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1. SCHEMI

1.1. Introduzione. Una varieta algebraica X C k™ tradizionalmente ¢ definito come il luogo

di zeri di un insieme di polinomi fi,..., f, con m variabili e con coefficienti in un campo k
(algebraicamente chiuso, di caratteristica 0).
Si vede subito, che X infatti non dipende dalla scelta di fi, ..., f, ma invece dall ideale I

generato dai f;. Poi 'anello di funzioni regolari su X ¢, per definizione,
E[X] =k[x1,...,z0]/1

, che sono ‘polinomi’ o funzioni regolari definito su X. Per avere una correspondenza biiettiva
tra ideali e varieta algebriche, si deve imporre che k[X] é un dominio: per esempio, il luogo di
zeri di (y) e (y?) ¢ identico, anche se gli ideali non lo sono. Nella perspettiva classica, si risolve
questa ambivalenza ristringendo 'insieme di ideali che sono ammessi. Nella perspettiva moderna
degli schemi, si aumenta invece I'insiemme di oggetti geometrici - c’e si introduce un oggetto
geometrico che corrisponde a (y?) ed & diverso da (y).

Perché questo € utile anche se magari si € interessato sopratutto nelle varieta algebriche? Si
consideri per esempio una degenerazione nel parametro ¢ di una parabola, 2t — y? = 0. Per t # 0,
questo definisce una varieta algebrica. Per t = 0 invece otteniamo I'ideale (y?) e quindi la teoria
delle varieta algebriche ci dice di prendere il radicale e vederlo come la retta data da (y). Ma
questo non da una teoria soddisfacente; per esempio, il grado per ¢ # 0 sarebbe uguale a 2, metre
per t = 0 uguale a 1. La teoria dei schemi da la possibilita di parlare in un senso formale anche
dal oggetto geometrico associato a (y?) (che dovrebbe essere una ‘retta doppia’).

Quindi, la teoria dei schemi introduce la possibilita di avere nilpotenti nel anello delle coordinati.
Ma non solo, nel mondo dei schemi si puo per esempio anche lavorare su un anello (come 7Z
con applicazioni alla teoria dei numeri) invece del campo k, o anello delle coordinati non e
necessariamente finitamente generato come k-algebra.

Un’altro perspettiva che gli schemi offrono, € che permettono di definire ‘varieta astratte’ —
invece delle varieta con un spazio ambientale come A}! o IP}}. Questo passo ¢ analogo al concetto
delle varieta astratte nella geometria differenziale: si ottiene 'oggetto astratto incollando aperti.
Nel caso degli schemi, gli ogetti di base sono i schemi affini.

1.2. Definizione di Schemi. Uno schema affine e dato da

(1) Spec(R) con R anello commutativo con la topologia di Zariski e
(2) O fascio strutturale/fascio delle funzione regolare sullo schema.
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Definiamo questo oggetto in tre passi, prima come insieme, poi come spazio topologico e
finalmente come ‘spazio localmente annellato’, quindi lo fascio strutturale O.

1.2.1. Schemi affini come insieme. Sia R un anello (assumiamo sempre che gli annelli sono com-
mutativi con 1).

Definizione 1.1. Gli elementi di Spec(R) come insieme sono i ideali primi p di R.

Osservazione 1.2. R C R non € un ideale primo. {0} invece lo € se R non ha divisori di zero
(R € un dominio). Se R ¢ un campo, I'unico ideale primo ¢ {0} perche ogni elemento = # 0 &
invertibile.

Un ideale primo m € un ideale massimale se m € massimale rispetto all’inclusione; c’é se m C p
per un ideale primo p, allora m = p. Ogni ideale diverso da R é contenuto in un ideale massimale.

Osservazione 1.3. Un ideale p € primo se e solo se R/p € un dominio, e p € massimale se e solo se
R/p & un campo.

Esempio 1.4. (1) Spec(Z) = {(p) | p interi primi } U {(0)}.

