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1. Schemi

1.1. Introduzione. Una varietà algebraica X ⊂ km tradizionalmente è definito come il luogo

di zeri di un insieme di polinomi f1, . . . , fn con m variabili e con coefficienti in un campo k
(algebraicamente chiuso, di caratteristica 0).

Si vede subito, che X infatti non dipende dalla scelta di f1, . . . , fn ma invece dall ideale I
generato dai fi. Poi l’anello di funzioni regolari su X è, per definizione,

k[X] = k[x1, . . . , xn]/I

, che sono ‘polinomi’ o funzioni regolari definito su X . Per avere una correspondenza biiettiva

tra ideali e varieta algebriche, si deve imporre che k[X] è un dominio: per esempio, il luogo di

zeri di (y) e (y2) è identico, anche se gli ideali non lo sono. Nella perspettiva classica, si risolve

questa ambivalenza ristringendo l’insieme di ideali che sono ammessi. Nella perspettiva moderna

degli schemi, si aumenta invece l’insiemme di oggetti geometrici – c’è si introduce un oggetto

geometrico che corrisponde a (y2) ed è diverso da (y).
Perché questo è utile anche se magari si è interessato sopratutto nelle varietà algebriche? Si

consideri per esempio una degenerazione nel parametro t di una parabola, xt− y2 = 0. Per t ̸= 0,

questo definisce una varietà algebrica. Per t = 0 invece otteniamo l’ideale (y2) e quindi la teoria

delle varietà algebriche ci dice di prendere il radicale e vederlo come la retta data da (y). Ma

questo non dà una teoria soddisfacente; per esempio, il grado per t ̸= 0 sarebbe uguale a 2, metre

per t = 0 uguale a 1. La teoria dei schemi dà la possibilità di parlare in un senso formale anche

dal oggetto geometrico associato a (y2) (che dovrebbe essere una ‘retta doppia’).

Quindi, la teoria dei schemi introduce la possibilità di avere nilpotenti nel anello delle coordinati.

Ma non solo, nel mondo dei schemi si puo per esempio anche lavorare su un anello (come Z
con applicazioni alla teoria dei numeri) invece del campo k, o l’anello delle coordinati non è

necessariamente finitamente generato come k-algebra.

Un’altro perspettiva che gli schemi offrono, è che permettono di definire ‘varietà astratte’ –

invece delle varietà con un spazio ambientale come An
k o Pn

k . Questo passo è analogo al concetto

delle varietà astratte nella geometria differenziale: si ottiene l’oggetto astratto incollando aperti.

Nel caso degli schemi, gli ogetti di base sono i schemi affini.

1.2. Definizione di Schemi. Uno schema affine è dato da

(1) Spec(R) con R anello commutativo con la topologia di Zariski e

(2) O fascio strutturale/fascio delle funzione regolare sullo schema.
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Definiamo questo oggetto in tre passi, prima come insieme, poi come spazio topologico e

finalmente come ‘spazio localmente annellato’, quindi lo fascio strutturale O.

1.2.1. Schemi affini come insieme. Sia R un anello (assumiamo sempre che gli annelli sono com-

mutativi con 1).

Definizione 1.1. Gli elementi di Spec(R) come insieme sono i ideali primi p di R.

Osservazione 1.2. R ⊆ R non è un ideale primo. {0} invece lo è se R non ha divisori di zero

(R è un dominio). Se R è un campo, l’unico ideale primo è {0} perchè ogni elemento x ̸= 0 è

invertibile.

Un ideale primo m è un ideale massimale se m è massimale rispetto all’inclusione; c’è se m ⊆ p
per un ideale primo p, allora m = p. Ogni ideale diverso da R è contenuto in un ideale massimale.

Osservazione 1.3. Un ideale p è primo se e solo se R/p è un dominio, e p è massimale se e solo se

R/p è un campo.

Esempio 1.4. (1) Spec(Z) = {(p) | p interi primi } ∪ {(0)}.

(2) Spec(Z/3Z) = {(0)} perchè Z/3Z è un campo

(3) Spec(C[x]) = {(x−α | α ∈ C}∪{(0)}. In questo caso, C[x]/(x−α) ≃ C via f 7→ f(α).
Quindi (x − α) è un ideale massimale. Poi tutti ideali primi hanno questa forma: Sia

p ̸= (0) un ideale primo di C[x] e f ∈ p un elemento di grado minimo. Allora f non è

costante perchè altrimenti p = C[x]. Se deg(f) > 1, allora f = c(x− α1) · . . . (x− αn)
perché C è algebraicamente chiuso. Ma p è primo e quindi deve contenere anche uno dei

(x − αi). Visto che C[x] è un dominio ad ideali principali (per esempio dovuto al fatto

che esiste un algorithmo di divisione con resto), dobbiamo avere p = (x− αi).

