIONE. Scriviamo M,, := M, per 'operatore di moltiplicazione per e,. Si noti che
tutti M, sono operatori unitari in L*(S') con M* = M_,, e My, M,, = M, 41,

=V, := M,(V) sottospazio chiuso di L*(S).
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Vale Vi = My(V,) ¥n,V2Vi2Va2...e NV, ={0}

n=1

Sia V =V, ® U, con U, := V= (complementare in V).

Uy # {0} perché altrimenti V =V; equindi V,, =V Vn é
Step 1: Sia u e U; con |ul2 = 1.
=ueVeueV: Vn=1

=ul Mu=e,u Vn=l.
1 2

= 0= (u,eu)p2 = Dy
0

Lemma 5.8.b) = |u|? = cost q.o.

e_pundr = W(n) Vn=l

ullpe =1 = |u| =1 q.o.

Step 2: Mostriamo che U; = span{u}. Sia w € U; con u L w.

V=Viel

o } =V, =Vo1 ® U,y con U,y = M, (Uy) = anﬂ V n (complementare in V,,).
M, unitario

>0= Myul MweMueV:, cV: ¥Ym=2n+1= Mul Myuw Ym>=n=0

Scambiare ruoli di u e w = M,u L M,,u VYn>=m=>=0.
1 2m P

= 0= (Myu, M,w) > = Py en—mudr = uw(m —n) Y m,ne Ny
T Jo

Lemma 5.8.a) = uw = 0 q.0.

lu| =1 q.0. = w=0q.o.

Step 3: U := k>)1 U ®...8U, ¢ uno sottospazio di V.

SiazeVexeU™.
=z2eVnUl=2eVit=1.
=>er1erL:>erii=V2.

Iterazione = x € a V., = {0}

= U = {0} (complementare in V) = V = U.
Step 4: V = U = span{u, ue, uey, . ..} = M,(span{eg, e1, ea,...}) = M, (H%(S')). m

5.11 Teorema (F. e M. Riesz). 0  f € H*(S') = N; := {z € [0,27] | f(z) = 0} ha
MISUTA 2€70.

DIMOSTRAZIONE. V := {g € H*(S') | g|n, = 0} & sottospazio di L*(S') con M, (V) c V e

M, (V) = M., (H*(S")) = span{en, €ni1, €nsa, .- -}
Lemma 5.10 = V = M, (H?*(S")) con |u| = 1 q.o.
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l=eye H*(S') = u= M,(eg) €V = u =0su Ny.

= Ny ha misura zero. ]

5.12 Teorema (Coburn’s Lemma). Sia ¢ € €(S') senza zeri. Allora ker T,, = {0} oppure
ker > = {0}.

DIMOSTRAZIONE. Supponiamo il contrario.
=30+ f,ge H*(S"): T,f =Tsg=0.

= P(pf) = P(pg) = 0

= of(n) =0e @g(—n) =pg(n) =0 Vn>0.

~ Lemma 1 7 =

Gn)=9(=n) =0 ¥n=1""=""(pfgn) =0 ¥n=0.
J?(”)ZO Vn<-—1 @(n)zo Vn<D0.

(@9)f = (of)g = ¢fg(n) =0 VneZ
Lemma 2 = ¢gf = 0.

Lemma 1

Teorema = ¢ = 0 quasi ovunque é (infatti, f,g £ 0 q.0.). [ |

5.13 Teorema. Sia p € €(S'). Allora:

T, invertibile <= T, Fredholm e indT, = 0.

DIMOSTRAZIONE. “=": Ovvio.
“<": Teorema 5.6 =  non ha zeri.
0 = ind 7, = dimker T, — dimker 7.
Teorema 5.12 = dimker T, = 0

Alternativa di Fredholm = T, biiettivo, cioe invertibile. [ |

5.14 Corollario. Sia ¢ € € (S'). Allora:

o(T,) = @(S) U A | T(A — ) + 0}

DIMOSTRAZIONE. Teoremi 5.6, 5.7, 5.13 =

M =T, =Ty invertibile &= A —¢(z)+0 Vzer(p—A)=0
= A¢p(SHYer(p—\) =0.

Quindi: A € 0(T) < X € p(Sh) oppure 7(¢ — ) =+ 0. n
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6 Distribuzioni (funzioni generalizzate)

Di cosa si tratta? Le distribuzioni sono funzionali continui su opportuni
spazi di funzioni. Generalizzano il concetto di funzione, nel senso che qualsiasi
funzione localmente integrabile (in particolare, continua) puo essere identifi-
cata con una distribuzione e che molte operazioni standard sulle funzioni si
estendono alle distribuzioni. Per questo motivo, le distribuzioni sono anche
chiamate funzioni generalizzate. Per alcuni aspetti, le distribuzioni si compor-
tano addirittura meglio delle funzioni. Per esempio, qualsiasi distribuzione puo
essere (parzialmente) derivata tutte le volte che si desidera. Questo rende le
distribuzioni un ambiente molto adatto allo studio delle equazioni alle derivate
parziali.

Nel seguito €2 denota un sottoinsieme aperto di R® con n > 1.

Scriveremo K cc () se K ¢ compatto e K < (.

Ricordiamo che un multi-indice & un vettore o = (aq,...,a,) con o € {0,1,2,...}. Per una
funzione f = f(x) = f(x1,...,z,) di classe €V () si scrive”
« o aq an £ . a‘O('f « : . 9
1 ‘n
con || = |ay|+...+|ay,| < N. Siscrive anche, per x € R™, a € NI multi-indice, 2% := 2{* - - - 2%,

8

dove ¢ sottinteso I'abuso di notazione® 2° = 1 per ogni z € R.

6.1 Le funzioni test

Il supporto di una funzione continua f : R™ — C e l'insieme

[supp f := {w € R" | f(w) % 0}

6.1 Esempio. f(x)=sinz = supp f = R\rZ = R.

6.2 Definizione (Spazio delle funzioni test). Definiamo

2(Q) = {¢p € €°(R") | supp ¢ =< Q}.

2(Q2) ¢ uno spazio vettoriale (con la solita addizione di funzioni e la solita moltiplicazione di
funzioni per numeri complessi). Infatti,

supp (¢ +¢) S suppg usupptp,  supp (A\¢) S suppd (A e C).

"L’ordine di applicazione delle derivate parziali in 0% f non & rilevante, grazie al Teorema di Schwarz, per le
ipotesi f € €V (Q) e |a| < N.
8Cioe, il fattore x; non ¢ presente nel monomio 2% se a; =0, j =1,...,n.
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6.1 Le funzioni test

~

Si noti anche che 2(Q) € 2(Q) = 2(R™) per Q < Q.

: : <1
6.3 Esempio (Mollificatore). p(zx) := {exp (Wz_l) =

0 el = 1.

Con ¢ := J p(x)dz sia p.(z) = %p(g), e > 0.

= 0< p. € Z2(R") con suppp = {z | |z| < &} ef pe(z)dx = 1.

n

‘ 6.4 Lemma. Sia K cc ). Esiste pe 2(Q) con0<p <1 ep=1inun intorno di K.

DIMOSTRAZIONE. Sia K. := {z € R" | dist(z, K) < &}, xc = xx. la funzione caratteristica e

P () 1= (x2e * pe)(¥) = J ; Xz (T — y)pe(y) dy.

Dai risultati della prima parte (Capitolo 2) = ¢. € €*(R").

pe(y) :we K.
0 cx ¢ Ks,

Basta scegliere € > 0 tale che K3. € Q) e prendere ¢ := ¢..

Yl < e = xo:(z —y)p-(y) = {

= ¢. =1su K, e supp ¢. € Ks..

|6l := max |07¢(x)].

zeR, |a]<j

6.5 Definizione. In Z(R") definiamo le norme | - |;, 7 =0,1,2,...

da

i) AIKccQ Vk: suppor S K,

i) | o — o, LmancNy( per ogni j = 0,1,2,. ..

6.6 Definizione. Una successione (¢)r S Z(2) si dice convergente a ¢ € D(2) se

Scriviamo ¢, Linai:N ¢ oppure klim o1 = ¢; st nota che allora anche supp ¢ < K.
— 400

.. S e k—+0o0
Condizione i) significa che 0%¢), ——>

0“¢ uniformemente in R™ per tutte «.

6.7 Lemma. Sia 8€ NI ¢ ¢, 275 ¢, Allora 0%y, 2225 08¢,

DIMOSTRAZIONE. Sia L := || e (¢x) come nella Definizione 6.6. Allora

i) ¢r =0on Q\K = ¢, =0 on QO\K = supp d’¢, < K per ogni k,
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i) 0% — %9, < |k — @1 ———> 0 per ogni j.

Quindi ¢, L2125 84,

6.2 Distribuzioni

6.8 Definizione. Una mappa T : 2(2) — C si dice distribuzione in/su §) se

i) T e lineare.

i) Per ogni successione (¢r)r convergente in Z(Q) vale klim T(¢y) = T(klim gzbk,).
— 400

— 400

Definiamo

2'(Q) ={T : 2(Q) > C | T distribuzions}.

Si nota che 2'(Q2) ¢ uno sottospazio dello spazio vettoriale delle mappe lineari 2(§2) — C.

6.9 Teorema (Disuguaglianza di controllo). Sia T : 2(Q) — C lineare. Le sequenti
affermazioni sono equivalenti:

a) T e 2'(9)
) VKccQ IC=C(K)=0 3j=jK)eN VY *7D, . IT(¢)| < C|é|;

supp ¢S K *

DIMOSTRAZIONE. b) = a): ¢, — ¢ in Z(2) come in Definizione 6.6.

= [T(¢x) = T(9)] = IT (e — &)| < C(K)|x — Sl 50) = 0.

a) = b) : Dato T supponiamo che b) non sia vero per un K cc Q.
= VhkeN 300D o |T(¢x)] > Kl ok

supp ¢ =K *
i i= G/ T(80) = T(0) = e e = 2l < 1

k=j k ..
= [xl; < Jwrle < § =20 per ogni j.

= Y, —> 0in @(Q), maT(%Uk) =140 é

6.10 Definizione. T € 2'(Q) si chiama distribuzione di ordine finito se in b) del Teorema

6.9 si puo scegliere un j simultaneamente per tutti i+ K << . Il j piu piccolo possibile é
detto ordine di T'.

6.11 Esempio (Distribuzioni regolari). Sia f € Ll (), cioé

loc

f |f(z)]dx < +o0 VK ccQ
K



46 6.2 Distribuzioni

(f si dice localmente integrabile in/su ). Definiamo

T2 20 = €. 1300) = [ fw)oto) i

Tf e una distribuzione di ordine 0 :
T(6)] < f @) llo() de = f (@) lo(x)] do
Q K

zeR™

< maxlo(o)] - | |f@)lde = Culolo V570

T} e detta distribuzione regolare, f e la densita di T.

6.12 Teorema. Sia f localmente integrabile in 2. Allora
Tr(p) =0 VoeP(Q) < f=0 quasi ovunque in .

In particolare, la densita di una distribuzione regolare é determinata unicamente (quasi
ovunque).

DIMOSTRAZIONE. L’implicazione“<" ¢ immediata. Dimostriamo l'implicazione “=".
Passo I. Sia Q =R" e f € L'(R").
Dai risultati della prima parte (Capitolo 2): f * p. <= f in L!(R").

(f » p) (&) = j FW)pe(z —y) dy = Ty(pe(z — ) =0 Yz

= f=01in L}Y(R") = f = 0 quasi ovunque.

Passo II. Sia K cc Q arbitrario e ) € 2(2) con ¢ =1 su K.

Y f e LY(R") (identificando 1 f con la sua estensione a 0 da  a tutto R™)
Tys(d) =Ti(p9) =0 ¥V pe 2(R")

Passo I = f = 0 quasi ovunque in K.

K, :={z e Q|dist(z, R"\Q) > L, |z| <n}

= K,ccQeQ=u,K,

f = 0 quasi ovunque in K, per ogni n = f = 0 quasi ovunque in €2

(si utilizzi che I'unione numerabile di insiemi di misura nulla & un insieme di misura nulla). =

6.13 Esempio (Distribuzione §, distribuzione di Dirac). Definiamo

[0: 2(R") > C: ¢ 6(¢) = (0).]
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Allora 6 € 2'(R™) di ordine 0 :

0(0) = 6(0)] < max|o(z)] = [olo Vo e 2(R").

zeR™

Analogamente, la distribuzione 0 centrata in xo € R™ é

Oz : Q(Rn) —C, by ((b) = (25(1'0)

0 non é una distribuzione regolare:
Supponiamo 6 = Ty. Sia p € Z(R"™) come nell’Esempio 6.3.
= ¢r(z) = p(kx) € Z(R") e

1= 6(0) = 6(6x) = Ty(dy) = j F (@) du() dz 22 0,

B1(0)

grazie al Teorema della convergenza dominata. é

6.14 Esempio (Valor principale di 1/z). z — 1/x non appartiene a Li_(R), quindi non
definisce una distribuzione regolare su R. Comunque

T(¢) = lim )

e—0+ R\[—s,e] e

1 1
definisce T € P'(R), detta valor principale di 1/x. Si scrive anche pv-— o vp—. Infatti:
x x

Taylor = ¢(x) = ¢(0) + ary(x) con ry € €°(R). Allora

T()zJ[ @d:ﬁ—l—lim @dm

R\[-1,1] T 0t Jl1a\[—ee] T

= JR w(z)p(x) de + Jl ro(z) de =: T, (¢) + S(¢)

perché 8 1
f[_l,q\[_m] @ dr — ¢(0)<L idx + J édm) _0,
e dove
: <
) = {(1’ )
Inoltre,

1
@l = || ¢l <maxlge)l <l Voe @),

Quindi T =T, + S ¢ una distribuzione di ordine 1.
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6.15 Definizione. Una successione (Ty), = 2'(Q) si dice convergente a T € 2'(Q) se

Ti(9) =25 T(¢) Y oe 2().

k——+0o0

6.16 Esempio. Con il mollificatore di Esempio 6.3 vale T, , —— 0 :
| pl/k | = ‘f Pl/k di’? - ‘ = ‘J p1/k; (b(O)) dx‘
k—
< max |¢(z) — ¢mﬂ—iﬁ
zeR
2| <1/k

6.3 Prodotto di distribuzioni e funzioni di classe ¥~

Siano f € L,.(Q) e a € €*(Q). Allora Ty e T, sono distribuzioni regulari e

7,(0) = | a@)f(@yote) de = Ty(a0)

Si osserva che nell’espressione a destra possiamo sostituire 7 con una distribuzione generale
T'. Cio suggerisce la definizione successiva.

6.17 Teorema (e Definizione). Siano a € €*(Q) e T € 2'(Q). Allora

(@T)(¢) =T(a¢), o€ 2(V),

definisce una distribuzione aT € 2'(2).

6.4 Derivazione di distribuzioni

Sia f € €'(R). Allora Ty, Ty sono distribuzioni regolari. E naturale definire la prima derivata
di Tf come Tp. Per un qualsiasi ¢ € Z(R) vale

+00

0= [ e = s [ @) de = 10

- —0

=%
=0

Mentre T (¢) ha senso solo se f & differenziabile, I’espressione —T’(¢’) ha senso per una qualsiasi

funzione f e, di pit, possiamo sostituire 7 con una qualsiasi distribuzione T". Questo ci porta

a definire 7" € Z(R) con T'(¢) = —T'(¢').

