FOGLIO DI ESERCIZI II, PER IL 13.10.25

CINZIA CASAGRANDE E KARL CHRIST

Esercizio 2.1. Descrivere lo schema affine $\operatorname{Spec}(\mathbb{C}[x,y,z]/(zx,zy))$.

Esercizio 2.2. Sia $\varphi \colon X = \operatorname{Spec}(R) \to \operatorname{Spec}(S) = Y$ un morfismo di schemi affini indotto dal morfismo di annelli $\psi \colon S \to R$.

- (1) Dimostrare che se ψ è suriettivo, allora φ è un omeomorfismo tra X e lo sottoschema chiuso $\operatorname{Spec}(S/\ker(\psi))$ di Y.
- (2) L'immagine di φ è denso in Y se e solo se $\ker(\psi) \subset \mathcal{N}_S$, dove \mathcal{N}_S denota il nilradicale di S.
- (3) Dare un esempio in cui φ non è suriettivo nonostante che ψ è iniettivo.

Esercizio 2.3. Un omeomorfismo di spazi topologichi non è automaticamente un isomorfismo di schemi:

- (1) Sia $\varphi \colon \mathbb{A}^1 \to \mathbb{A}^2$ la mappa data da $t \to (t^2, t^3)$. Dimostrare che φ è un omeomorfismo di spazi topologici tra \mathbb{A}^1 e l'immagine di φ , $\operatorname{Spec}(k[s,t])/(s^3-t^2)$, ma che non sono isomorfi come schemi.
- (2) Sia p>0 la carateristica di un campo algebraicamente chiuso k. Dimostrare che $\psi\colon \mathbb{A}^1_k\to \mathbb{A}^1_k, t\mapsto t^p$ è un omeomorfismo di spazi topologici ma non un isomorfismo di schemi (si chiama morfismo di Frobenius).

Esercizio 2.4. Siano X uno schema, $U \subset X$ aperto, e $f \in \mathcal{O}(U)$. Mostrare che f è invertibile in $\mathcal{O}(U)$ se e solo se $f(x) \neq 0$ per ogni $x \in U$.

Esercizio 2.5. Siano R un dominio e $\xi := [(0)] \in \operatorname{Spec} R$ il punto generico. Mostrare che $\mathcal{O}_{\xi} \cong k(\xi) \cong \operatorname{Frac}(R)$.

Esercizio 2.6. Sia X uno schema. Mostrare che il morfismo $X \to \operatorname{Spec} \mathbb{Z}$ associa ad ogni x l'ideale generato da $\operatorname{char}(k(x))$, dove k(x) è il campo residuo di x.

Esercizio 2.7. Sia $\varphi \colon R \to S$ un omomorfismo di anelli e $f \colon X := \operatorname{Spec}(S) \to Y := \operatorname{Spec}(R)$ il morfismo di schemi associato. Mostrare che la chiusura in Y del sottoinsieme f(V(A)) è $V(\varphi^{-1}(A))$, dove $A \subset R$ è un sottoinsieme.