Dato f ∈ R si può associare a f una ‘funzione’ f con dominio Spec(R) (vogliamo vedere i

elementi in R come polinomi/funzioni regolari su Spec(R)). Dato p ∈ Spec(R), consideriamo

α : R → R/p ↪→ Frac(R/p).

Allora, l’imagine di p sotto f è definito come α(f) e scriviamo f(p).

Osservazione 1.5. Questo non definisce una vera funzione, perchè il codominio Frac(R/p) cambia

con p.

Esempio 1.6. f = 15 ∈ Z. Allora il ‘valore’ di f a (7) per esempio è 15 mod 7 = [1] ∈ Z/7Z.
Il ‘valore’ di f a (11) è [4] ∈ Z/11Z. Il ‘valore’ di f a (0) è 15 ∈ Q.

Esempio 1.7. R = k[x]/(x2), allora Spec(R) = {(x)}. Il ‘valore’ di f = x ∈ R sul unico punto

(x) è zero. In particolare, dà una ‘funzione’ non-zero su Spec(R) che ha ‘valore’ zero a tutti i

punti di Spec(R).

1.2.2. Schemi affini come spazi topologici. La Topologia di Zariski ha chiusi dato cosi: per ogni

S ⊂ R, abbiamo un chiuso

V (S) = {p ∈ Spec(R) | S ⊂ p}.

Osservazione 1.8. Otteniamo la stessa definizione scrivendo V (S) = {p ∈ Spec(R) | f(p) = 0},

che collega alla nozione più classico che i chiusi sono luoghi di zero di un insiemme di polinomi.

Poi chiaramente V (S) = V ((S)) dove (S) è l’ideale generato da S.

Proposizione 1.9. Prendere i V (I) per I ideali di R come chiusi definisce una topologia su Spec(R)
(la topologia di Zariski).

Proof. Controlliamo i requisiti per una topologia uno per uno:

• Ogni ideale contiene (0), quindi V (0) = Spec(R).
• Ogni ideale primo è proprio, quindi V (R) = ∅.
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• Per un insieme di ideali {Iα}α abbiamo:

p ∈
⋂
α

V (Iα) ⇔ Iα ⊆ p,∀α ⇔
⋃
α

Iα ⊂ p ⇔ p ∈ V (
⋃
α

Iα)

• Per due ideali I e J abbiamo:

p ∈ V (I) ∪ V (J) ⇔ p ∈ V (I) o p ∈ V (J) ⇔ I ⊂ p o J ⊂ p ⇔
⇔ I ∩ J ⊂ p ⇔ p ∈ V (I ∩ J),

dove I ∩ J ⊂ p ⇒ I ⊂ p o J ⊂ p perchè se non, esistono i ∈ I e j ∈ J con i, j ̸∈ p. Ma

in questo caso ij ∈ I ∩ J ⊂ p e quindi i ∈ p o j ∈ p perché p è primo, una contradizione.

□

Gli aperti sono i complementi dei chiusi. Se S = {f}, f ∈ R, allora

Spec(R) \ V (f) = Spec(Rf ) = Xf ,

dove Rf = R[f−1] è la localizzazione di R rispetto a f (c’è rispetto al insieme moltiplitivamente

chiuso {fn}n∈N):

Proposizione 1.10. Gli ideali primi di Rf sono in corrispondenza biunico con i primi di R che non
contengono f .

Proof. Per passare da R a Rf si usano due costruzioni:

• I ⊂ R ideale, allora Ie = { t
fn per t ∈ I} l’ideale di Rf generato dall immagine di I con

ϕ : R → Rf , t 7→
t

1
.

Si chiama la estensione di I (in Rf ).

• J ⊂ Rf , J
c = ϕ−1(J), la contrazione di J .

Per ogni ideale abbiamo che I ⊆ (Ie)c e J = (Jc)e. Poi la contrazione di un ideale primo è

sempre primo, perché la preimagine di un ideale primo tramite un morfismo tra anelli è primo.