6.18 Teorema (e definizione). Sia T' € Z'(R) e k € N. Allora

T®(¢) == (-1)*T(¢®)) Ve 2(R)
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definisce una distribuzione T™®) = ;;—kkT € Z'(R) (la k-esima derivata di T).

DIMOSTRAZIONE. Ovviamente T™) : 2(R) — C lineare.
Sia ¢y 125 4.
Lemma 6.7 = ¢ 252, k)
{—
= (DT (97) =5 ()T (). .
Se f € €*(R), allora (Ty)® = Ty, cioe si ottiene la derivata usuale. Se f e una funzione non

necessariamente derivabile, (7)) si dice k-esima derivata debole oppure k-esima derivata nel
senso delle distribuzioni di f. In generale, la derivata debole non ¢ una di-stribuzione regolare.

6.19 Teorema. Sia f una funzione di forma

fla) = {i((‘z)) z Z iz . ge € ([z0,+0)), he B ((—o0,x0])

(come f ¢ definita in xo non importa). Allora

Ty = Ty + (3(0) — ) f@%={i$;§zzzi

Si nota che g(xg) — h(xg) = f(zo+) — f(xo—) & Ualtezza del salto di f in x.

DIMOSTRAZIONE. Per ogni ¢ € Z(R)

0o

1) = ~Ti(e) = - |

—0

M@d@ﬂw—f o) (2) i

zo

= —h@o| "+ [ e - @@ [ gt e
= (9(z0) — h(w0)) (o) + _:O f(@)p(x) dz = (g(z0) — M(20))dse(d) + T ().
Questo finisce la dimostrazione. [ ]

I1 teorema precedente si generalizza a funzioni con piu di un salto:

1—22 —1l<z<1
o v . Derivare T}:

6.20 Esempio. Sia f(z) =|2* —1| =
-1 :z]>1

Prima derivata: (Ty) = T, f(z) =

—2r —l<zxz<l1
20 x| >1
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-2 —l<x<l
2 x| >1
Terza derivata: (Ty)" = (Typn)' + 467 — 40" = 461 — 40_1 + 48] + 40",

Seconda derivata: (T¢)" = (Tp)' = Tpr + 461 + 40_1, f(x) = {

Un operatore a coefficienti costanti di secondo ordine

d
P=a—+b—+c (a,b,ce@)’

si puo pensar come operatore lineare nell’ambito delle distribuzioni:

P72 (R)— Z'(R), PT =al"+bI" +T|

Le soluzioni dell’equazione omogenea a1” + bT" + ¢T" = 0 sono le ben note soluzioni classiche
y € €*°(R), cioe le distribuzioni regolari T}, con ay”+by'+cy = 0 (non ci sono soluzioni aggiuntive
in 2'(R) — per le equazioni a derivate parziali invece alle soluzioni classiche si aggiungono nuovo
soluzioni distribuzionali). Dimostriamo questo fatto per equazioni di primo ordine:

Teorema. Siano [ = (o, 8), f€ € (I) e T € P'(I) con T" + bT = Ty. Allora Iy € €*(I)
tale che y'(z) + by(z) = f(z)in [ e T =1T,.

B
DIMOSTRAZIONE. Passo I. Sia 77 = 0. Sia S = Ty € Z'(I), cioe S(¢) = J o(x) d.
e P(I)e S() =0 implica T(¢) = 0:
U(z) = Jxl/z(t) dt € Z(I) e quindi T'(¢) = T(V') = =T"(¥) = 0.

Scegliamo un ¢ € Z(I) con S(¢g) = 1.
S(¢ = S(9)do) = S(¢) — S(¢)S(do) =0 ¥ d € A(I)

0= T(6— S(@)do) = T(6) — SO)T(do) Ve (1)
B8
~ T(9) = f T(¢o)d(a)dr ¥ b e D(1)

«

= T =T, con ¢ = T(¢y).

Passo II. Esercizio 6.2 = (e"T) = be" T + " T" = " (T" + bT) = " T = Tpuy.

Sia g € €1(I) con ¢’ = e f.

= (T = T,) = Tos — Ty = 0

Passol=3ceC: T -T,=T. =T = e*be(g%) = To-va(grc)

Basta scegliere y(z) = e **(g(x) + ¢). n

Si dice equazione impulsiva un’equazione non-omogenea del tipo

(aT" +bT" +cT =S, SeP'(R),
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con S una distribuzione non regolare. Tutte le soluzioni sono della forma 7" = T}, + f, dove y e
la generica soluzione dell’omogenea, e T' ¢ una soluzione particolare di PT = S.

6.21 Definizione. Ogni soluzione dell’equazione PT = ¢§ é detta soluzione fondamentale
per 'operatore P.

6.22 Teorema. Sia P come sopra con a + 0. Sia xg € R e y la soluzione classica
dell’equazione Py = 0 con y(xo) =0 e y/'(xo) = 1/a. Se

@) = {O Cx < Xy

y(x) x> x

allora PTy = dg,. In cazo xo = 0 si ottiene una soluzione fondamentale per P.

DIMOSTRAZIONE. Si applica il Teorema 6.19 due volte:

Tf =Ty +(0—0)5 =Ty, dove f'(z) = {0 =T
y'(z) x>
" ! / 1 " 0 rr <0
(Tf) = (Tf/) = Tfﬂ + (y ({L‘()) — 0)5 = Tf// + 551»‘07 dove f ({L‘) = ” .
y'(x) x>0

= a(Tf)” + b(Tf), + CTf = Taf”+bf’+cf + a%éxo.

0 T < T

=0 = PTf =y, u
ay” + by (x) + cy(x) x> x9 ! 0

(af” +bf" +cf)(x) = {

6.23 Esempio. Cerchiamo una soluzione fondamentale di Py = y" —y' —2y. Allora a = b =1,
c=—2exg= 0. Polinomio caratteristico:

pN) =X -A—-2=A+1)(\-2).

Quindi
y'—y =2y =0 < y(z) = Ae " + Be**, A,BeC.

Determinare A e B :

0)=0 A+B=0
y(0)=0 = A+ ’ }<=>A=—1/3,B=1/3.

y(0)=1 < —-A+2B=1

0 <0

Risulta la soluzione fondamentale Ty con f(x) = { = 20) 0
—z(e " —e*) x>
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6.24 Esempio. Cerchiamo una soluzione di Py = y" — 4y’ + 4y = 63. Allora a = 1, b = —4,
c=4 e xg=2. Polinomio caratteristico:

p(N) =N —4X +4 = (\—2)%

Quindi
y'— 4y +4y =0 < y(r) = Ae* + Bxe**, A,BeC.

Determinare A e B :

2) =0 < Ae' +2Be' =0,
Z{() 64 ‘ A = A=-2"* B=c"
y'(2) =1 < 2Ae" +5Be" =1
0 rw <2

Risulta la soluzione y =Ty con f(z) = {( 2) 2(a—2) 9
T — 2)e*\* x> 2

6.5 Distribuzioni ed equazioni a derivate parziali

Sia T'e 2'(R"™) e o multi-indice. Analogamente alla Definizione 6.18,

T(9) = ()" T(@9)  Voe IR,

m

definisce la distribuzione 0*T € Z'(R"). Quindi un operatore differenziale P = > a,0%, con
=0
aq € €°(R"), |a| < m, definisce un’applicazione lineare

P:92'R") — 2'(R"): T — PT = i ao (0°T).

la|=0

Consideriamo adesso degli operatori a coefficienti costanti, cioe tutti gli a, sono numeri comp-
lessi, |a] < m.

6.25 Esempio. Conm =2 e a, = risulta

0 :altriment:

{1 s € {2eq,...,2¢e,}

n

P = 0% 02 = +...+ 02 =A,
k=1

1l cosidetto operatore di Laplace oppure Laplaciano.

k=1

6.26 Definizione. Le soluzioni dell’equazione PT = § sono dette soluzioni fondamental
per ['operatore P.
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Se fe Ll (R") e p € Z(R"), allora

loc

(f*o)(x) = Rnf(y)cb(:r—y) dy =Ti(p(x —+)), xeR"

Questa relazione ci porta alla seguente definizione della convoluzione:

6.27 Teorema (e Definizione). Siano T € Z'(R™) e ¢ € Z(R"™).

(T = ¢)(x) :=T(p(x — ), reR",
definisce una funzione T = ¢ € €°(R"™). Per ogni a vale 0%(T * ¢p) = (0°T) = = T = (0“¢).

DIMOSTRAZIONE. Sia u(z) = (T * ¢)(x).
Continuita: Sia zy € R" fissato.
u(wo + h) — u(we) = T(¢(wg + h —-) — ¢(zo — -)) per ogni h € R™.

1
Taylor = r,(y) == ¢(xo+ h —y) — d(xo —y) =h - f Vo(xg +th —y)dt
0
Ovviamente 7, € €*(R") per ogni h. Verificheremo:

i) 3K cc R v"}jﬂi’{: suppr, € K,

.. h—0 . . .
ii) 0“r, — 0 uniformemente in R" per ogni o € Nj.

Per i) si nota che 3 N > 0 tale che supp ¢ = By(0) e

r(y) #0=>30<t<1: Vo(xg+th—y)+0
= x9+th—yesuppo
=dJzesuppop: y=x0+th—=z2
= |y —xo| < 2|+ th| < N+ 1
=y € Bn11(20)

= suppr, € K := Byi1(x).
Per ii) si nota: [0,r,(y)| < |h] m%x|vaa¢(z)| < const - |h.
zeR™
i), ii) = r, 22% 0 in 2(R)
= u(zg + h) — u(xe) = T(ry) 2200
Derivabilita parziale: Si procede in modo simile, scrivendo
u(zo + 7e;) — u(zo)
T

— (T'% 0;0)(w0) = T(r)

TT(y) — ¢(IL‘0 + 7€ — y) - ¢(3U0 - y) . (5j¢)($0 — y) = TJ (1 - t)(5?¢)(x0 +iTe; — y) dt.

0
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Risulta 7, == 0 in 2(R") e quindi T(r,) 7=> 0, ciod
dju(xo) = (T = 0;¢)(x0) = T((9;¢)(x0 — -))
= —T(0[p(z0 —)I) = (O,T)(d(x0 — -)) = ((&;T) * $)(o).
Come sopra: d;u ¢ continua.

L’iterazione di questo procedimento dimostra I’enunciato. [ ]

6.28 Esempio. Vale § = ¢ = ¢ perché
(0+0)(x) =0(d(x —+)) = ¢(x — 0) = ¢(x),  xeR"

Se T' & una soluzione fondamentale dell’operatore differenziale a coefficienti costanti P e u :=
T = ¢, si trova

Pu=(PT)s+¢=08+¢=0¢

(la prima identita vale perché P ha coefficienti costanti). Quindi 7" * ¢ fornisce una soluzione
dell’equazione a derivate parziali Pu = ¢.

6.29 Teorema (Malgrange-Ehrenpreis). Ogni operatore differenziale P % 0 a coefficienti
costanti ha una soluzione fondamentale.

6.30 Teorema. Il Laplaciano A in R? ha soluzione fondamentale Ty con f(z) =

1
o In |z|. Quindi una soluzione di Au = ¢ é
m

ua) = T+ 9@ = | )o@ =) dy= 3= | o) inle—yldy

DIMOSTRAZIONE. Ricordiamo la formula di Gauss-Green nel piano:

f diVFdxzj F -nds, (6.1)
U ou

dove U < R? appropriato, F = (Fi,Fy) campo vettoriale in due variabli di classe ¢! in un
intorno di U e n : 60U — R? il versore normale esterno ad U.

Formule di Green: Siano u, v funzioni di classe 4 in un intorno di U.

(1) J Au = Dyuds (dove Dyu = Vu - n derivata in direzione n),
U U

(2) J (uAv + Vu - Vo) = f uDyv ds,
U ou

(3) JU(UAU —vAu) = JaU(anv — vDyu) ds.
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Per la (1), applicare (6.1) a F = Vu; per la (2), applicare (6.1) a F = uVv. Sia (2') ottenuta
dallo scambio di u e v nella (2). La differenza membro a membro (2) — (2’) prova la (3).

Sia ¢ € Z2(R?). Siha quindi 3R >0: supp¢ € U :={z||z| < R}.

- = i) — —xfe x| =¢
Ui fa e < fol < B} <>—{I/R S
(AT)(6) = TH(A0) = | F@)Aole) de = lim | (@) A0(2) do. dato che f € L}, (B2)

Perché 27V f(x) = x/|z)* e Af = 0 in R*\{0} (Esercizio!), dalla (3) segue

 Fa)Aoa)da - f [ (2)Ad(x) — p(a)Af(x)] de

€

- | 1@Duota) ~ () Das (@] ds

1
-5 ‘x|=€[¢(x) —IneVe(x) - z] ds.

Si ha:

5z | o@ds = o) < 5 [ Jola) - 6(0)ds < max|o(e) — 6(0)] =0

2me |z|=¢ h 2me |z|=¢ = |x| =€ ’

1 1

P L=e IneVo(a) - wds| < 5 LS ZCER
= elnel L|E Vo) ds =% 0]V (0)] = 0.

Ne segue (ATy)(¢) = ¢(0) = 6(¢), come affermato. n

6.6 Il supporto delle distribuzioni

Siano S, T € 2'(Q2) e U < Q aperto. Si dice

(S=TinU: S(¢)=T(¢) Yoe2(U).

6.31 Lemma. Sia T € 2'(Q) e Qp := v U, cioeé
() aperto,
T=0in U

[QT ={zeQ|3IU < Q intorno aperto di x t.c. T =0 in U}]

Allora T = 0 in Qp. Quindi Qp €& il pit grande sottoinsieme aperto di 2 dove T = 0.

DIMOSTRAZIONE. Sia ¢ € 2(Qr) e K := supp ¢.



56 6.7 Distribuzioni a supporto compatto (complemento)

K compatto = 3U;,...,Un: T=0inU;, KcUu...uUyx
Esistono K; cc Uj tale che K < K u ... u Ky:

zeK=3e>0 J1<j<N: B.(z)cU;

K compatto = Una famiglia finita di questi B.(z;) fornisce un ricoprimento di K.

K := unione finita di B.(z) del ricoprimento contenuti in Uj.
Lemma 6.4 = 3¢, € 2(U;): 0<; <1, ¢; =1 in un intorno di K;.
Or =g, O = @l —hr) - (L =) per k=2,... N

= or € D(Uk) e ¢ — é}l O = o1 — 1) - ...+ (1 —1y) (induzione!)

E:N:>¢—]ZV]¢,€=0:>T(¢):%T(d)k):(). u

k=1 k=1

6.32 Definizione. Sia T € 2'(Q). Il supporto di T ¢ linsieme supp T := Q\ Q7.

6.33 Esempio. suppd = {0} :
pe Z2R"{0}) = ¢(0) =0 = 6(p) =0 = 0 =0 su R"\{0} = R"\{0} < Qs
d non é zero su tutto R™ = Q5 = R"\{0} = suppd = R™\5 = {0}.

6.34 Esempio. Sia Ty € 2'(Q) una distribuzione regolare. Allora Q\supp Ty ¢ il piu grande
sottoinsieme aperto di § su quale f =0 quasi ovunque.