(2) Spec(Z/3Z) = {(0)} perche Z/3Z & un campo

(3) Spec(Clz]) = {(z—a | a € C}U{(0)}. In questo caso, C[z]/(x —a) ~ Cvia f — f(a).
Quindi (z — «) € un ideale massimale. Poi tutti ideali primi hanno questa forma: Sia
p # (0) un ideale primo di C[z] e f € p un elemento di grado minimo. Allora f non e
costante perche altrimenti p = C[z]. Se deg(f) > 1, allora f = c(x —a1) - ... (z — ay)
perché C é algebraicamente chiuso. Ma p € primo e quindi deve contenere anche uno dei
(x — «;). Visto che C[z] &€ un dominio ad ideali principali (per esempio dovuto al fatto
che esiste un algorithmo di divisione con resto), dobbiamo avere p = (z — «;).

Dato f € R si pud associare a f una ‘funzione’ f con dominio Spec(R) (vogliamo vedere i
elementi in R come polinomi/funzioni regolari su Spec(R)). Dato p € Spec(R), consideriamo

a: R — R/p — Frac(R/p).
Allora, 'imagine di p sotto f & definito come «/(f) e scriviamo f(p).

Osservazione 1.5. Questo non definisce una vera funzione, perche il codominio Frac(R/p) cambia
con p.

Esempio 1.6. f = 15 € Z. Allora il ‘valore’ di f a (7) per esempio ¢ 15 mod 7 = [1| € Z/TZ.
Il ‘valore’ di f a (11) e [4] € Z/11Z. 11 ‘valore’ di f a (0) e 15 € Q.

Esempio 1.7. R = k[z]/(x?), allora Spec(R) = {(x)}. Il ‘valore’ di f = x € R sul unico punto
(x) & zero. In particolare, da una ‘funzione’ non-zero su Spec(R) che ha ‘valore’ zero a tutti i
punti di Spec(R).

1.2.2. Schemi affini come spazi topologici. La Topologia di Zariski ha chiusi dato cosi: per ogni
S C R, abbiamo un chiuso

V(S) = {p € Spec(R) | S C p}.

Osservazione 1.8. Otteniamo la stessa definizione scrivendo V(S) = {p € Spec(R) | f(p) = 0},
che collega alla nozione piu classico che i chiusi sono luoghi di zero di un insiemme di polinomi.

Poi chiaramente V' (S) = V((.9)) dove (S) e I'ideale generato da S.

Proposizione 1.9. Prendere iV (I) per I ideali di R come chiusi definisce una topologia su Spec(R)
(la topologia di Zariski).
Proof. Controlliamo i requisiti per una topologia uno per uno:

e Ogni ideale contiene (0), quindi V' (0) = Spec(R).
e Ogni ideale primo & proprio, quindi V(R) = ().



e Per un insieme di ideali {I, }, abbiamo:
pe( V) & InCpVas|JlcpeopeV( )
e Per due ideali I e J abbiamo:
peV)UV(J) & peV{)opeV(J)eICpoJCp&
& INnJCcpepeVnl),
dove INJ Cp=1CpoJ Cppercheé senon,esistonoit € I ej e Jconi,j&p Ma
in questo casoij € INJ C pequindii € po j € p perché p é primo, una contradizione.
O

Gli aperti sono i complementi dei chiusi. Se S = {f}, f € R, allora
Spec(R) \ V(f) = Spec(Ry) = Xy,

dove Ry = R[f ~1] ¢ la localizzazione di R rispetto a f (c’¢ rispetto al insieme moltiplitivamente

chiuso { f"}nen):

Proposizione 1.10. Gli ideali primi di Ry sono in corrispondenza biunico con i primi di R che non
contengono f.

Proof. Per passare da R a R si usano due costruzioni:

e | C Rideale, allora I® = {f% per t € I} I'ideale di Ry generato dall immagine di / con

t
¢:R—>Rf,t»—>1.

Si chiama la estensione di I (in [y).
e JC Ry, J¢= ¢ 1(J),la contrazione di J.

Per ogni ideale abbiamo che I C (I¢)¢ e J = (J°)°. Poi la contrazione di un ideale primo &
sempre primo, perché la preimagine di un ideale primo tramite un morfismo tra anelli & primo.

Vogliamo dimostrare che per ¢ C R primo con f ¢ ¢ abbiamo q = (q°)¢ e che q° & primo
(in generale, I'ideale generato dal immagine di un ideale primo non é necesseriamente un ideale
primo). Cosi si vede che la corrispondenza biunica che cerchiamo é dato dalla estensione con
inverso la contrazione (si osserva che per f € g, la estensione di q ¢ 2y perché f diventa invertibile
in Ry).