Vogliamo dimostrare che per q ⊂ R primo con f ̸∈ q abbiamo q = (qe)c e che qe è primo

(in generale, l’ideale generato dal immagine di un ideale primo non è necesseriamente un ideale

primo). Cos̀ı si vede che la corrispondenza biunica che cerchiamo è dato dalla estensione con

inverso la contrazione (si osserva che per f ∈ q, la estensione di q è Rf perché f diventa invertibile

in Rf ).

Entrambe le affermazioni sequono se dimostriamo che
x
fn ∈ qe implica che x ∈ q. Lo

facciamo adesso: Sappiamo che
x
fn ∼ x′

fn′ per un x′ ∈ q. Per definizione esiste un m t.c.

fm(xfn′ − x′fn) = 0 e quindi xfm+n′
= x′fm+n

. Visto che x′ ∈ q, anche x′fm+n ∈ q e quindi

xfm+n′ ∈ q. Ma fm+n′ ̸∈ q, e quindi x ∈ q come desiderato. □

Lemma 1.11. Gli Xf formano una base per la topologia di Zariski.

Proof. Dobbiamo dimostrare che ogni aperto U di Spec(R) si può scrivere come unione di aperti

Xf . Per definizione abbiamao U = Spec(R) \ V (S), che possiamo rescrivere come

U = Spec(R) \ V (S) = Spec(R) \
⋂
f∈S

V (f) =
⋃
f∈S

(Spec(R) \ V (f)) =
⋃
f∈S

Xf .

□

Gli aperti Xf si comportano bene anche per intersezioni finite:

Lemma 1.12. Abbiamo Xf ∩Xg = Xfg .

Proof. L’aperto Xf è l’insiemme di primi che non contengono f . Quindi Xf ∩Xg è l’insieme di

primi che non contengono f e non contengono g. L’insiemme Xfg invece sono gli ideali primi

che non contengono fg e quindi che contengono né f né g. □
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Osservazione 1.13. Spec(R) non è quasi mai di Hausdorff. Infatti, gli unici punti chiusi sono i

ideali massimali perché se p ∈ Spec(R) la chiusura è

p = {q ∈ Spec(R) | p ⊆ q}.

Esempio 1.14. In Spec(C[x]) i p = (x−α) sono punti chiusi. (0) non è chiuso e la sua chiusura

è tutto Spec(C[x]). Se f ∈ C[x], allora V (f) sono tutti i punti (x − α) t.c. (f) ⊂ (x − α) che

significa α tale che f(α) = 0.

—

Lezione 22.9. …

2. Proprietà di morfismi

2.1. Finitezza. Il seguente concetto di finitezza è molto più restrittivo rispetto ad essere di tipo

finito:

Definizione 2.1. Un morfismo di schemi φ : X → Y è finito se per ogni punto y ∈ Y c’è un

aperto affine y ∈ V = SpecB tale che anche φ−1(V ) = Spec(A) è affine e

φ#
V : B = OY (V ) → OX(φ−1V ) = A

realizza A come un modulo finitamente generato su B.

Al confronto di essere di tipo finito quindi richediamio quindi in particolare di essere finitamente

generato come modulo, non solo come algebra.

Esempio 2.2. Il morfismo φ : Spec(k[x, y]/(x2 − y)) → Spec(k[y]) che corrisponde alla inclu-

sione k[y] → k[x, y]/(x2 − y), y 7→ y è finito perchè k[x, y]/(x2 − y) è generato da 1 e x come

k[y]-modulo.

Lemma 2.3. Un morfismo finito ha fibre finite.

Proof. La domanda è locale e quindi possiamo supporre che Y = Spec(B) e X = Spec(A) come

nella definizione di essere finito. Assumiamo che A è un B-modulo finitamente generato e sia

y ∈ Y . Allora la fibra k(y)⊗B A di φ è un k(y) modulo finitamente generato tramitte la mappa

B → k(y). Ma ogni k(y)-algebra che è finitamente generato come k(y)-modulo ha un numero

finito di primi (è Artiniano). □

Osservazione 2.4. Avere fibre finite (si dice anche di essere ‘quasi-finito’) non è sufficiente per

essere un morfismo finito. Per esempio, l’inclusione φ : A1 \ {0} → A1
è data dalla mappa di

annelli k[t] → k[t, t−1]. Allora φ è iniettivo quindi quasi-finito, ma non finito perchè k[t, t−1]
non è finitamente generato come k[t] modulo.

Osservazione 2.5. Si nota che nelle definizioni di (localmente) di tipo finito e finito si richiede

l’esistenza di un certo ricoprimento con aperti affini di Y . Si può dimostrare che questo implica le

condizioni per ogni ricoprimento affine di Y .