6.7 Distribuzioni a supporto compatto (complemento)

SiaT e 2'(Q) con K :=suppT cc . Se ) € () & una qualsiasi funzione test con ¢ =1 in
un intorno aperto di K,

T(¢) =TWo)+T((1=v)p) =T(d) Ve ()

visto che (1 —¢)p e Z(MNsuppT') e T =0 in Q\supp 7. Osserviamo che 'espressione a destra
ha senso non solo per ¢ € 2(£2) ma per un qualsiasi ¢ € €*°(2)! Si puo definire su €*(Q)
una metrica tale che una successione (¢p)r < €*(2) converge a ¢ € €*(Q) se e solo se

0% x. LmasN 0%¢ uniformemente su ogni K cc ) per ogni multi-indice «. Vale poi il seguente:

6.35 Teorema. Sia T € 2'(Q) a supporto compatto in Q2. Allora esiste un’unica mappa
lineare e continua T' : €*(§2) — C tale che

a) T(¢) = T() per tutti p € D(Q),

b) T(¢) = 0 per tutti ¢ € €*(Q) con ¢ =0 in un intorno aperto di supp T
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Si identifica T' con la sua estensione e scrive ancora 1" al posto di 7.

6.36 Definizione. Con &'(€)) si denota lo sottospazio di 2'(Q) delle distribuzioni a
supporto compatto in 2.

Se T' € &'(R") ha senso definire T = ¢ con ¢ € €*(R"™) tramite
(T = ¢)(x) = T(p(x — ), reR"

Si puo dimostrare che 7"« ¢ € €*(R").

6.37 Lemma. Sia T € &'(R") e p € Z(R"). Allora T » ¢ € Z(R™).

DIMOSTRAZIONE. Esiste r > 0 tale che supp ¢ < B,(0).

= supp ¢(z — -) < B,(x).

supp? compatto =3I M =0 V ‘ig% . B.(z)nsuppT = .

= supp ¢p(z —-) < R™\supp T ¥ 3Ly = (T * ¢)(z) = 0 per tutti = con |z| = M. n

6.38 Teorema. Siano S,T € P'(R") e almeno una dei due abbia supporto compatto.
Allora esiste un’unica distribuzione R € 2'(R™) tale che

R+¢p=S5=(T=¢) Ve 2R,

Scriviamo R =S +T. Vale R=T = S.

E facile vedere che 0+ 7' =T« 0 = T per ogni T € Z'(R™).

La convoluzione di distribuzioni induce mappe bilineari (e continue)
72'R") = &'(R") - Z'(R"), &'R")=2'(R") - Z2'(R"), &' R") =& (RY) — E'(RY).
La covoluzione ¢ commutativa e
(T} = Tp) « T3 =Ty = (Ty = T5)

se almeno due delle distribuzioni 7; hanno supporto compatto (associativita). Inoltre,

(0°(S+T) = (0°S) «T = S+ (6°T), aeNy.

6.39 Teorema. Sia P £ 0 un operatore differenziale a coefficienti costanti e sia E una
sua soluzione fondamentale. Allora T := E +S con S € &' (R™) ¢ soluzione dell’equazione

PT =S5.
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6.8 Esercizi

Esercizio 6.1. f(z) = In|z| appartiene a L} (R). Dimostrare che (Ty)' = pv-2.
Esercizio 6.2. Siano a € €°(R) e T € Z'(R). Definiamo aT : Z'(R) — C tramite

(@T)(¢) =T(adp), ¢ Z(R).
a) Dimostrare che aT € Z'(R).
b) Dimostrare che (aT) =d' T +aT’.
Esercizio 6.3. Sia P = b% +cconb 0. SiaxgeR ey la soluzione dell’equazione by’ +cy = 0

con y(xg) = 1/b e f(x) := {

0 v <uw
*. Dimostrare che PT 't = 0gq-
y(x) x> x

Esercizio 6.4. Risolvere le sequenti equazioni impulsive:

a) T"+T =46 by T'—T' =46 ¢) T"—2T"+2T =6
d T'+T —-2T =6 e) T'—T=66+0 f) TM+T=06+6
g) T'—T =0 h T'+T =4¢ i) T+ 9T = ¢

Esercizio 6.5. Sia (T})x < 2'(Q) tale che Ty 2225 T € 9'(Q) e o un multiindice. Dimostrare
che 0%T, Limas:NPLY
Esercizio 6.6. Siano S,T € 2'(Q) e a € C. Dimostrare che
(S+T)(¢) :=5)+T(¢),  (aT)(¢):=aT(¢),  ¢e€Z(V),
definiscono distribuzioni S +T e oT in 2'(Q). Ovvero, P'(Y) é uno spazio vettoriale.

Esercizio 6.7. Sia v una curva regolare in R™. Supponiamo che v abbia una parametrizzazione
r tale che r~Y(K) & compatto per ogni K c< R™. Dimostrare che

0= | oe)ds,  geP®),
definisce una distribuzione 6, € Z'(R").
Esercizio 6.8. Sia u: R? —» R definita da

1 sexy >0,
u(xbe) - 0 sex; <0
1 .

Determinare 61T, e 05T,

Esercizio 6.9. Trovare una mappa lineare T — T : Z'(R) — 2'(R) tale che T = T per ogni
distribuzione regolare Ty (qui f ¢l complesso coniugato della funzione f).

Esercizio 6.10. Sia g(z) = ¢* e R. = (0, +0). Trovare un’applicazione lineare
T—Tog: 2(Ry) > 2'(R)

tale che Ty o g = Tyoq per ogni distribuzione regolare Ty € 7' (Ry).

Suggerimento: Scrivere Ty.4(¢) nella forma Ty(A(¢p)) con un’operatore opportuno A.
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7 La trasformata di Fourier

Di cosa si tratta? La trasformata di Fourier e una trasformata integrale
che trova numerose applicazioni nella fisica, nell’ingegneria e nella matema-
tica. In particolare, ¢ di importanza fondamentale nell’analisi di equazione a
derivate parziali e nella teoria dei segnali. Discutiamo la trasformata di Fourier
nell’ambito delle funzioni di classe L' e L2

La trasformata di Fourier f di f € L*(R") ¢ la funzione f : R" — C definita da

~

©=n | e gern

(7.1)

dove 2€ =z - & = 216 + ... + 2,&,. Osserviamo che |e *¢| = 1, quindi la funzione integranda
appartiene a L'(R") per ogni &.

7.1 La trasformata di Fourier in L'(R")

7.1 Lemma. Sia f € L'(R™). Allora:

i) feCR") A LR e | fllr@n < 2m) ") f |11y
In particolare: f— f : LY(R™) — L®(R") ¢ lineare e limitato.

i) f(ﬁ) =, (Lemma di Riemann-Lebesgue)

DIMOSTRAZIONE. i) Basta osservare che

™ f(2) < |f(2)| e L'(R}) ¥V EeR™

La continuita segue dal teorema della convergenza dominata.

ii) Impiegheremo il Lemma seguente.

Lemma. g € C°(R™) = (1 + [£[Y)g(¢) € L®(R™) per ogni N € N.
In particolare: g € LP(R™) per ogni p € [1, +0].

DIMOSTRAZIONE. Sia prima n = 1. Integrazione per parti =

91 <| [ (e )otards] = | [ e ] < 1

= (L+EM)gE)] < Cn = gl + 19%]1r e
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+o R +o0 1
JOO 9(&)IP ds < C} Jw Wd& < 4wse N > 1/p.

Nel caso n > 1 si procede similmente, utilizzando®

EPY =G+ + )N = ) aant”

|a|=2N
con opportune costanti a.n €
€79 < 0%l

Inoltre, (1 + [¢[*N)~" € L'(Rg) se N > n/2p. m
Sia dato € > 0.
Dai risultati della prima parte (Capitolo 2) = 3 ge CP(R") :  |f —g| <e/2
i) = [f(©) -G <e/2 VEeR”
Lemma=3R>0 V[|{>R: |[g(¢|< 1+\§| <g/2
= [J@I <1/ -3+ <= VI =R u

7.2 Lemma. Sia f(z) = e 1"*2. Allora f = f.

DiMOSTRAZIONE. Consideriamo il caso n = 1. f e soluzione del problema di Cauchy
y'(z) =—ay(x),  y(0)=1

Anche f & una soluzione:

Fo-—| 2 Ty

- [ e =i [T e

1 (™

i [ () ey = ff e f(0) dr = —£](6).

Y N
fQ mJ «/ﬁﬁ 1.

~

Unicita della soluzione = f = f.

Il caso n > 1 segue facilmente (cfr. Esercizio 7.3). n

9Pil1 precisamente, si pud dimostrare, procedendo per induzione su N € Ny,

N!
(m1+...+xn)N= Z Jmo" x=(x1,...,2,) €ER",

ja|=N

dove si definisce a! = (a1!)--- (o)) e % = a7t - - - 22 conac =lseq; =0,j=1,...,n.
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7.3 Teorema (Formula di inversione). Sia f € L'(R") tale che f € L'(R"). Allora

flz) = (QW)H/QJ ei‘”ff(f) d¢  quasi ovunque in R".

n

DIMOSTRAZIONE. Il secondo membro della formula definisce la funzione u : R® — C.
Siano g, h € L'(R"). Esercizio 7.5.b) e 7.4.b) = Per x € R™ arbitrario,
f gORE)e™ de = | (e™gV (Oh(€)de = | GE—n)h(€)de = | G(—y)hx—y)dy. (+)
n Rn R Rn
Poniamo adesso G(z) 1= (21) "2 772 ¢ G.(z) 1= e "G (%), £ > 0.
= |Gellzr = 1, |G(e)| = = G(0) = (2m) ™ e

G.(€) = G.(—€) = e "G(~¢/e) Z e G (—¢/e)
= 87”(27r)*"/2 J

G () de V2 (2m) 2 f YEG (ey) dy = G(e)(=).

n n

Quindi
G N = | G- de= | GEN-Ofw-0)de ™ | Gleo)f(e)erde
Seguono:
(1) (Gex @) = u(x) VaeR" (G(0) = (2m) /2 ¢ convergenza dominata),

(2) Go+ f =% fin LY(R™).

La (2) sarebbe un risultato della prima parte del corso (Teorema 2 in Capitolo 2) se G, fosse un
mollificatore. G, ha tutte le proprieta di un mollificatore, salvo il fatto che supp G, non e con-
tenuto nella palla di raggio ¢ centrato nell’origine. Comunque, utlizzando il forte decadimento
di  — exp(—|z|*/2), si pud dimostrare che la (2) vale lo stesso (riportiamo la dimostrazione in
seguito, ma la escludiamo dallo programma d’esame).

(2)=3e,—>0: G.=*f LEALN f puntualmente quasi ovunque in R".

(1) = f = u quasi ovunque in R". ]

Lemma Vale la (2) nelle dimostrazione del Teorema 7.3.

DIMOSTRAZIONE. Lemma 6.4 = 3¢ Z(R"): 0<¢ <1, ¢(x)=1 V|z| <1
pi(@) = O(x/k)G(2), pre(x) = e " pi(x/e)

k——+00

= pr € 65" (R"), 0 < pp < G, |px — Gl —— 0,

k
ek = ol = lorelr < 1, 6 =51,
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per ogni k, {prc/cr}e=0 ¢ una famiglia di mollificatori
(dai risultati della prima parte (Capitolo 2)).

Siano f € L'(R") e 6 > 0 arbitrario.
|Gew f = Flr <1(Ge = pre) = fllr + llpwe = f = euflor + et = flor

k—+400

I(Ge = pre) = flr <MGe = prelo [l = 1G = pil 2 f e ——0,

lewf = flzr = (1= ) [ flo =50

=3IN=N(©) Ve>0: |[(Ge—pne)* flor+lenf— fllo < /2.

Dai risultati della prima parte del corso (Capitolo 2):

lone = f—=enflo = enlgone « f— fluw =% 0.

Concludiamo quindi: 3y = €9(0) >0 Vee (0,e0): |pnexf—cenflo <6/2.

=Vd>0 Jeg9>0 Vee(0,6): |[Gexf— fln <0. n

7.4 Corollario. Siano f,g€ L'(R") e fz g. Allora f = g quasi ovunque.

DIMOSTRAZIONE. h:=f—g=he L' (R") eh=f—§=0¢e L' (R").

Teorema 7.3 = h = 0 quasi ovunque. [ |

La trasformata di Fourier inversa di f € L'(R"™) ¢ la funzione f: R™ — C con

[ﬂo:) —en [ = fm,  eem

(7.2)
Il Teorema 7.3 implica che
f, fe L'R") = fz (f)vz f quasi ovunque.
Analogamente
f. fe L'R") = f= (f)Az f quasi ovunque.
In particolare (cfr. il Lemma nella dimostrazione 7.1),
FECOR) = f=f=Ff suR™ (7.3)

7.2 La trasformata di Fourier in L*(R")

7.5 Lemma (Parseval-Plancherel formula). Siano f,g€ L*(R™) n L*(R").
Allora f € L*(R), [ flz2 = [ flz2. e (f,9)r2 = (£ 9)r2-
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~

DIMOSTRAZIONE. Passo I. Siano f, g € C(R"). Esercizio 7.5.b) e g = § =
D = | P i - [ 1@ € ae ™ [ rea@d - (f.9)n

Passo II. Sia xj := X{zern||«|<k} (funzione caratteristica).
_ {ka%meleLQ

(Xkf) * p- € CF(R™) € (xif) * po == xif in L' e L?
=3 (fi) CCPR"Y): f =5 fin L e L2
Passo I = || fu — fulloe = | fu — fello2

= (f),) successione di Cauchy in L?
=3Fel’: f["7%Finl?
(nota: una sottosuccessione di (fy) converge a F' puntualmente quasi ovunque)
-~ N k—+
Lemma 7.1 = | fu — flp= < |fs = flor ——> 0
(cio¢ fr converge a f uniformemente in R”, quindi anche puntualmente)

n " k " k
= f=Fel?e|flp=|Flpr < |fule "2 | fule S5 0fe

Passo III. Sia (f;) come prima e (gz) < C°(R™) con gy ot gin Lt e L2,

k—+ Passo I k—+

(f 9)L2 = (fk,gk)L2 = (fk,gk)m = (f 9)L2 u

7.6 Teorema (di Plancherel). FEsiste un'unica F € £ (L*(R")) con le sequente proprieta:

a) F ¢invertibile, F =" (cio¢, coincide con la trasformata di Fourier (7.1)) e # 1
(cioé, coincide con la trasformata di Fourier inversa (7.2)) in L*(R™) n L*(R").

b) F ¢é un operatore unitario, cioe

(yf, ,g:g)LQ(Rn,) = (f/ g)LQ(Rn) Y f, g e L2 (Rn)

DIMOSTRAZIONE. fe L2 =3 (fi)c L' A L*: f, 2252 fin L2

(per esempio, fr = fxx con yy la funzione caratteristica di {x € R" | |z| < k}).
Esistenza. Sia f € L? e (f;,) come detto.

Lemma 7.5 = (f;,) successione di Cauchy in L2.