Entrambe le affermazioni sequono se dimostriamo che fl" € q° implica che x € g. Lo
facciamo adesso: Sappiamo che 77 ~ fz—n/, per un @’ € q. Per definizione esiste un m t.c.
fr(zfr —a' ) = 0 e quindi zf™" = 2/ f"*" Visto che 2’ € g, anche ' f™t" € q e quindi
zf € q. Ma f™t" ¢ q, e quindi 2 € q come desiderato. O

Lemma 1.11. Gli Xy formano una base per la topologia di Zariski.

Proof. Dobbiamo dimostrare che ogni aperto U di Spec(R) si puo scrivere come unione di aperti
X . Per definizione abbiamao U = Spec(R) \ V(.5), che possiamo rescrivere come

U = Spec(R) \ V(S) = Spec(R) \ () V() = | Spec(R)\ V() = | X7.

fes fes fes

Gli aperti X si comportano bene anche per intersezioni finite:
Lemma 1.12. Abbiamo Xy N Xy = Xy,.

Proof. L’aperto Xy ¢ I'insiemme di primi che non contengono f. Quindi X; N X, e I'insieme di
primi che non contengono f e non contengono g. L’insiemme X 7, invece sono gli ideali primi
che non contengono fg e quindi che contengono né f né g. O
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Osservazione 1.13. Spec(R) non € quasi mai di Hausdorff. Infatti, gli unici punti chiusi sono i
ideali massimali perché se p € Spec(R) la chiusura e

p = {q € Spec(R) [ p C q}.

Esempio 1.14. In Spec(C[z]) i p = (x — «) sono punti chiusi. (0) non € chiuso e la sua chiusura
e tutto Spec(Clz]). Se f € Clz], allora V(f) sono tutti i punti (z — «) t.c. (f) C (z — «) che
significa « tale che f(a) = 0.

2. PROPRIETA DI MORFISMI

2.1. Finitezza. Il seguente concetto di finitezza & molto piu restrittivo rispetto ad essere di tipo
finito:

Definizione 2.1. Un morfismo di schemi ¢: X — Y & finito se per ogni puntoy € Y c’é un
aperto affine y € V' = SpecB tale che anche ¢~ !(V) = Spec(A) ¢ affine e

¢l B=0y(V) = Ox(p V)= A
realizza A come un modulo finitamente generato su B.

Al confronto di essere di tipo finito quindi richediamio quindi in particolare di essere finitamente
generato come modulo, non solo come algebra.

Esempio 2.2. 1l morfismo ¢: Spec(k[z,y]/(z? — y)) — Spec(k[y]) che corrisponde alla inclu-
sione k[y] — k[x,y]/(z® — y),y — y & finito perche k[z,y]/(x? — y) & generato da 1 e x come
k[y]-modulo.

Lemma 2.3. Un morfismo finito ha fibre finite.

Proof. La domanda ¢ locale e quindi possiamo supporre che Y = Spec(B) e X = Spec(A) come
nella definizione di essere finito. Assumiamo che A € un B-modulo finitamente generato e sia
y € Y. Allora la fibra k(y) ® p A di ¢ € un k(y) modulo finitamente generato tramitte la mappa
B — E(y). Ma ogni k(y)-algebra che ¢ finitamente generato come k(y)-modulo ha un numero
finito di primi (¢ Artiniano). O

Osservazione 2.4. Avere fibre finite (si dice anche di essere ‘quasi-finito’) non é sufficiente per
essere un morfismo finito. Per esempio, I'inclusione : Al \ {0} — Al & data dalla mappa di
annelli k[t] — k[t,t~!]. Allora ¢ ¢ iniettivo quindi quasi-finito, ma non finito perche k[t, ']
non é finitamente generato come k|[t] modulo.

Osservazione 2.5. Si nota che nelle definizioni di (localmente) di tipo finito e finito si richiede
’esistenza di un certo ricoprimento con aperti affini di Y. Si puo dimostrare che questo implica le
condizioni per ogni ricoprimento affine di Y.