2.2. Morfismi separati. Abbiamo visto che ogni schema affine noetheriano è quasicompatto.

Ma questo proprietà non porta gli vantagi che ha in altre teorie. Per esempio che l’immagine di un

morfismo definito sullo spazio è chiuso. Questo perchè uno schema affine è quasi mai Hausdorff e

quindi quasi mai compatto: già per esempio A1
k non lo è. I concetti di morfismi separati e propri

danno un analogo di essere Hausdorff e compatto nella categoria degli schemi.

Si riccorda, che un spazio topologico X è Hausdorff se e solo se la diagonale ∆ in X × X
è chiuso nella topologia prodotto. Questo generalizza per gli schemi sustituendo la topologia

prodotto con il prodotto fibrato.

Sia φ : X → S un morfismo tra schemi. La diagonale ∆ ⊂ X ×S X è il sottoschema definito

su affini Spec(A) ⊂ X e Spec(B) ⊂ S con φ|Spec(A) : Spec(A) → Spec(B) dal ideale generato

da elementi

a⊗ 1− 1⊗ a ∈ A⊗B A.
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Osservazione 2.6. Una definizione alternativa è: La diagonale è l’immagine del unico morfismo

X → X ×S X che composto con ognuno dei due proiezioni dà l’identitá su X (usando la

proprietá universale del prodotto fibrato): l’identità al livello di schemi corrisponde al identità

al livello di anelli. Quindi cerchiamo una mappa µ : A ⊗B A → A tale che le composizioni

con A → A ⊗B A, a 7→ 1 ⊗ a e A → A ⊗B A, a 7→ 1 ⊗ a danno l’identità. Dobbiamo avere

µ(a⊗ b) = ab e si verifica che il nucleo di questa mappa è generato da elementi a⊗ 1− 1⊗ a

Definizione 2.7. Un morfismo α : X → S si chiama separato se la diagonale ∆ ⊂ X ×S X è

chiusa. Un S-schema X si chiama separato se lo morfismo strutturale X → S lo è.

Esempio 2.8. Se X e S sono affini, allora la diagonale è un sottoschema chiuso per definizione e

quindi φ è separato.

Esempio 2.9. Sia X la ‘rette affine con l’origine sdoppiata’, c’è lo schema ottenuto incollando

X1 = Spec(k[t]) e X2 = Spec(k[s]) tramitte il morfismo k[t, t−1] → k[s, s−1], t 7→ s che

identifica X1 \ {0} con X2 \ {0}. Allora X ×k X ha un ricoprimento affine dato da X1 ×
X1, X1 × X2, X2 × X1 e X2 × X2 (quindi A2

con ‘assi sdopiati’ e ‘quattro punti di origine’).

La diagonale contiene le origini di X1 ×X1 e X2 ×X2 ma non quelle di X2 ×X1 e X1 ×X2.

Fuori dal origine, gli (Xi \ {0}) × (Xi \ {0}) vanno tutti identificati e la diagonale in ogni

(Xi \ {0})× (Xi \ {0}) sono i punti (x, x). Quindi la diagonale in X2 ×X1 e X1 ×X2 non è

chiusa e il morfismo non separato.

Commento 2.10. Si nota che essere separato è un concetto ‘relativo’. La identitá X → X con X
come nel esempio precedente è separato.

Si ricorda che un anello di valutazione è un anello in cui gli ideali sono totalmente ordinati

(rispetto al’inclusione). Si dice che un anello locale B domina un altro anello local A se A ⊂ B e

mA = mB ∩A.

Teorema 2.11 (Criterio valutativo di separatezza). Sia f : X → S un morfismo tra schemi con
X noeteriano. Allora f è separato se e solo se si è verificata la seguente condizione. Per ogni campo
K e per ogni anello di valutazione R con campo quoziente K sia T = Spec(R), U = Spec(K) e
i : U → T il morfismo indotto dall’inclusione R ⊂ K . Dato un morfismo da T a Y e un morfismo
da U a X in modo tale che il seguente diagramma sia commutativo

U //

i
��

X

f
��

T // S,

(1)

esiste al più un morfismo T → X che ritiene commutativo il diagramma.

Osservazione 2.12. Se anche S è Noetheriano e f di tipo finito, basta controllare il criterio per

ogni anello di valutazione discreto R.