Definiamo .# f := lim fk in L2

k—+00

Z & ben definita. Sia (h;) € L' n L? una qualsiasi altra successione tale che hy, LEan:N fin
L?, analoga a (f}). Troviamo

| Zf = hillz < |Zf = Fuloe + | Fe — Palliz " T2\ FF = Flloe + 1 fx — hale 222 0.
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Esercizi

Nota bene: per f € L' n L? si puo scegliere f}, :== f = Ff = ]?
Continuita e iniettivita. | f]r2 <= | fulze "2 " || full 2 2252 | £ 12
= | flr2 = || flr2 = & iniettiva e |F|| ¢ 2) = 1.
Suriettivita. Siano g€ L2 e (g;) © CP(R") con gy -5 ¢ in L2
Lemma nella dimostrazione del Lemma 7.1 e (7.3) =
fr=Ok=Gu(—)e L' n L2 e fr = g == g in L?
Lemma 7.5 = | fi = fil 2 = |fi = feluz = lge — g1z
= (f,) successione di Cauchy in L2 = 3 fe L?: f, 2=%% fin L2
= Ff =limy o0 fr = Mg 0 gk = g
Inversa. Teorema 0.1 = %! € Z(L?).
Siano g€ L' n L? e (gy) < C2(R™) con g, =% g in L2
Ge=0r eGe L' L= TG =G = g
= Zlg, = G = hy dove hy = gi(—-) € CP(R™)
he 2252 hin L2 dove h = g(— ) e L' n L2 =
Flg E2EE g = hy = Fhy 25 Fh=h = (9(—)" =7
Formula. Siano (f), (gr) € CP(R™) con fr — f e g, — g in L.

(Zf, 79) &2 NF foo Zgi) = (e G) "™ (s 91) 2% (f, 9).

La scelta di f, = x&f nella dimostrazione dell’esistenza di .# f implica il seguente:

7.7 Corollario. Se f € L*(R") allora F f = limy_, o fr in L*(R"), dove

fx(§) = (27«‘)_"‘/2 J e f(x) dx, £eR".

|z|<k

Nota. E di uso comune I'abuso di notazione ]? per la trasformata di Fourier, indipendentemente
dal contesto funzionale (o distribuzionale) adottato, tenendo presenti, ovviamente, i diversi
significati di tale simbolo nella definizione data dalla (7.1) per f € L'(R") e dall’estensione

fornita dal Teorema 7.6 per f € L?*(R") (cfr. anche la Sezione 8.2.3).

7.3 Esercizi

Esercizio 7.1. a) Sia f € L*(R) con f(x) = /2me~2|. Verificare che f(é’) =7 _352.
b) Sia f e L'(R) con f(z) = {\/% el < L . Verificare che f(é“) = 2sin§
0 . altrimenti 13
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Esercizio 7.2. Dimostrare che, se c < (2m)~2, la stima HfAHLx‘(R) < c|flriw) ¢ falsa, fornendo

un controesempio. Dunque, ||fHL1 ® < (27) V2| flriw) € ottimale.
Esercizio 7.3. Sia f € LY(R"™) con f(z) = e 12 Dimostrare che f(&) = e 1€/,
Suggerimento: Usare & = 216 + ... + 2,6, € f(z) = G(z1) - ... - G(x,) con G(t) = e T'/2.

Esercizio 7.4. Siano u € L*(R"), y € R", A una matrice n x n reale invertibile e ‘A la sua
trasposta. Dimostrare:

a) Se v(x) = u(z —y) = (r,u)(x) allora (€) = e VEq(E).
b) Se v(x) = e u(z) allora H(E) = A€ — y) = (r,)(€).
¢) Se v(z) = u(A'z) allora H(€) = | det AJa(*A€).

d) Se v(z) = u(z) allora 5(€) = a(—£)

Ricordando che w ¢ radiale se u(x) = @(|z]) con ¢ funzione definita su [0,+o0), o, equi-
valentemente, u(x) = u(Ax) per ogni matrice ortogonale A, dimostrare che

e) Se u é radiale allora U ¢ radiale.

Esercizio 7.5. Siano f,g € L'(R"). Dimostrare:
a) f/*\g = (2#)”/2f§. (Suggerimento: Si ricordi che e "¢ = e @ V)W)

b | F@e@)ds = | F©0)de.

Esercizio 7.6. Sia f € C°(R™). Dimostrare:

—

0, F(€) = i f(6), 8, f(6) = —iz;f(€).

Nota: Iterando queste formule si trova quindi
2 =il f©),  af©) = (=) f (),

per ogni multi-indice o

+0oo df +aoC Sin2£
Esercizio 7.7. a) Calcolare j —>—b) Calcolare j
) Lo (24 1)2 ) IS

Suggerimento: Usare ['Esercizio 7.1 e il Teorema di Plancherel.

de.

Esercizio 7.8. Calcolare la trasformata di Fourier della funzione

u(z) = {le“, se lo] <1,

0, se |z| > 1,

dove o > —3, 1 € R3, cosi che ue L*(R3).
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8 Complementi
8.1 Analisi in spazi metrici completi

8.1.1 Teoremi di punto fisso e applicazioni

Ricordiamo il seguente fondamentale risultato.

8.1 Teorema (del punto fisso di Banach-Caccioppoli). Sia (X,d) uno spazio metrico
completo e A: X — X una contrazione stretta su X, ovvero

iLe0,1) Vz,ye X: d(Azx, Ay) < Ld(z,y).

Allora, A ammette un unico punto fisso p € X, ovvero A!'p € X tale che Ap = p. Inoltre,
scelto xy € X arbitrario e posto x4 = Az, = A" 'z, n € N, la successione (x,), ¢ di
Cauchy in X e si ha x,, — p per n — 400.

La procedura descritta nel teorema si dice anche il metodo di soluzione per approssimazioni
successive. Una prima, semplice applicazione riguarda una classe di equazioni integrali non
lineari, associate a nuclei regolari.

8.2 Teorema. Sia k € €([a,b]* x R) tale che, per ogni z,2' € R, z,y € [a, b],
|]€($,y,2) - k:(x,y7z')| < M|Z - Z,|7

per una costante M > 0, indipendente da = e y. Assumiamo L = | \\M(b—a) < 1 e
0 € €([a,b]). Allora, l’equazione (di Fredholm)

b

f(@) = A f i F) o), o @ [

a

ammette un’unica soluzione f € €(|a,b]).

DIMOSTRAZIONE. Definiamo, per h € €([a, b)),

(AR)@) =X [ Koy b)) dy + p(@), e [ob]

a

Le ipotesi implicano che Ah € X = %(|a,b]) e che A & una contrazione stretta sullo spazio
metrico completo (X, d) con d(g,h) = r[neﬁ( lg — h| = ||g — h|w. Infatti, per g, h € €([a,b]),

d(Ag, Ah) = max |(Ag)(z) — (Ah)(z)| < IAIJ k(2,9 9(y)) = k(x, y, h{(y))| dy

z€[a,b]

<IN | Mlg(o) ~ bl dy < PMd(g.h) [ dy = LaGg, ).

a
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I1 risultato segue quindi dal Teorema 8.1, e la soluzione ¢ il limite (uniforme) delle f,, date da

b
fo € €([a,b]) arbitraria, f,,41(x) = )\f k(z,y, fuly)) dy + ¢(z), x€[a,b],neN.

a

8.3 Commento. Consideriamo l’equazione (integrale lineare) di Volterra

T

fuo=Afkuwﬁ@nw+¢@x refab]. (8.1)

a

con k continua su |a,b] % [a,b] e A € R. Adattando la dimostrazione della Proposizione 8.2,
considerando un nucleo L(z,y) = xal(z,y) k(x,y), xa funzione caratteristica dell’insieme

Q= {(x,y) eR*: ze [a7b]7ye [a7x]}7

si potrebbe dimostrare 'esistenza di un’unica soluzione della (8.1) per || sufficientemente
piccolo. Tuttavia, la (8.1) si puo risolvere senza alcuna restrizione su A € R, grazie al
successiwo Teorema 8.4.

8.4 Teorema. Siano (X,d) uno spazio metrico completo e A: X — X tale che B = A

¢ una contrazione stretta su X per qualche v € N\{0}. Allora, A ammette un unico punto
fissope X.

DIMOSTRAZIONE. Se g = Aq si ha anche ¢ = AYq, quindi ¢ ¢ 'unico punto fisso di B. Sia
allora p = Bp, e scegliamo ¢ = Ap, ©, = B"xy — p per n — +00. Troviamo

p= lim B"zy= lim B"(Ap)= lim A(B"p) = liIJIrl Ap = Ap,
n—-+00

n—+0oo n—+o0 n—+00

cioe p e punto fisso di A. Inoltre, per ogni xg € X, A"xq — p = Ap. Infatti,

Ak”“xo:Bk(ijo)m»p, j=0,...,v—1,
per 'arbitrarieta del dato iniziale nel metodo delle approssimazioni successive. [ ]

8.5 Teorema. Sia k € €([a,b]?) tale che |k(x,y)| < M, (z,y) € [a,b]*), A € R, ¢ €
% ([a,b]). Allora, l'equazione (8.1) ammette un’unica soluzione in € ([a,b]).

DIMOSTRAZIONE. Definiamo, per h € €([a, b]),

T

(AR)(@) = A | Kbl dy + (@), o [o.b]

a
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Siha A: X — X con X = % ([a,b]). Inoltre, per g,h € €([a,b]), z € [a, D],

|(Ag)(z) — (Ah)(z)] < [A[Md(g, h)(x — a) < [[AM(b—a)]d(g, h)
= d(Ag, Ah) < [|AIM (b — a)]d(g, h),

(429)(w) — (AR @) < Mg, ) [ (=) dy = (Al 1y 5

[AIM (b — a)]?
2

= d(A%g, A%h) < d(g,h),

ey, sy < VO =

d(g,h),v e N\{0}.
K v—+400 . . < . .
Dato che — 0 per ogni K € R, si ha che A” & una contrazione stretta per v sufficien-

temente grande, per ogni A € R. Il risultato segue dunque dal Teorema 8.4. ]

Un’ulteriore, classica applicazione del Teorema 8.4 ¢ la dimostrazione dell’esistenza e unicita
della soluzione locale del Problema di Cauchy per un sistema di equazioni differenziali ordi-
narie del primo ordine in forma normale, nelle usuali ipotesi di Lipschitzianita, illustrata nella
successiva Proposizione 8.6.

8.6 Teorema. Si consideri il Problema di Cauchy per un sistema di equazioni differen-
ziali ordinarie del primo ordine in forma normale,

y;([l)) :fj($7y1<$)7"'7yN(x))7 jzlv"'7N (82)
yj(x[)):yjm J:L"'aNa
0, equivalentemente,
y(@) = f(@,y(@)) a5
y(w0) = Yo,

conyeC,RY), I =(xg—06,z0+6),6>0,¢efecCKRY), KcRxRYN compatto,
(x0,%0) € K°. Inoltre, f & Lipschitziana in y, uniformemente rispetto a x, ovvero

|f(x,y)—f(.7c,z)|<L|y—z| V($,y),($,Z)EK,

dove |.| ¢ una norma suRYN. Allora, esiste ed ¢ unica la soluzione locale di (8.3), i.e., per
un opportuno 6 > 0,

Ay e €1(1,RY) che soddisfa (8.3).

DIMOSTRAZIONE. Sia M tale che |f(z,y)| < M per ogni (z,y) € K. Definiamo
X ={(he €C([xo—5,x0+ 0],RY) : |h(z) — yo| < M|z — 20,2 € [20 — 6, 20 + 5]},
dove 6 > 0 e scelto, come ¢ possibile, in modo che

R={(z,y) e RxRY : |y —yo| < M|z —a¢|,2 € [20 — 6,20 + 6]} = K.
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Si vede facilmente che X e uno spazio metrico completo rispetto alla metrica usuale, indotta
dalla norma L*([). Definiamo, per h € X,

(AR)(z) = yo + f "t g(t)) d.

Allora, (8.3) ¢ equivalente a y = Ay. Osserviamo che A: X — X ed ¢ continua. Inoltre,

|(Ag)(x) — (AR)(z)] <

[ttt - st me0 | < 2l aalato )
xo
Procedendo come nella dimostrazione della Proposizione 8.5, si trova che A” & una contrazione
stretta per un esponente v sufficientemente grande. Per il Teorema 8.4, A ammette quindi un
unico punto fisso y € X, che e il limite uniforme della successione

Yna1(x) = yo + J f(t,yn(t))dt, neN,

Yo € X arbitraria (p.es., yo(z) = yo).

Concludiamo questa sezione con una variante del Teorema del punto di fisso di Banach-
Caccioppoli, in cui e presente un parametro, da cui il problema di punto fisso dipende con
contionuita. La sua applicazione ai problemi trattati nelle Proposizioni 8.2, 8.5 e 8.6 permette
di dimostrare che le soluzioni dipendono con continuita dai dati, ovvero, ¢ e, rispettivamente,
(20, y0)- I dettagli sono lasciati come esercizio.

8.7 Teorema. Sia (X,d) uno spazio metrico completo, Y uno spazio topologico, f: X x
Y — X tale che:

i) y— f(z,y) € una funzione continua da'Y a X per ogni x € X;
i) ILe[0,1) YyeY Vua,zeX: d(f(x1,y),f(re,y)) < Ld(xy,xs).

Allora, se x, = f(zy,y), y€Y, la mappa y — x, é continua da'Y a X.

DIMOSTRAZIONE. Per le ipotesi e il Teorema 8.1, la mappa y = x, ¢ ben definita.

Fissato yp € Y, si ha

d(zy, vyy) = d(f(2y, ), [(Tyo, Y0)) < d(f(2y,y), f(@49,y)) + d(f (4o, Y), (4o, Y0))
< Ld(zy, 2y,) + d(f (2o, ), f(Zyo, Y0))-

Otteniamo allora

(1 = L)d(wy, y,) < d(f(ye,y), [(Tye,Y0)) = d(y, 1) <,

se y € U,,, intorno opportuno di yo in Y (dipendente da ¢). n
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8.1.2 Differenziabilita di funzioni fra spazi normati

La seguente Definizione 8.8 estende la nozione di differenziabilita a funzioni fra spazi normati
non necessariamente di dimensione finita.

8.8 Definizione. Siano f: Q € E — F, E, F spazi normati, 2 aperto di E, xq e . Se
per h € E tale che xo+ h € Q si ha, con Ae L(E,F) e }Lirr(l)go(h) =0,

f@o +h) = f(zo) + Ah + @(h)[|], (8.4)

si dice che [ é differenziabile (secondo Fréchet) in xy e A = f'(xo) € la derivata di f in
xg, mentre dfy, = f'(x¢): h— f'(xo)h é il differenziale di f in xq.

8.9 Commento. i) Se esiste f'(xo), allora, per ogniv e E,
111% f(xO + TU) _ f(xO) _ f,(CU())U.
T T

i) Se, per ogni v € E, esiste

lim f(zo + 7v) = f(20)

T7—0 T

= Lv,

e siha Le L(E,F), allora L ¢é detto differenziale di Gateaux di f in xq.

ii1) Diversi risultati della teoria delle funzioni differenziabili fra spazi Euclidei si es-
tendono alle funzioni differenziabili fra spazi normati generali. Per esempio, € una
consequenza immediata della (8.4) che se f ¢ differenziabile in xq allora é continua
in xg. Inoltre, se g: Q' < F' — G, G normato, ' aperto in F, e g & differenziabile in
yo = f(x0) € ', con f nelle ipotesi della Definizione 8.8, allora vale l’analogo della
“regola di derivazione a catena”, cioe, la funzione composta go f ¢ differenziabile in
zg e (go f)(xo) =g (f(x0)) o f(xo). Il successivo risultato é 'analogo del Teorema
di Fermat in questo ambito.

8.10 Teorema. Sia f: E — R, E normato, xog € Q < E, Q aperto, punto di estremo
locale per f. Assumiamo che f sia differenziabile in xy. Allora, dfy, = f'(x¢) = 0.