2.2. Morfismi separati. Abbiamo visto che ogni schema affine noetheriano e quasicompatto.
Ma questo proprieta non porta gli vantagi che ha in altre teorie. Per esempio che 'immagine di un
morfismo definito sullo spazio é chiuso. Questo perché uno schema affine é quasi mai Hausdorff e
quindi quasi mai compatto: gia per esempio A} non lo &. I concetti di morfismi separati e propri
danno un analogo di essere Hausdorff e compatto nella categoria degli schemi.

Si riccorda, che un spazio topologico X € Hausdorff se e solo se la diagonale A in X x X
e chiuso nella topologia prodotto. Questo generalizza per gli schemi sustituendo la topologia
prodotto con il prodotto fibrato.

Sia ¢: X — S un morfismo tra schemi. La diagonale A C X xg X ¢ il sottoschema definito
su affini Spec(A) C X e Spec(B) C S con ¢[gpec(a): Spec(A) — Spec(B) dal ideale generato
da elementi

a®1—-1®ac ARp A.
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Osservazione 2.6. Una definizione alternativa é: La diagonale e I'immagine del unico morfismo
X — X Xg X che composto con ognuno dei due proiezioni da I'identita su X (usando la
proprieta universale del prodotto fibrato): 'identita al livello di schemi corrisponde al identita
al livello di anelli. Quindi cerchiamo una mappa ;: A ® g A — A tale che le composizioni
conA —+ A®RgpA,a—1®aeA— ARp A,a — 1 ® a danno I'identita. Dobbiamo avere
p(a ® b) = ab e si verifica che il nucleo di questa mappa € generato da elementia® 1 — 1 ® a

Definizione 2.7. Un morfismo av: X — S si chiama separato se la diagonale A C X xg X e
chiusa. Un S-schema X si chiama separato se lo morfismo strutturale X — S'lo é.

Esempio 2.8. Se X e S sono affini, allora la diagonale e un sottoschema chiuso per definizione e
quindi ¢ e separato.

Esempio 2.9. Sia X la ‘rette affine con 'origine sdoppiata’, c’é lo schema ottenuto incollando
X1 = Spec(k[t]) e Xo = Spec(k[s]) tramitte il morfismo k[t,t~1] — k[s,s7!],t — s che
identifica X; \ {0} con X5 \ {0}. Allora X xj; X ha un ricoprimento affine dato da X; X
X1, X1 X X9, X9 x X1 e Xo x X5 (quindi A? con ‘assi sdopiati’ e ‘quattro punti di origine’).
La diagonale contiene le origini di X7 x X7 e X2 X X5 ma non quelle di Xy x X7 e X7 X Xo.
Fuori dal origine, gli (X; \ {0}) x (X; \ {0}) vanno tutti identificati e la diagonale in ogni
(Xi \ {0}) x (X; \ {0}) sono i punti (z, z). Quindi la diagonale in X x X; e X; x X2 non &
chiusa e il morfismo non separato.

Commento 2.10. Si nota che essere separato € un concetto ‘relativo’. La identita X — X con X
come nel esempio precedente ¢ separato.

Si ricorda che un anello di valutazione € un anello in cui gli ideali sono totalmente ordinati
(rispetto al’inclusione). Si dice che un anello locale B domina un altro anello local Ase A C B e
my =mpnA.

Teorema 2.11 (Criterio valutativo di separatezza). Sia f: X — S un morfismo tra schemi con
X noeteriano. Allora f é separato se e solo se si é verificata la seguente condizione. Per ogni campo
K e per ogni anello di valutazione R con campo quoziente K siaT = Spec(R), U = Spec(K) e
i: U — T il morfismo indotto dall’inclusione R C K. Dato un morfismodaT a'Y e un morfismo
daU a X in modo tale che il seguente diagramma sia commutativo

U—X (1)

ool

T—5,
esiste al pit un morfismo T — X che ritiene commutativo il diagramma.

Osservazione 2.12. Se anche S € Noetheriano e f di tipo finito, basta controllare il criterio per
ogni anello di valutazione discreto R.