Esercizio 2.13. Sia R un anello di valutazione con campo di frazioni K . Sia T = Spec(R) e
U = Spec(K). Dare un morfismo da U a uno schema X è la stessa cosa come dare un punto x ∈ X
e un’inclusione di campi k(x) ↪→ K . Dare un morfismo da T in X è equivalente a dare due punti
x, η in X con x ∈ η e un inclusione di campi k(η) ⊂ K tale che R domina l’anello locale di x in η.

Proof. Supponiamo che f sia separato. Siano h, h′ : T → X due morfismi come nel teorema.

Allora h e h′ definiscono un morfismo h′′ : T → X ×S X . Visto che h|U = h|U ′ h e h′ mandano

il punto generico η di T nello stesso punto di X e quindi h′′ manda il punto generico di T nella

diagonale ∆ di X ×S X . Visto che ∆ è chiusa, h′′ manda anche il punto chiuso p nella diagonale.

Quindi anche h(p) = h′(p). Visto che h e h′ definiscono – per assunzione – anche lo stesso

inclusione di k(h(η)) ⊂ K , segue dal esercizio che h = h′.
Viceversa supponiamo che la condizione del criterio è soddisfatta e vogliamo dimostrare che la

diagonale è chiusa. È sufficiente dimostrare: per ogni punto η ∈ ∆ e x ∈ η abbiamo anche x ∈ ∆
(si trova una dimostrazione per esempio in Hartshorne Lemma II.4.5). Sia K = k(η) e O l’anello
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locale di x nello sottoschema η (con la struttura di schema ridotto). Allora O è un sotoanello locale

di K e quindi esiste un anello di valutazione R di K che domina O. Se mettiamo T = Spec(R)
otteniamo usando l’esercizio un morfismo T → X ×S X che manda il punto generico di T in η e

il punto chiuso in x. Composizione con i due proiezioni dà due morfismi T → X che danno lo

stesso morfismo a S e che coincidono su Spec(K). La condizione quindi da che i due morfismi

coincidono. Quindi T → X ×S X fatorizza attraverso il morfismo della diagonale X → X ×S X
e otteniamo che anche x ∈ ∆. □

Corollario 2.14. Supponiamo che tutti schemi sono noetheriani:
(1) Inclusioni di sottoschemi sono separate.
(2) La composizione di due morfismi separati è separata.
(3) I morfismi separati sono stabili per cambiamento di base.
(4) Se f : X → Y e f ′ : X ′ → Y ′ sono morfismi separati di schemi su uno stesso schema di base

S, allora il prodotto fibrato

f ×S f ′ : X ×S X ′ → Y ×S Y ′

è separato.
(5) Se f : X → Y e g : Y → Z sono due morfismi di schemi e se g ◦ f è separato, allora anche

f è separato.
(6) Un morfismo f : X → Y è separato se e solo se Y può essere ricoperto da sottoinsiemi aperti

Vi tali che i morfismi f−1(Vi) → Vi siano separati, per ogni i.

Proof. Per esempio, (2) si può verificare cosi: Sia f : X → Y e g : Y → Z morfismi di schemi

separati. Si considera

U //

i

��

X

f
��
Y

g
��

T // Z

Una mappa T → X induce una mappa T → Y che è unica perchè g è separato. Ma anche una

mappa T → X che commuta con T → Y è unica perchè f è separato, quindi T → X è unica e

g ◦ f è separato. □

2.3. Morfismi propri. Uno dei proprietá più importante di spazzi compatti è che una mappa

continua X → Y con X compatto (e Y Hausdroff) manda chiusi in chiusi. Si usa una versione di

questo proprietá un po più forte per definire l’analogo nel mondo dei schemi:

Definizione 2.15. Un morfismo tra schemi φ : X → Y si chiama

(1) universalmente chiuso se per ogni morfismo Y ′ → Y il cambiamento di base Y ′×Y X →
Y ′

è chiuso.

(2) proprio se è di tipo finito, separato e universalmente chiuso.

Come prima, un S-schema X si chiama proprio se il morfismo strutturale X → S lo è.

Esempio 2.16. A1
k non è proprio (su k). Il cambiamento di base dato da A1

k → Spec(k) stesso

dà la mappa A1
k ×k A1

k = A2
k → A1

k che non è chiuso: l’immagine di Spec(k[x, y]/(xy − 1))
è A1

k \ {0} non è chiuso (si deve aggiungere il punto ‘a infinito’, che faremmo nella sezione

successiva).

—

Lezione

30.10.
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