DIMOSTRAZIONE. Sia, per esempio, r > 0 tale che = € B,(z¢) implica f(x) < f(zo). Il caso
di un massimo in senso largo o di un minimo si trattano in modo analogo. Scelto h € E con
|h| = 1, poniamo ¢(t) = f(xg + th), t € I = (—r,r). Le ipotesi implicano che p: I — R &
differenziabile in ¢ = 0 e, per il punto iii) del Commento 8.9, dpy = df,(h). Inoltre, 0 € I & un
punto di massimo per ¢ interno all’intervallo I. Per il Teorema di Fermat, dyy = 0. Dunque,

Vhe E||h] = 1:dfs,(h) = 0= |dfs,| = 0 < df,, = 0. n

Il Teorema di Lagrange, vero per le funzioni reali di una variabile reale, non vale, in generale,
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per funzioni a valori vettoriali, neppure nel caso di dimensione finita. Infatti, sia, per esempio,
g:10,1] > C~R2: t — €™ = g(0) = g(1). Non esiste 0 € (0,1) tale che ¢'(§) = 2mie* = 0,
dunque non esiste 0 € (0,1) tale che 0 = g(1) — g(0) = ¢’(6)(1 — 0). Il Teorema 8.11 & una sua
versione piu debole.

8.11 Teorema (degli incrementi finiti). Sia f: Q@ € E — F continua, E, F normati, Q
aperto di E, xo € Q, h € E tale che xo + h € Q. Denotiamo

[z0, 20 + h] = {x = xo + th:t € [0, 1]},
|zo, 0 + h[ = {x = xo + th:t € (0,1)},

e assumiamo [xg, xo+h] < Q. Inoltre, assumiamo che f'(x) esista per ogni x €|xq, xo+h|,
ed esista M > 0 tale che Vx €|xg, xo + h[ | f' ()] cer < M. Allora,

|f(zo + h) = f(zo)| < M]A].

f(xo+th), te0,1]. Allora, p € €([0, 1], F),

DIMOSTRAZIONE. Poniamo, come sopra, ¢(t) =
€ (0,1). Sia

¢'(t) = f'(wo +th)h e |¢'(t)] < M|n] = a, t
Ae = {t e [0,1]: [o(t) = p(0)] < (a+e)t +¢}.

Per continuita di ¢, A. & chiuso, e, posto u = sup A., si ha u > 0. Sia, per assurdo, p < 1.
Allora, per definizione di differenziale, esiste 6 > 0 tale che

lp(p 4 6) — () — @' ()0
5

<e=|p(p+9) — o) < & (W] +ed < (a+¢€)d.

Siccome p € A, (< A, & chiuso),

() —p(0)| < (ate)pu+e

da cui segue
o+ 0) = (0)]| < (a+e)(u+9) +&. (8.5)
La (8.5) contraddice u = sup A, dato che implica u + § € A.. Si deve pertanto avere u =1, e
quindi
Ve > 0 fp(1) = (0)] < a+ 2,
cioe,

|f(zo +h) = f(xo)]| < M|h.

8.12 Esempio. Siano F' uno spazio vettoriale normato su R e

L: (t,y,2) € [to,t1] x A— L(t,y, z) € R,
A aperto di F'x F. Assumiamo L continua e derivabile rispetto a (y, z) con derivata L' continua
(cioé, 0,L e 0,L sono continue). €*([a,b], F) ¢ lo spazio di Banach delle funzioni f continue da
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I = [a,b] a valori in F con derivata f' continua®®, e norma || f|| = ||fllew + || f]cc = max IfllF +

max If' |- Allora,

Q={feC" ([to, 1], F) : Vt € [to, t1] (f(t), f'(t)) € A}
¢ un aperto di € ([to,t1], F). Consideriamo il funzionale T: Q — R definito da

t1

7(1) = | Lt 50 5/0)
to

(funzionale di azione). Si vede facilmente che T € €(Q,R) e I'(fy) € L(E ([to, 1], F);R) ¢

dato da

t1

Z'(fo)g = J

to

oL oL

—(t, fo(t), fo (&) + =—(t, fo(t), fo(t t) dt.
| S0 0,500 + S0, 0. £ | a0
Se fo e L sono di classe €* sui rispettivi domini di definizione, allora

7 (g = | G50 30|+ [ S oo 560 - 5 5 a0 £ ),

0z t .
Se nella definizione di 2 si richiede anche f(to) = f(t1), allora fo é un punto di stazionarieta
di T se soddisfa l’equazione di Eulero-Lagrange

d oL oL

— (1, fo), L)) — == (¢, fo(D), fA(1)) = 0.

Gt o(0) F50) = St Fol0). Sy(0)

Concludiamo questa sezione con il Teorema delle funzioni implicite nell’ambito degli spazi
normati completi. La dimostrazione, che non riportiamo in dettaglio'!, si puo ottenere tramite
i Teoremi 8.7 e 8.11. Con la notazione D, f(x,y) indichiamo qui il differenziale parziale della
funzione f rispetto alla variabile x.

8.13 Teorema (delle funzioni implicite). Siano f: Q € E x F' — G, Q aperto, E spazio
topologico, F,G spazi di Banach®, f € € (), G). Assumiamo:

i) (a,b)eQ e f(a,b) =ceG;
it) Dyf: Q— L(F,G) é continua;
i) Q = (Dyf)(a,b) € GL(F,G)".
Allora, esistono A < F, B < G aperti, tali che a€e A, be B, e
Vee Adlye B f(x,y) =c. (8.6)

Definita p: A — B:x — y = ¢(x), con (x,y) € A x B che soddisfa (8.6), cioé vale
f(z, o(x)) = c per ogni x € A, si ha p € € (A, B). Inoltre, se assumiamo anche che

10Pin precisamente, si dovrebbe dire f/(t) - 1, essendo f'(t) € L(R, F) ~ F.
U1 argomentazione ¢ analoga a quella seguita in J.P. Cecconi, G. Stampacchia, Analisi Matematica, 2°
Volume, Funzioni di piu variabili, Liguori (1983), Cap. IV, n. 27.2.
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i) D.f: Q— L(E,G) é continua,

allora si ha € €' (A, B) e dp, = —[(D,f) ' o (D.f)](x, o(z)).

o sufficiente G spazio normato.
bCioe, esiste Q1. Se G non & completo, va richiesto Q™' € L(G, F).

8.1.3 Soluzione di alcuni problemi di evoluzione

1. Sia F uno spazio di Banach e A € L(FE). Definiamo, per ¢ € R,

et = Z (tA)" = lim Z (tA)”' (8.7)

| N |
n=0 n. ——+00 0 n

N (tA)" .
Dato che, posto Sy = Z > ber ogni £ > 0Oe M =0,
n!
n=0

N+M (1 - | A
ISn+m — SNz Z (el - | ”EE))

per N sufficientemente grande, la serie (8.7) converge assolutamente, e si ha e € L(E) con
let]| < eIl Grazie alla convergenza assoluta, troviamo, per ¢, s € R, e(s+)4 = es4¢t4  Infatti,
ricordando le proprieta del prodotto di serie assolutamente convergenti,

o A tA [(s+t)A]" 5
AtA ZZ S Zn' Z 'k| :Z S n' :€(+t)A'

n=0m=0 nz=0 j+k= n nz=0

Pertanto, (e/)cr & un gruppo di operatori invertibili di £(E), con

A _ 0A _ tA=1 _ _—tA
%E%e = =Te(e?) ="

E immediato anche mostrare che Ae't = ¢4 A. Innanzitutto, osserviamo che la Definizione 8.8
di derivata rispetto a t ¢ equivalente alla definizione usuale (t € R = F), e si ha

(t+h)A _ tA hA _
tA € € A €
TR - R N 55
8.8
hanAn
=elim (A+h ) = Ae't
h—0 e n
Infatti, notiamo che, posto
(A"
p(t) - n! )
n=2 :
Al — 1 — ¢ A : . .
vale p(t) = 5 , t £ 0, si vede che la serie che compare nella (8.8) ¢ (totalmente)

convergente per h € [—1,1], e si pud passare al limite per A — 0. Dunque, scelto xy € E
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arbitrario e posto x(t) = ez, quanto provato sopra implica che z(¢) risolve il problema di
Cauchy

d

—ux(t) = Ax(t

Loty = ar(t)

z(0) = xo.

Per esempio, la soluzione di

W) [ ) )y = Af.)

[(0,2) = o(z),
sotto ipotesi opportune su k e ¢, ¢ data da f(t,z) = ep(z).

a

2. Sia T' = T™ un operatore lineare, continuo e autoaggiunto sullo spazio di Hilbert H, con spet-
tro o(T') costituito unicamente da una successione di autovalori {\z}, < R con base ortonormale
associata (ey),. Poniamo, per te Re x € H,

Alt)r = Zeit’\’“ (z,er)er = (A(t)r, ;) = €™ (3, ¢;). (8.9)
k
Quindi,
Z |(A(t)x, e;)] Z e (2, ¢5)] Z| z,e;)|? = |z* < +oo,
J
e ne segue che, per ogni ¢t € R, A( ) € L(H) con ||A( )| < 1. Inoltre, si dimostra facilmente

che A e €(R,L(H)) e, in effetti, che A € €*(R, L(H)). Direttamente dalla definizione, si ha
A(0) = I. Per ogni s,t € R, A(s)A(t) = A(s + t). Infatti, per ogni x € H,

Zezt)\k , ek ] Zezs/\ (Z ezt)\k CE’ ex ek’ej>

= ZeZS)‘Je’t’\ T,ej)e Z:eZ SN (1, e5)e; = A(s + t)z.
J

A(s)A(

Dunque, per ogni t € R, (A(t))~! = A(—t). Derivando termine a termine, ricordando che \; € R,

e sfruttando le proprieta di convergenza della serie che definisce A(t), troviamo anche

O A(t)x = ZZ)\ke”’\’“ T, ep)er = ZZG”’\’“ x,Tex)e, = Ze”’\’“ (T'x, ex)ex = 1A(t)Tx

= iZe”’\k (x,ex)Te, =T
k

Z " (1, ek)ek] = iTA(t)x,
k:

cioe, ;A(t) = iT'A(t) = iA(t)T. Ne segue, similmente a quanto gia osservato al punto 1., che
la funzione x(t) = A(t )xo, xo € H, & soluzione del problema di Cauchy

d

d—tx(t) = iTx(t)

z(0) = .
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d2
Dato che %x(t) = —T?x(t), se S =T? e L(H) (cfr. Esercizio 4.7), la medesima funzione x(t)

risolve anche il Problema di Cauchy

d2

ﬁx(t) + Sz(t) =0
z(0) = xg

2'(0) = iTx.

8.14 Commento. Definendo B(t) = € come nella (8.7), con itT al posto di tA, si
ottiene, con dimostrazioni del tutto analoghe, un gruppo di operatori invertibili tali che

B(0) = I, B(s+t) = B(s)B(t), (B(t))' = B(—t), %B(t) =1TB(t), s,t € R. Si dimostra
che che la famiglia di operatori A(t) definita tramite la (8.9) soddisfa A(t) = B(t). Infatti,
sia A(t) che B(t) soddisfano il problema di Cauchy

4
dt
W(0) = 1.

W(t) = iTW ()

Posto allora Q(t) = A(t)B(—t), si trova Q(0) = I e, utilizzando la regola di derivazione
a catena,

%Q(t) _ [(%A(t)) B(—t)] + [A(t) <%B(—t)>] — ITA(®) B(—t) + A(t)(—iTB(=t))
=1TQ(t) —iTQ(t) = 0,

dato che, come nel punto 1., TA(t) = A(t)T. Dunque, Vt € R Q(t) = A(t)B(—t) =1, e,
componendo a destra con B(t), si ottiene A(t) = B(t), t € R, come affermato. Quanto
illustrato brevemente in questa sezione suggerisce come sia possibile (e utile) definire f(T),
sotto opportune ipotesi, con T operatore lineare e f funzione. Cio puo essere ottenuto sia
“direttamente”, come nel punto 1. (quando é disponibile, per esempio, uno sviluppo in
serie di potenze di f), sia “indirettamente”, operando sullo spettro di T, come nel punto
2. (in spazi di Hilbert, quando lo spettro di T ¢ discreto e formato solo da autovalori, con
un’associata base di autovettori).

8.2 Serie e trasformate di Fourier

8.2.1 1l principio di indeterminazione di Heisenberg

8.15 Teorema. Siano p € Z(R) e xy,& € R. Allora

lelZmy < 20(z — zo)o(2) |2l (€ — €0)B(E) ] o).
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DiMoOsTRAZIONE. Passo 1. Sia xg = & = 0. Integrazione per parti =

o2 = f o(@)p(@) dz = — f £ () d = — f 2(0'P + o) () da
= —QJxRe (¢'(z)p(x)) du.

Disuguaglianza di Cauchy-Schwarz =

lelZ2ge) < 2 f o (@)l (2)] do < 2]z ()| 2@ €] L2y

Quindi

Teorema 7.6

~ () 1 en
'y = N @) = 1€0] L2y
dove l'uguaglianza (=) vale grazie all’Esercizio 7.6.

Passo II. Sia ¢(z) := e ™0p(x + xo). Si calcola [[¢] 2y = |2 €

Jev (@)@ = @ = 20)0@) 2@, €6 2@ = 1€ = &)B()] 12w

Applicando la formula con zy = £ = 0 dimostrata al Passo I a v si ottiene ’enunciato. ]

Enunciamo, senza dimostrazione, il seguente risultato:

8.16 Teorema (Amrein, Berthier). Siano E, F' < R misurabili e di misura finita. Allora

31C=20 Vfel’®R): |fleew < Cflewe + |1 flee)-

In particolare: f e F f hanno simultaneamente supporto compatto se e solo se f = 0.

8.2.2 Serie trigonometriche ed integrali di Fourier

Dai risultati della prima parte (Capitolo 9), sappiamo che ¢ possibile approssimare funzioni
periodiche L? attraverso polinomi trigonometrici'?,

N
Ty(z) = % + Z(an cosnx + b, sinnx), N eN, (8.10)
n=1

dove ag, a,, b,, n € N, sono i coefficienti della serie trigonometrica. In questa sezione, f denota
inizialmente una funzione a valori in C, definita su (—m,7), estesa a R\{(2k + 1)7}1ez come
funzione periodica di periodo 2. Il successivo Teorema 8.17, la cui dimostrazione ¢ lasciata per
esercizio, ¢ un risultato notevole sui polinomi trigonometrici.

12Una dimostrazione di questo fatto si trova, per esempio, in W. Rudin, Analisi Reale e Complessa, §4.23-4.25.
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8.17 Teorema. Sia f € L*(—m, 7). Poniamo

1 (" 1 (" 1 ("
ap=—| ft)dt, a,=—| [f(t)cosntdt, b,=—| f(t)sinntdt, neN.
TJ) . T) . TJ) .

I coefficienti di Fourier a,, e b, cosi definiti rendono minima la quantita

- N 2
f(z) — % — > (@, cosnx + b, sin nx)| dz, ag, an, b, € C.