Esercizio 2.13. Sia R un anello di valutazione con campo di frazioni K. Sia T = Spec(R) e
U = Spec(K). Dare un morfismo da U a uno schema X ¢ la stessa cosa come dare un puntox € X
e un’inclusione di campi k(x) — K. Dare un morfismo da'T in X ¢é equivalente a dare due punti
x,n in X conx € 7] e un inclusione di campi k(n) C K tale che R domina ’anello locale di x: in 7.

Proof. Supponiamo che f sia separato. Siano h,h': T — X due morfismi come nel teorema.
Allora h e h' definiscono un morfismo h”: T' — X x g X. Visto che h|y = h|ys h e h’ mandano
il punto generico 7 di T nello stesso punto di X e quindi 2” manda il punto generico di 7" nella
diagonale A di X x g X. Visto che A ¢ chiusa, 4" manda anche il punto chiuso p nella diagonale.
Quindi anche h(p) = h/(p). Visto che h e I’ definiscono — per assunzione - anche lo stesso
inclusione di k(h(n)) C K, segue dal esercizio che h = h'.

Viceversa supponiamo che la condizione del criterio é soddisfatta e vogliamo dimostrare che la
diagonale ¢ chiusa. E sufficiente dimostrare: per ogni punto 7 € A e x € 7] abbiamo anche 2 € A
(si trova una dimostrazione per esempio in Hartshorne Lemma I1.4.5). Sia K = k(n) e O l'anello
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locale di x nello sottoschema 7 (con la struttura di schema ridotto). Allora O € un sotoanello locale
di K e quindi esiste un anello di valutazione R di K che domina O. Se mettiamo 7" = Spec(R)
otteniamo usando ’esercizio un morfismo 7' — X X g X che manda il punto genericodi 7 in n e
il punto chiuso in x. Composizione con i due proiezioni da due morfismi 7' — X che danno lo
stesso morfismo a S e che coincidono su Spec(K). La condizione quindi da che i due morfismi
coincidono. Quindi 7" — X x ¢ X fatorizza attraverso il morfismo della diagonale X — X xg X
e otteniamo che anche z € A. O

Corollario 2.14. Supponiamo che tutti schemi sono noetheriani:

(1) Inclusioni di sottoschemi sono separate.

(2) La composizione di due morfismi separati e separata.

(3) I morfismi separati sono stabili per cambiamento di base.

(4) Sef: X =Y ef': X' — Y’ sono morfismi separati di schemi su uno stesso schema di base
S, allora il prodotto fibrato

fXSfIZXXSX/—>Y><5Y/

e separato.

(5) Sef: X =Y eqg:Y — Z sono due morfismi di schemi e se g o f ¢é separato, allora anche
f € separato.

(6) Un morfismo f: X — Y é separato se e solo se Y puo essere ricoperto da sottoinsiemi aperti
V; tali che i morfismi f~1(V;) — V; siano separati, per ogni i.

Proof. Per esempio, (2) si puo verificare cosi: Sia f: X — Y eg: Y — Z morfismi di schemi
separati. Si considera
U—X

T—7
Una mappa T' — X induce una mappa T’ — Y che € unica perche g e separato. Ma anche una
mappa T' — X che commuta con T' — Y & unica perche f € separato, quindi 7" — X € unica e
g o f & separato. g

2.3. Morfismi propri. Uno dei proprieta piu importante di spazzi compatti € che una mappa
continua X — Y con X compatto (e Y Hausdroff) manda chiusi in chiusi. Si usa una versione di
questo proprieta un po piu forte per definire I’analogo nel mondo dei schemi:

Definizione 2.15. Un morfismo tra schemi ¢: X — Y si chiama
(1) universalmente chiuso se per ogni morfismo Y’ — Y il cambiamento di base Y’ xy X —
Y’ ¢ chiuso.
(2) proprio se e di tipo finito, separato e universalmente chiuso.

Come prima, un S-schema X si chiama proprio se il morfismo strutturale X — S'lo e.

Esempio 2.16. A} non ¢ proprio (su k). Il cambiamento di base dato da A}, — Spec(k) stesso
da la mappa A} x; Al = A? — A} che non ¢ chiuso: 'immagine di Spec(k[z, y]/(zy — 1))
¢ Al \ {0} non é chiuso (si deve aggiungere il punto ‘a infinito’, che faremmo nella sezione
successiva).
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