1 cosnx sinnz

YRZRVE YL

ovvero, si puo considerare lo sviluppo di f in serie di Fourier (trigonometrica),

Si dimostra anche che { } ¢ un sistema ortonormale completo in L?(—, ),
neN

flz) ~ a20 + Z an cosne + b, sinnx),

n=1

con convergenza nel senso di L?(—m, 7). Essendo

einm 4 e—inx einz _ e—inm
cosnr = ——, sinnx = ., neN,
2 2
troviamo
ao N an _"_ e*lnl‘ eznx eflnx
Tn(n) =5 + > (an 5 b )
n=1
a ol a ol b
0 mnx -on TL 7“13; An n
2 = 22 — 21
a n n
_ _0 Z — ib, eine Z by e—ine
2 n=1 n=1
Definendo .
—1
5 " pern =1
a
Cn = 3 EO pern =0 (8.11)
a_p + 1b_
- “ pern < —1,
\ 2
si ha
N
Tyn(x) = Z Cpe™”
n=—N

Passando al limite per N — 40, troviamo

~ 3 e, (8.12)

neZ
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sempre nel senso della convergenza in L*(—m, 7). La (8.12) ¢ la serie di Fourier di f in forma
complessa. Esaminiamo ora una condizione per la convergenza puntuale. Dalle (8.11) si ricava

an = Cp+cp, neENy,
b, =i(cp, —cp), meN,

cnz—f f(t)e™™dt, neZ.
V2T

1 coefficienti sono

Come ¢ noto, { } ¢ un sistema ortonormale completo in L?(—m, 7). Ponendo e,(r) =
) NEZL
mx

\/27'("

1 (" .
Jn=(fren)r2(cnm = J ft)e ™ dt = c,\/2m, nez,

Var )

e definiamo, per N € N,

N

2 fn NeT zﬁf F(t) 2 em@=t) gt (8.13)

Calcoliamo, per e + 1,

N 2N i(2N+1)z—1
D (Z):: _l_ ehm ::_l_erVz:Elehm ::_l_erVze( )
N 2T 2m 2m ez — 1
n=—N n=0
1 ei(N—&-%)z . efi(N+%)z 1 sin (N + %) >
S on eis — e i3 o sin £ ’
N+1

ed estendiamo Dy per continuita, ove e”* = 1, ponendola uguale a . La funzione Dy e

detta Nucleo di Dirichlet, ed ha le seguenti proprieta:

(i) Dy € una funzione periodica di periodo 27, a valori reali, definita su tutto R;

(ii) Dy € una funzione pari;

(iii) ’ Dy(z)dz = 1.

—T

Dalla (8.13), sfruttando la parita di Dy e la periodicita della funzione integranda, con il cambio
di variabile t = x + z & 2z = —x + t, otteniamo

m™—X s

Sy(z) = :r f(t) Dy(z —t)dt = f flz+ 2)Dn(z)dz = f(x + 2)Dn(2) dz,

—m—x -

da cui segue, grazie alla (iii),

Sn(e) - flay = 2 [ LerD i) = sin(QN;lz)dz.

™), z 2sin %
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b
8.18 Lemma (di Riemann-Lebesgue). g€ L'(a,b) = lim | g¢(z) sin(\z)dz = 0.

A—+00 a

DIMOSTRAZIONE. Per g = ¢ € Cj([a,b]) = L*(a,b), la dimostrazione ¢ immediata:

fbg(z) sin(\z) dz = l—go(z) COS&”E + J ’ o(2) ‘30892) dz 2=F%, .

a a

Per g arbitraria in L'(a,b), 'enunciato si ottiene dalla densita'® di Ci([a,b]) in L'(a,b) (cfr.
risultati della prima parte). Infatti, per ogni e > 0, esiste ¢ € Cj([a, b]) tale che [|g — | 11 (ap) <

Jb (=) sin(\z) d=

a

€ €
2 ed esiste A tale che, per ogni A > A, < 7 Dunque, per A > A,

< +

f " (2) sin(\s) dz

a

| 92 = (a1 sinrc) az

a

Jb o(2) sin(\z) dz

a

13
< g —ellripy + 5 <&

2
n
8.19 Teorema. Sia f € L'(—n,7), estesa per periodicitd a R\{(2k+1)7}rez, v € (—7, ),
ed esista 6 > 0 tale che 5
f flet2) =@ ) oo (8.14)
-5 z
(Condizione di Dini). Allora, Nlim Sn(z) = f(x).
—00
DIMOSTRAZIONE. Per la Condizione di Dini, posto h,(z) = flw+2) - f(x)) risulta h, €
2
L'(—m, ). Pertanto, applicando il Lemma 8.18 con A = N + i, troviamo
€L*(—m,m)
—
1 (" — 2N +1 =
Sn(x) — flx) == flzt2) = Ji@) - ~ s ( - z) dz X225
T J z 2sin £
ELIEZW,W)
n

13In alternativa, si osserva che per g = X[a.8]> [, B] € [a, 0], si ha
b p 1 Ao+
J 9(z) sin(A\z)dz = J sin(A\z) dz = X[COS()\O() —cos(AB)] /—= 0,
a [e3

e la famiglia di funzioni {X[a,g]}a<a<ps<s ¢ totale in L'(a,b).
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Osservazioni. Vi sono funzioni, anche continue, definite su I = (—7, 7), la cui serie di Fourier
non converge in ogni punto di I (cfr. W. Rudin, Analisi Reale e Complessa, §5.11). Pertanto, per
garantire la convergenza puntuale, e effettivamente necessario imporre condizioni sulla funzione
f, quali, per esempio, la Condizione di Dini.

Operando separatamente a sinistra ed a destra di « € (—m, ), il Teorema 8.19 si generalizza
facilmente come segue.

8.20 Corollario. Sia f come nel Teorema 8.19. Poniamo, per x € (—m,m), f(x £0) =
lim f(z +¢)eC, ed esista 6 > 0 tale che
e—0T

0 1)
f <—|—ooef
-5 0

Allora Nlim Sy(z) = fle+0)+ /x=0) .

—+w 2

fle+2)— flz—0)

z

flx+2)—= f(z+0)

z

dz dz| < +oo.

8.21 Definizione. Una funzione f ¢é detta regolare a tratti nell’intervallo |a,b] se é
continua e derivabile a tratti nell’intervallo [a,b], cioe se:

® Vo € (a,b) esistono finiti lim f(z) e lim f(z);

e esistono finiti lim f(x), lim f'(z), hIil— f(x), lir?_ f'(z).

Tr—a

8.22 Teorema (di Dirichlet). Se la funzione f: R — C, periodica di periodo 27, é

regolare a tratti nell’intervallo [—m, 7|, la sua serie di Fourier converge in ogni punto

x € R, ovvero, per ogni x € R esiste finito Nlim Sn(z), con Sy(z) definita nella (8.13).
— 400

Esplicitamente, si ha
lim Sy(z) = flz+0)+ f(z —O)‘

N—>+o 2

In particolare, la serie di Fourier di f converge a f(x) in ogni punto x € R ove f &
continua.

DIMOSTRAZIONE. Immediata, osservando che una funzione regolare a tratti soddisfa le ipotesi
del Corollario 8.20, e che le ipotesi permettono di estendere il risultato anche agli estremi
dell'intervallo [—7, 7]. n

Osservazioni. Abbiamo provato che una funzione f, periodica di periodo 2w, che soddisfa le
condizioni di Dini (in particolare, che e regolare a tratti) si puo rappresentare tramite la sua
serie di Fourier, cioe, come una sovrapposizione di infiniti termini oscillanti ( “armoniche”). La

mappa
1 T :
= \Jn/)nez, n = t o dt’
f (f ) EZ f m . ( )6
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rappresenta tale decomposizione in termini oscillanti, dove il parametro discreto n € Z e associ-

ato alla frequenza delle oscillazioni. La formula f(z Z fne™® rappresenta I'inversa di

neZ
tale mappa ( “formula di ricostruzione”). Vogliamo ora estendere tale tipo di rappresentazione a

funzioni non periodiche. Osserveremo che cio e possibile, sotto condizioni opportune, e conduce
alla definizione dei concetti di integrali di Fourier e trasformata di Fourier.

Assumiamo ora che f: R — C soddisfi f € L'(R) e la Condizione di Dini (8.14) in ogni punto
x € R. Considerando la restrizione di f all'intervallo (—[,1), l > 0, e la sua successiva estensione
per periodicita, con un cambio di scala sull’asse delle ascisse e possibile scriverne lo sviluppo in
serie di Fourier, nella forma

f(z) = ) + Z [an Cos(nl—ﬂx> + b, sin(n—;rx)] . xe (=11, (8.15)

n=1

dove
f f(t) cos dt b, f f(t) sin —t) dt, n e Np.

Sostituendo le espressioni di a,,, bn, n € Ny, nella (8.15), otteniamo

o [ 0
+ i [% fll f(t) cos(?a:) cos(nl—ﬂt) dt + %Jll f(t) Sin(nwa) sin(?t) dt]
_ 2lz£z ftydt + f 7 cos| "t =) |at, we (~1.1). (8.16)

Seguiamo, euristicamente, un primo procedimento, puramente formale, e consideriamo il limite
per [ — 400 della (8.16). Per I'ipotesi f € L*(R), il primo termine tende a 0. Il secondo termine
puo essere considerato un analogo di una somma di Riemann associata alla funzione

T) = J—z f(t) cos|T(t — z)] dt

f " () dr.

0

per 'integrale

scegliendo 7, = L wu(l,) = ? Il passaggio formale al limite per [ — +o0o nella (8.16)

suggerisce quindi 'uguaglianza

fla) =+ Jm { f: F(t) cos|r(t — )] dt} dr, (8.17)

™ Jo

che ¢ la rappresentazione integrale cercata. Ponendo

_ %rw £(8) cos(rtydt, by — - rw () sin(rt) dt,

T J—w
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si puo scrivere la (8.17) nella forma seguente, che “ricorda le serie di Fourier”*:

@) = L L, cos(rz) + by sin(ra)] dr. (8.18)

Abbiamo ottenuto la (8.18), detta formula di Fourier, grazie ad un passaggio formale al limite.
Diamone una dimostrazione direttal®

8.23 Teorema. Assumiamo che f € L'(R) soddisfi la condizione di Dini nel punto x € R.
Allora si ha
1 +00 400
fl@) == f { f F(8) cos|r(t — )] dt} ar.
T Jo —0

DIMOSTRAZIONE. Poniamo

gy = 1 j ! { ) cos[r(t — 2] dt} i, (8.19)

0

e dimostriamo che Alim J(A) = f(z). Le ipotesi implicano che 'integrale interno ¢ assoluta-
— 400

mente convergente per ogni 7,z € R, cosi come l'integrale doppio per ogni A, x € R. Applicando
il Teorema di Fubini-Tonelli ed il cambio di variabile z = t — x, troviamo

J(A4) = = fooff ) cos[7(t — x)] drdt = J £(1) Sm sinfdlt—2)] ,

t—x
sin(Az)
z

= ; f( z) dz.

1 (T sin(A
L’'uguaglianza —J M dz =1, A > 0, permette di scrivere
TJ -

z

Pl t2) - fo)

J(A) — f(z) = = . sin(Az) dz
— % iCE: Zz /(@) sin(Az) dz (8.20)
+ 1 J flat2) sin(Az) dz (8:21)
l2|=N <
PACHN LGP 8.22
m j =N o

I termini in (8.21) e (8.22) sono uniformemente convergenti rispetto ad A > 1, e possono
entrambi essere resi minori di — in modulo, € > 0, scegliendo N sufficientemente grande. Con

tale N fissato, il termine in (8.20) & infinitesimo per A — +00, grazie alla Condizione di Dini
ed al Lemma 8.18. Pertanto, si ha Alim [J(A) — f(x)] =0, come affermato. n
—+00

14 Cioe, sostituendo il simbolo di serie ed il corrispondente indice (discreto) con un integrale esteso all’intervallo
[0, +00) rispetto alla variabile (reale) 7

1571 procedimento formale di “passaggio al limite” illustrato per ottenere la (8.17) a partire dalla (8.16) si
potrebbe rendere rigoroso, ma la dimostrazione diretta del Teorema 8.23 & pill agevole.
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Dato che 'integrale interno nella (8.17) ¢ una funzione pari, possiamo riscriverla nella forma

1 +00 +00
fla) = — f { F(#) cosr(t — )] dt} dr. (8.23)
21 J_oo -0
+00
D’altra parte, l'ipotesi f € L'(R) implica che I'integrale J f(t)sin[7(t — )] dt esiste finito,
ed e una funzione dispari di 7. Pertanto, -

L { " by sinfr(t — 2] dt} dr =0, (8.24)

2m )

purche l'integrale in 7 venga considerato nel senso del suo valor principale, cioe come limite, per
N — 400, dell'integrale esteso all’intervallo [—N, N]. Sommando membro a membro la (8.23)
e la (8.24) moltiplicata per —i, otteniamo infine 'uguaglianza

‘f(:v)=% [ A s e nadar

(8.25)

detta formula di Fourier complessa. La (8.25) puo essere rappresentata tramite le due uguaglianze

1 I —itT
o) = o= | s

]' e 1xT
f@) == | oo

Osserviamo che la prima ha senso per ogni funzione f € L'(R), e produce la trasformata di
Fourier fintrodotta nella (7.1). La seconda, che esprime la formula di inversione, & piu delicata,
dato che, in questo approccio, e valida solo nel senso del valore principale e sotto la condizione
di Dini. Il Teorema 7.3 nella Sezione 7.1 dimostra la validita della formula di inversione sotto
“ipotesi simmetriche” su f e f. Come gia sottolineato sopra, nell’ambito L' non & possibile
evitare di richiedere ipotesi opportune per la validita della formula di inversione, a differenza
di quanto accade, per esempio, nell’ambito L?. Quest’ultimo & quindi pitt adatto, in linea di
principio, per le applicazioni. Tuttavia, perdiamo la possibilita di esprimere f, in generale, nella
forma integrale di partenza (salvo il fatto di poterla impiegare, per esempio, su domini sferici
e poi passare al limite, cfr. Corollario 7.7).

La procedura illustrata sopra, che mostra come arrivare alle formule integrali di Fourier ed alla
definizione di trasformata di Fourier, a partire dalle classiche serie di Fourier trigonometriche,
rende anche conto dell’interpretazione di f, di uso comune, in termini di una “decomposizione
di f rispetto a termini oscillanti”, con un range di frequenze continuo. Similmente, si evince
la necessita di imporre condizioni opportune per garantire la validita di una “formula di ri-
costruzione puntuale” (quasi ovunque), fornita dai teoremi di inversione, in analogia a quanto
osservato per la convergenza puntuale delle usuali serie di Fourier trigonometriche.
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8.2.3 Trasformata di Fourier e distribuzioni

Per f e LY(R") e ¢ € Z(R") vale

Ti() = | J©e&)dE = | f(&)o(&)d = Ty(6).

R R

Questo suggerisce di definire la trasformata FT = T di una distribuzione T € &' (R™) tramite

~

T(¢) :=T(), ¢e DR,

Sfortunatamente questa definizione non ha senso, poiché $ ¢ 2(R") se ¢ % 0.

8.24 Lemma. Sia ¢ € Z(R) e ¢ € D(R). Allora ¢ = 0. ’

DIMOSTRAZIONE. Consideriamo la funzione f : C — C con f(z) = (27r)1/2f e " p(z) da.
R

Utilizzando |e *| = e*!m# ¢ il fatto che ¢ ha supporto compatto, f definisce una funziona
intera (i.e. olomorfa in tutto C). Ovviamente f(£) = ¢(£) per tutti € R.

supp ¢ compatto = JaeR V¢ >a: f(§ = QAS(S) =0.
Principio di identita per le funzioni olomorfe = f(z) = 0 per tutti z = $ = 0.
Teorema 7.3 = ¢ = 0 quasi ovunque in R.

¢ continua = ¢ =0 in R. [ ]

Gli spazi Z2(R™) e 2'(R™) quindi non sono adatti alla trasformata di Fourier. Per questo motivo
si introduce lo spazio ./(R"™) di tutte le funzioni ¢ € ¥“(R") per le quali

[l == sup j2|*|oYp(2)] <+ YN eN.
TzeR™

k+|o|<N

Z(R™) & detto spazio di Schwartz oppure spazio delle funzioni a decrescenza rapida. Ovvia-
mente, Z(R") ¢ . (R™). Si puo dimostrare che

. S(R) — F(R")

¢ un’isomorphismo con inversa . Si definisce poi lo spazio delle distribuzioni temperate .7/ (R™)
di tutte le applicazioni lineari T : .#(R™) — C che sono continue, nel senso che

AIN=N(T) 3C=C(T) VeeZR"): [T()|<Clelw:
Per T € .'(R") si pud definire la trasformata di Fourier 7' € .%/(R") come indicato, ciod

T(p):=T(3), weL(RY.
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Analogamente si definisce 7" tramite 7(p) = T(@). Si ottiene un isomorphismo 7' — T in
S (R™) con inversa T +— T.

Per f e LP(R™), 1 < p < 400, si definisce la distribuzione regolare Ty € ./ (R"),
Ti(p) = | flz)p(z)dr,  pe S (R").
Rn

Per f € L'(R") e per f € L*(R") vale T} = T}, dove f ¢ definita come nelle Sezioni 7.1 e
7.2, rispettivamente (cioe, ﬁ = Tz per f € L*(R™)). Cosl come la distribuzione regolare T,

loc
indifferentemente per f € L*(R™) o f € L*(R") (ed anche, nel senso di .#'(R"), per f € LP(R"),
pe(1,2) u(2+ o).

Le distribuzioni temperate e le loro trasformate di Fourier vengono studiate dettagliatamente
nel corso Analisi Superiore.

f € LL.(Q), viene spesso indicata semplicemente con f, Ty & generalmente indicata con f,
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9 Soluzioni degli esercizi

9.1 Capitolo 1

Esercizio 1.1. Utilizziamo il cambio di variabili y = Az, dy = |det A|dzx.
s = [17(APds = det Al [ 17 dy = det 4] |72

Quindi T € L (L?) con ||T| < |det A|7Y2. Inoltre

(Tf.g) = j F(Ax)g(@) dx = | F(y)[det AT Tg(A Ty) dy.

Quindi (T*g)(y) = [det A|"'g(A™'y), g € L*.

Esercizio 1.2. S :=T*T —TT* ¢ autoaggiunto. Allora

T normale <= T*T =TT* < S =0 <% (Sz,z)=0 VaxeH
— (T"Tz,z) =(TT*z,x) YxeH
— (Tz,Tx)=(T"2x,T*x) VYxeH
— ||Tz|? = |T*z|* VxeH.
Esercizio 1.3. “=":imT =imT = (imT)* = (ker T*)' = {0}' = H
‘=7 ker T* = (imT)* = HY = {0} = T* iniettivo.
imT = H é ovviamente chiuso.
Esercizio 1.4. “=7: PQ proiezione ortogonale = PQ = (PQ)* = Q*P* = QP.
(PQ)? = PQPQ = PPQQ = PQ,
(PQ)* = QP)" = P*Q" = PQ
Sia PQ una proiezione ortogonale.
reimPQ =3JyeH: x=PQy=PQy)=Q(Py)=2xeimP nim@Q.

reimP nim@ = PQr = Pxr =2 = x €im PQ).

= PQ) proiezione ortogonale.

“=": PQ = QP = {

Esercizio 1.5. H =im Q @ ker )
Quindi: r € iImQ < Qr = .
Quindi: im P € im(@) < QP = P.

e QP = P = P = P* = (QP)* = P*Q* = PQ
= |Pz| = [PQz| < |P||Qz] < |Qz] VzeH.

o |Pr| < Qx| VeeH = |P1-Qyl<|Q1-Qy|=0 VyeH
= P(1-Q)=0= P=PQ = P=P*=(PQ)* = Q*P* = QP.



9.1 Capitolo 1

87

Esercizio 1.6. Osserviamo che (P + Q)* = P*+ Q* = P + Q.
““"PQ=QP=0= (P+Q)*=P*+PQ+QP+Q*=P+Q.
‘S P+Q=P+Q)P =P +PQ+QP+Q>=PQ+QP =0
= PQ = -QP ()

Componendo con P a destra ed a sinistra = P(Q) = —PQP e —QP = PQP

= PQ = QP (+)

(%), (xx) = PQ = QP =0.

Sia P + Q) una proiezione ortogonale.

reimPnim@ = 2 =Pr=PQr)=0=imP nimQ = {0}.
Ovviamente, im (P + Q) € im P +im Q.

remMP+im@Q =3y,ze H: z=Py+Qz

= (P+Q)r =P+ PQz+QPy+Q*>=Py+Qz=z

= reim (P + Q)
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9.2 Capitolo 2

Teorema 2.6,c)

Esercizio 2.1. “=7: Te 4 (H), T* e Z(H) =" 1T ¢ o (H)
“=7: Sia (x,) < H successione limitata, M := sup,, |z,].
T*Te #(H)= 3 (v,): (IT*Tx,,) é convergente.

Osserviamo che

[Tz = Ty|* = (T(z — ), T(x —y)) = [(x =y, T*T(x — y))| < |z —y||T*Tz — T*Ty].

Ne seque
Tz, — Tz, |* < 2M|T*Tx,, — T*Tx,,|?
= (Tx,, ) successione di Cauchy, quindi convergente.

Teorema 2.8 = T € # (H).

Esercizio 2.2. a) Siax e VL eyeV arbitrario.

TyeV, T=T*= (Tz,y) = (x,Ty) =0 = Txe V%

b) Sia (v,) €V successione limitata.
(vn) limitata in H, T € Z(H) = 3 (vy,,) :  (Tvn,) convergente in H.
(Tv,,) <V, V chiuso = (Tv,, ) convergente in V.

Teorema 2.8 = T|y € # (V).

Esercizio 2.3. Sia S :=al —T. Allora
S(mla Lo, X3,2T4, - . ) = (Slxb S52%2, 5313, S4X4, . . )

con la successione s,, = a — a,. Nota che s, — 0 per n — +o0.

M := sup,, |sy|

= [Sz]* = 2, [snxal® < M2 X, |wnl? = M2|z* V2 e (2(N).

= S e Z(l*(N)) con |T| < M.

Sia Sy € F((%(N)) definito da Syx = (5171, S92, . . ., SNTN, 0,0, ...).
Sia dato € > 0.

(sn) infinitesima = I Ng e N Vn=Ny: |s,|<e
a0 a0
= |Syz—Sz|? = > spznP<e? Y |mP<Ex)? VN=N, Vael*(N)
n=N+1 n=N+1

= |Sy—S|<e VN=N,

N>+
= Sy — S

= Se #(E(N)).
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Esercizio 2.4. Si ha

(fij, fre)r2(axay = Jf fii(s.t) fre(s, 1) dsdt ZJ ei(s)ex(s) ds L ej(t)ec(t) dt

A
AxA

1 i=kj="¢

= 6“6 6‘76 - ) )
(€3, er) 12 (€5, €0) L2(a) {() altrimenti

= {fij} sistema ortonormale.
Sia g € L*(A x A). Calcoliamo

ot ecan = | (] lats. 0 ds) de = | ot )13

J(Z|w| dt—ZJKJ ()2 dt

=:G(t)

= Z |Gz = ZZ (G, ex) 2|
-3 L Gilem ] =Y f Lg(s,t)mdsdtQ

= Z (9, fix)r2cax ]
T
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9.3 Capitolo 3
Esercizio 3.1. S:=[+T+... TN ' = SI-T)=(I-T)S=I-TN =T = (I-T) ' = S.

Esercizio 3.2. 1) f"=0 < f(x)=pr+q(p,qeC)
= kerT = {f(x) =pr+q|p,qeC}, dimkerT = 2.

z Y
fe€(la,b]) data, g(x) := J J ft)dtdy = g€ €*([a,b]) eg" = f.
= T suriettivo, codimimT = 0.

2) Come prima, ma tenendo conto della periodicita (che impone p = 0), troviamo:
kerT = {f(z) =q|qe C}, dimkerT = 1.
27

Verifichamo che imT = {f e ¢(S") | f(z)de = 0} :
0

2m 2m
e f Tf@)de = [ f(x)de = f(2r) = F/(0) = 0.
0 0
2m
"27: Sia data f con f(x)dx = 0.
0
1 27

Ty v
Sia g(x) = J f ft)dtdy + cx con c = —— f f(t)dtdy. Osserviamo
0 Jo 2m Jo Jo

< (gl +2m) — g2 = %(f% Ly (t) dt dy + 2rc)

T+27 2T
:J fdt=| f@)ydt=o.

T 0
= g(x + 2m) — g(x) = cost
g(2m) — g(0) = 0 = g ¢ 2m-periodica. Si ha quindi f = ¢" € imT.
Inoltre, codimim T = 1 (cfr. Esempio 3.6).

3) kerT = {(z1,0,0,...) | x; € C}, dimker T = 1,
imT = {x € (*(N) | z; = 0}, codimimT = 1.

Esercizio 3.3. Vale C"/kerT =imT e quindi
codimimT =n —dim C™/kerT' = n — (m — dimker T').

Quindi indT = m — n.
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Esercizio 3.4. Sia T = (Tl).
15

‘=" Tr=0 < Tix=Tar =0 < zeker(T] : kerTy > H) < =0
= T 1niettivo.

(x1,29) € HH® Hy = 3z € H con Tox = x5 e 2’ € ker Ty con Thax' = x1 — Thx.
= T(x +2') = (v1,22) = T suriettivo.

“=7: Dato x9 € H,

T suriettivo= Jx e H: (0,29) =Tax = (Thz,Tox) = Tox = xo = Ty suriettivo.

Dato x1 € Hy,

T suriettivo= Jx e H: (x1,0) =Tz = (Thz,Trx).
= xekerly eTix =x; = T : ker'Ty, — H, suriettivo.
Sia x € ker Ty N ker T7.

= Tz = (0,0) = = =0 (dato che T iniettivo)

= T} : ker'Ty — Hp iniettivo.
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Esercizio 4.1. Secondo quanto illustrato nell’Esempio 4.3, si trova o(T) =
Quindi o(T) = [—2,2] nel caso a), e o(T) = [0,2] nel caso b).

Supponiamo X sia un autovalore e f un’autofunzione, cioe

h(z)f(x) = \f(x) Vrel[-1,1].
a) Sia xo € [—1,1]. Supponiamo f(xo) £ 0.
focontinua = 3e >0 VM p) £ 0

|z—zo|<e

— 27 =\ VL é

|z—xzo|<e

= [ =0 su[—1,1] = Non esiste nessun autovalore/autofunzione.

b) Come sopra con xq > 0 si vede che per ogni autofunzione f vale f(x) =0

Viceversa, f(x) =0 V0 <z <1 implica (Tf)(x) = h(z)f(x)=0.

h([—1,1]).

Vo<z <1

= X\ = 0 unico autovalore con kerT = {f € C([-1,1]) | f(x) =0 VO0<z<1}.

Esercizio 4.2. a) Sia A € C.
M —T* =N —=T)*, X[ =T = (X —T*)*

Teorema 1.5,d) — . . . .
= M —T% jnvertibile <= M — T invertibile

= \e p(T) < Xe p(T*)
= Aeo(T) =C\p(T) < leo(T*) = C\p(T™).
b) T*P [ = ] — ||T*TH Teorem:a 1.5,e)

Teorema 4.3
=

IT)? = |7 =1
a(T) < {\]| |\ <1}

St ha anche

TT*=1= XN —-T=-T(1 - \T*).

Ne seque

Teorema 3.1

Al <1 = |AT*| = MN|T*| = |M\|T] <1 = (I — \T™*) invertibile
= A\ — T invertibile

= M <1pep) = o(T) = AN =1}

Esercizio 4.3. Sappiamo che T* ¢ dato da T*(xy1, 9, x3,...) = (T2, T3, 2y, ..

Esempio 4.4 = o(T*) = {\ | |\| < 1}.

Esercizio 4.2 = o(T) = o(T*) = (A | [N < 1} = {\ | |\ < 11,
kerT = {0} = X\ = 0 non é autovalore.

Sia A+ 0.

Tr =X r < (0,21,29,23,...) = (Ax1, A\x9, \23,...) &= =0

= )\ non ¢ autovalore.

).
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Esercizio 4.4. Sequire il procedimento riportato negli appunti. Nel sequito, T' sia l’operatore
integrale in L* con nucleo k(x,y).

a)

k(xz,y) = xy = r(x)s1(y) conri(z) = s1(z) = x.

)
(Nota: k(y,x) =yz = xy =
o(T) = {0, (r1, 1)} }

! 1
(r1,81) = J 22dr = =
0 3

ker T' = (s1(z))*, ker

k(x,y) = T autoaggiunto.)

[\ —T)g](z) = 2

k(z,y) = xy + 22y = ri(2)s1(y) + ra(2)s2(y)

con r(z) = s1(x) = x e ry(x) = s9() = 22.

(Nota: k(y,z) = yx + y222 = 2y + 2%y* = k(z,y) = T autoaggiunto.)
ker T = (s1(z), s2(z))* = (w, 2*)*.
r1,81) (2, s1 2/3 0
T= (Erl,szg ETQ,SQD T ( (/) 2/5)
= 2/3,2/5 autovalori di T con autospazi {(1,0)) e {(0,1)), rispettivamente
= o(T)=1{0.3.3
ker (21 — T) = (Iri(z) + Ora(z)) = (r1(2)),
ker T) = {0r(z) + 1ra(x)) = (ra(x)).

e
(i D o= (@) = (0T el n) (@)

[((A—T)""g](x) = gw) | _ @ 5 flg(y)y dy + A(Ax_ 5 rlg(y)?f dy.

k(z,y) =z —y =ri(z)si(y) + r2(z)s2(y)
conr(x) =z, si(x) =ro(x) =1 € s9(x) = —x
ker T' = (s1(2), s2(2))" = (1, 2)".
(r1,s1) (re,s1)\ [ 1/2 1
1= (( 52) (ra, 52)> == (_1/3 _1/2>
= det(A — T) = \? — traccia(T)\ + det T = \? +
= f % autovalori di T con autospazi << )> <( T %)>
= o(T) = {0,— \ﬁ \ﬁ}

(gt )= (i + (s ) =+ ).
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- Tx + %[bl(g, A)ri(z) + ba(g, A)ra(a)]

s epl0 o o+ (- Y}

12

d) k(z,y) =siny = ri(z)s1(y) con ri(z) =1, s;(z) = sinz.

(r1, 1) :L”smydy:o@am — {0}.

Si cerca la soluzione di f(x) — (T'f)(x) = g(z) con g(z) = —x:
I-Tf=9g = f-r(fis1)=9

(ri,81) = 0= (f,51) = (f,51) = (r1,81) ([, 81) = (9, 51)

= f=g+r(g,$1), cioé

2m y=2m
f(w)z—x—f ysinydyz—x—(siny—ycosy) = 2T — .
0 y=0

(In alternativa, si pud utilizzare la formula per la soluzione (A\[ — T) 1g con A = 1 e
g9(x) = —x.)

Esercizio 4.5. A\—pu= (M —T) — (ul = T)

= RAT)A = p) = RADIM =T) = (I =T)] =1 = R\ T)(pI = T)

= RO T)A = p)R(p, T) = [I = R\ T)(pl = T)]R(p, T) = R(p, T) — R(A, T).

Esercizio 4.6. |[(\MI —T) — (M —T)| = [(A — M| = [\ — Al koto
Continuita dell’inversione (Corollario 3.3) = (A, —T) ™! koo, —= (M -T)"!

Esercizio 4.7. Teorema spettrale = H ammette una base ortonormale {xq,x9, 23 ...} di au-
tovettort di T'. Sia T'x; = \jx;.

0< (Tzj,x;) = (Njzj, z5) = Nl [P =X = A =0

o0
= ha senso definire Sx := Z VA, zj)z;, xe H.

j=1

Zlfx z;)|” < (max Aj) le )" < Tl

J=1
= Sz ben definita (serie convergente in H) e ||Sz|* < ||T||z|*> Vze H



9.4 Capitolo 4 95

= Se Z(H) e|S| <|T|".

(Sz,xy) fo ) (2, 28) = v/ Me(z, ) Yk

ZfS:B x;)x foa: xj)x —Z)\'(:B,xj)a:jox.
j=1
™
Esercizio 4.8. Definiamo Sy = ;1 Y (y,xzj)rj, yeH.

0eo(T) = \=+0.

o(T) ha nessun punto di accumulazione oppure 0 € l'unico punto di accumulazione.

= M =

+00 1 9 +00
=2 =] <MY ) = M2yl
1Ry i

= La serie converge in H per ogni y € H e |Sy| < M|y|.

+00 1 1o s
= SeX(H) eTSy= Z m(y#l'j)ij = Z h _J)\‘(y,xj)xj
j=1 J 7j=1 J

+

0

by
—)\_]/\)(y,%‘)xj: (y,zj)z; =y VyeH.

J

+0o0
i(M—T)SyzAsy—TSyZZ(A_AX
J

J=1

Il
—

= (M -T)S = 1.

Analogamente SN[ —T) = 1.

11
D VRS WS W W

La seconda formula seque immediatamente dal fatto che

Esercizio 4.9. Utilizzando le notazioni dell’Esercizio 2.4, scegliendo, come € possibile, la base

data da fij(ta 3) = ez(t) 6]'(3), 6,jg=12,..., s ha HkH%Z(AxA) = Z |(k7f1])|2

ij=1

Dato che
(k, fi;) = Jfk:(t,s)fij(t, s)dtds = Jfk‘(t s)ei(t)e;(s) dtds
= J(Kej)(f)ei_(t)dt = fej(t)ei_(t)df = Aj(ej, €) = 0y,

concludiamo Z |(k, fij)|2 = Z |)‘j|2'

ij=1 j=1
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Esercizio 6.1. Sia ¢ € Z(R

foe L(R) = Ty(o f F()6(x) dz = lim F(@)6(a) do
Quindi

(T7)'(¢) = =T¢(¢") = — lim In [z|¢/ () da

e—0+ R\[*E,E]

= — lim ((ln e)p(—¢e) — (Ine)p(e) — f 1925(%) dx).

e—0+ R [7575] z

(=€) = ¢(e)] < 2e max |¢'(2)] < 2[o]1 = (lne)((—¢) — o(¢)) =0

. ¢(x) 1
T (¢) = 1 PV g = pv-— ().
= (T7)'(¢) = lim e @ dz = pv-—(¢)
Esercizio 6.2.  a) Disuguaglianza di controllo (Teorema 6.9) =
VKccQ 3C=C(K) 3j=(K) V50 IT(0) < Clél;

pe P2(R) = ap € Z(R) e supp a¢p < supp ¢ =

VKccQ 3C=C(K) 3j=j(K) ¥V 570 . |(aT)(9)| < Clag;.

supp ¢S K °
Osserviamo

k

k . )
ol = s [0 < mpx 31 (7) 0 @)00 @)

zeK,k<j

k
k
®) , _ 9 ®) - .
< max |a™(z |||¢||grgg;<§_0<i) 2! max o (2)[|6]; =: Di|9l;.

= |(aT)(¢)] = |T(ag)| < Cllad|; < (CDg)|¢l; = Cklol; v 578,

supp ¢S K-*
Disuguaglianza di controllo (Teorema 6.9) = aT € 2'(R).

b) Sia ¢ € Z(R) arbitrario.

(aT)'(¢) = ) = —T((ag)" — a'¢)
= T"(a¢) + T(d'9)

(aT" + d'T)(9).

—(aT)(¢") = =T(a¢’
= —T((ag)) + ( ¢)
= (aT)(¢) + (d'T)(¢) =

Esercizio 6.3. Teorema 6.19 = (Ty) = Ty + y(z0)dy,
= PTf = b(Tf)/ + CTf = be’+cf + 5330

T < Xy

bf ef = {by( )+ cy(x) x>

— 0= PT; =4,
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Esercizio 6.4. a)-d) : Si procede come discusso a lezione.

e) : Si risolvono separatamente T' —T =6 e T —T = 6;. La soluzione cercata ¢ la somma delle
due soluzioni.

/) : Analogamente ad e).

g) : Si risolve T" — T = ¢. Derivando membro a membro, si osserva che T ¢ la soluzione
dell’equazione proposta.

h), i) : Analogamente a g).

Esercizio 6.5. Sia ¢ € Z(Q). Si ha, per lipotesi Ty, Limas:Ny NN Tr(9) LimasiN T(¢p),

(°T0)(9) = (~DI*'T(2%0) #=2 (~1)IT(079) = (2°T)(9).
Dato che ¢ ¢é arbitraria, concludiamo 0*Ty, ALY
Esercizio 6.6. Ovviamente S+ T e oT sono mappe lineari Z(R) — C.
Sia ¢, — ¢ in Z(R). Allora
(S +T)(dr) = S(dn) +T(ox) — S(¢) + T(9) = (S + T)(¢),
(@T)(¢r) = oT(¢r) — aT () = (T)(9).
Esercizio 6.7. Sia K cc R" e ¢ € Z(R"™) con supp ¢ < K.

Ipotesi = r— ) compatto.

= 165,()| = | f SO O] ] < maxlo@] | 1@t = Cclolo

_1(K)
Disuguaglianza di controllo (Teorema 6.9) = 4§, € Z'(R").

Esercizio 6.8. Sia ¢ € 2(R?). Troviamo
+0 o0
(02T)(9) = —Tu(029) = J J u(z1, v2) (029) (w1, ¥2) dr1dzy
+o0 +00 +00 Too
= —f lJ (C200) (21, 22) dﬂ?Q] dry = _Jo [¢($1,1’2)] day

0 —a0 To=—00

:0:>62Tu20,

(alTu)(Qb) =T, (5l¢ J+OO JHO $1,$2) (51¢)($1, m2) dxidzy

I

= ¢(Oa 132) dry = 0T, = (57’

—0

J+OO((91¢)(:171, ) dxl] dry = — Jm [¢(1’1,[E2)]+OO d,

0 —00 x1=0

cony=O0xg={r: [ =(—00,+0m0) > R?: t —r(t) = (0,t) (c¢fr. Esercizio 6.7).
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Esercizio 6.9. Per ¢ € Z(R) wvale

75(6) = | Tlota) do = [ )3 dr = 1)

Sia T € 2'(R). Definiamo

T() =T(@), o< I(R)
Owviamente T : 2(R) — C lineare.
Siano K cc R. Esistono C =0 e k € Ny tali che

()| < Clol ¥ 27,

supp ¢S K-
Allora B _ B B
T(6)| = |T@)| = IT@)| < Cll = Clolle ¥ 557 Ps
Disuguaglianza di controllo (Teorema 6.9) = T € 2'(R).

Esercizio 6.10. Sia f € L. (R,) e ¢ € 2(R). Allora

loc

1) = [ sterotorae= [ s X2y = 140,

dove [A(9)](y) = ¢(Iny)/y. Dato che

[A@)](W) 0 <= é(lny) £0 < ye{e"|zeR, ¢(x) + 0} = exp ({z | ¢(x) + 0}),
troviamo
supp A(¢) = exp(supp ¢) = g(supp ¢).
= A: I2(R) - 2(R.) (ovviamente A lineare).
PerT e 2'(R,) definiamo

Tog: 2(R)~C. 6 (T0g)(6) :=T(A(®))
= Tog: Z2(R) — C lineare.
KccR= K, :=g(K)ccR;.

Disuguaglianza di controllo (Teorema 6.9) =

30 =C(K,) = O(K),j = j(K,) = j(K) ¥ 585 IT(A9))] < ClA@)];-

supp ¢C K *
S osserva che
1A = ' ©
i y o laokd(Iny) + ayd’ (Iny) + ... + awd'™ (Iny)]
con costantt universali a;, che non dipendono da ¢.
=3D=D(4)=0 VoeIR):  [A9)l; < D|ol;

= (T 0 g)(9)| = |T(A())| < C|A(d)||; < CD|¢|; V¥ 7B

supp ¢C K *

Disuguaglianza di controllo (Teorema 6.9) = T o ge Z'(R).



9.6 Capitolo 7 99
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Esercizio 7.1. a) Calcoliamo

a 0

]?(5) = lim e el dp = lim eP(1=i&) g +f e—e(1+i€) J.
a—>+w J_, a—+0 J_ 0
et(1—i&) 1 2=0 e—(14i€) |z=a
= lim - —
a— 100 1 J— Zf r=—a
1 1 2 2

i€ 11 (At 1re

b) Calcoliamo

—i€ o=—1 & —i £ 2 £’
Esercizio 7.2. Detta f la funzione dell’Esercizio 7.1.a), si trova ||]?||L%(R) = f(0) = 2 e

1
Iflorm = J V2mdt = 2v2m. Pertanto, | f|r-® = 2 < 2¢v21 = |f|lpi® € falsa
-1

(2m)~Y2. Ne segue che la costante che compare nella stima delle norme nell’enunciato del
Lemma 7.1 ¢ ottimale.

) B L o ,

~ , 1 L qw=1 le @ — € 9ei _ =% ~

1 :J R T e N (UES!
-1

ec <

»

Esercizio 7.3. Si ha f(z) = G(z1) - ... G(z,) con G(t) = e /2. Quindi, utilizzando ripetu-
tamente il Teorema di Fubini-Tonelli e il Lemma 7.5,

( ) = (27) ”/2J e i@t Aml) Gy Glay) day - . day,

(2
[ 1/2 K if”lflG(ggl)dxl] -...-[(27r)1/2 JR e G an) dxn]
G

(). .. - G(&) = eS12 . em62 = TP,

Esercizio 7.4. o (&) = (2m) /2 Jemgu(az —y)dx = (2m) "2 f e Ty (2) dz =
_ oW (2r) fefzéu(z) dz = ¢ WEG(E):;
o (&) = (2m)™/? je‘ir”cemyu(x) dx = (2m) ™"/ je‘ix(ﬁ_y)u(z) dz =u(§ —y) =
= (nu)(&);
o B(6) = (2m) ™ J e (A Nr) do = (2m) fei(Ay)’Su(yﬂ det A| dy =

_ | det A|(2m) "2 f Ay () dy — | det A| G(1AE):;

* H(§) = (27T)_n/2 je—ixgﬂ(x) dr = (2m)~"/2 Je—im(—f)u(x) dr =u(—¢) < T = 5’.
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e con una matrice n X n ortogonale A ='A = A~ = |det A| = 1, ricordando che u(Ax) =
u(z), x € R, troviamo

A(A€) = (27) 2 JeW@u(x) iz — (27) "2 fe“*'fméu(x) i —
_ (2m) 2 J ATy (2 d — (2m) 2 f e~y ( Ay)| det Al dy —

— (2m) "2 J e u(x) dr = a(g),

ovvero, U ¢ radiale.

Esercizio 7.5. Siccome e ¢ = ¢ @~ WE  ytilizzando il teorema di Fubini-Tonelli ed un
cambio di variabili (lineare), si ha

—

Fra©) = Cn) " [ ([ o - yaty) dy) do
= (2m) " [ egy) f it y>ff<x— y) de) dy
= (2m)"2 (2m) 72 f g ”/zfe”ﬁﬂz) dz| dy = (2m)"2F () - §(©).
Utilizzando il teorema di Fubini-Tonells,
| Fogteyac = [[my e [y doote) ae
— [[em 2 [e gt de] sy do = | )10 e

Esercizio 7.6. Utilizzando l'integrazione per parti, troviamo:

—

Top(©) = ) [ (0 )) e = —(2m) " [ (26 o) do
— igjem) ™ [ (o) do = 55(6)

6,3(0) = () "2, [ (o) do = 2m) " [ (e ) ole) da

—(2m) Jemgixjgo(x) de = —i53(©).

Esercizio 7.7. a) Sia f la funzione dell’Esercizio 7.1.a). Grazie al Teorema di Plancherel, si

ha
+00 dg ]_ ~ 1 1 400 o
|, wrem — i1 = Ml = | 2
™ 0 +00 +o0 67% +oo
=5 (J €72|x‘ dr + J 672‘33‘ dl‘) — WJ 6723: de = l :|
2 —w 0 . — O

e
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b) Sia f la funzione dell’Esercizio 7.1.b). Grazie al Teorema di Plancherel, si ha

sin f 1 1t
dé = = —f3emy = = | 27dw =
[ e = U = 1M1 = 1 [ 2o ==

Esercizio 7.8. Posto x1 = pcosfcos p, xo = pcosfsinp, r3 = psinb, p € [0,+00), ¢ € [0, 27],
€ [—m/2,7/2], si ha dx = dxidredrs = p® cos O dpdpdd e

at+3 7!
Jf lu| = Jf |x|* dx —J J J p®p? cos 0 dpdpdf = 4 lim [p ]
p=0 777 =0 a—0t | ¢ + 3 p=a

B1(0)
am a+3
= (1= lim a*™) = < 400,
o+ 3 a—0t o+ 3
—_———
=0<=a+3>0

quindi v € L'(R3), come affermato. Dall’Esercizio 7.4, dato che u ¢ radiale, seque che U ¢é radi-
ale. Dunque, denotata con (ey, es,e3) la base canonica di R3, usando coordinate polari sferiche
come sopra, troviamo, per & % 0,

u(€) = u(l¢les) = (2m) 3/2JJJ “ilelees gy (1) da = (2n) wffj —ileles | g g

B1(0)

(2m) 3/2f f f e~ Melpsind pa 2 o5 0 dpdpdd
p=0 -3

/2 —z|§|psm6‘ wtl 121011 1 eiplﬁ\ — e_iﬁ‘ﬁ‘ atl
= (2m)” f p*T dp = 2(2m) 7| f —— " dp
p=0 _Z|€| 0=-Z2 p=0 2

1

€]
= 2(27r)”2|£|1f p* M sin(pl¢) dp = 2(2m) Plg P f t*t sint dt.

p=0 0

Osserviamo che lintegrale ottenuto nell’ultimo passaggio ¢ convergente, dato che t**lsint ~
o2t - 0% e+ 2> —1. Abbiamo quindi, per ogni € € R®, € £ 0,

€]
a(6) = e = 2207~ [ v+ e

0



