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1. SCHEMI

1.1. Introduzione. Una varieta algebraica X C k™ tradizionalmente ¢ definito come il luogo
di zeri di un insieme di polinomi fi,..., f, con m variabili e con coefficienti in un campo k
(algebraicamente chiuso, di caratteristica 0).

Si vede subito, che X infatti non dipende dalla scelta di fi, ..., f, ma invece dall ideale I
generato dai f;. Poi ’anello di funzioni regolari su X ¢, per definizione,

E[X] =k[x1,...,z5]/1

, che sono ‘polinomi’ o funzioni regolari definito su X. Per avere una correspondenza biiettiva
tra ideali e varieta algebriche, si deve imporre che k[X] é un dominio: per esempio, il luogo di
zeri di (y) e (y?) ¢ identico, anche se gli ideali non lo sono. Nella perspettiva classica, si risolve
questa ambivalenza ristringendo 'insieme di ideali che sono ammessi. Nella perspettiva moderna
degli schemi, si aumenta invece I'insiemme di oggetti geometrici — c’e si introduce un oggetto
geometrico che corrisponde a (y?) ed ¢ diverso da (y).

Perché questo é utile anche se magari si € interessato sopratutto nelle varieta algebriche? Si
consideri per esempio una degenerazione nel parametro ¢ di una parabola, zt — y? = 0. Per t # 0,
questo definisce una varieta algebrica. Per t = 0 invece otteniamo I'ideale (y?) e quindi la teoria
delle varieta algebriche ci dice di prendere il radicale e vederlo come la retta data da (y). Ma
questo non da una teoria soddisfacente; per esempio, il grado per ¢ # 0 sarebbe uguale a 2, metre
per t = 0 uguale a 1. La teoria dei schemi da la possibilita di parlare in un senso formale anche
dal oggetto geometrico associato a (y?) (che dovrebbe essere una ‘retta doppia’).

Quindi, la teoria dei schemi introduce la possibilita di avere nilpotenti nel anello delle coordinati.
Ma non solo, nel mondo dei schemi si puo per esempio anche lavorare su un anello (come Z
con applicazioni alla teoria dei numeri) invece del campo k, o 'anello delle coordinati non e
necessariamente finitamente generato come k-algebra.

Un’altro perspettiva che gli schemi offrono, € che permettono di definire ‘varieta astratte’ —
invece delle varieta con un spazio ambientale come A}’ o IP}'. Questo passo ¢ analogo al concetto
delle varieta astratte nella geometria differenziale: si ottiene ’'oggetto astratto incollando aperti.
Nel caso degli schemi, gli ogetti di base sono i schemi affini.
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1.2. Definizione di Schemi. Uno schema affine e dato da

(1) Spec(R) con R anello commutativo con la topologia di Zariski e
(2) O fascio strutturale/fascio delle funzione regolare sullo schema.
Definiamo questo oggetto in tre passi, prima come insieme, poi come spazio topologico e
finalmente come ‘spazio localmente annellato’, quindi lo fascio strutturale O.

1.2.1. Schemi affini come insieme. Sia R un anello (assumiamo sempre che gli annelli sono com-
mutativi con 1).

Definizione 1.1. Gli elementi di Spec(R) come insieme sono i ideali primi p di R.

Osservazione 1.2. R C R non € un ideale primo. {0} invece lo ¢ se R non ha divisori di zero
(R & un dominio). Se R é un campo, I'unico ideale primo ¢ {0} perché ogni elemento = # 0 &
invertibile.

Un ideale primo m ¢ un ideale massimale se m ¢ massimale rispetto all’inclusione; c’é sem C p
per un ideale primo p, allora m = p. Ogni ideale diverso da R e contenuto in un ideale massimale.

Osservazione 1.3. Un ideale p € primo se e solo se R/p € un dominio, e p € massimale se e solo se
R/p & un campo.

Esempio 1.4. (1) Spec(Z) = {(p) | p interi primi } U {(0)}.

(2) Spec(Z/3Z) = {(0)} perche Z/37Z é un campo

(3) Spec(Clz]) = {(z—a | a € C}U{(0)}. In questo caso, C[z]/(x —a) ~ Cvia f — f(a).
Quindi (x — «) € un ideale massimale. Poi tutti ideali primi hanno questa forma: Sia
p # (0) un ideale primo di C[z] e f € p un elemento di grado minimo. Allora f non e
costante perche altrimenti p = Clz]. Se deg(f) > L, allora f = c(z —a1) ... (z — ay)
perché C ¢ algebraicamente chiuso. Ma p e primo e quindi deve contenere anche uno dei
(x — ;). Visto che C[z] € un dominio ad ideali principali (per esempio dovuto al fatto
che esiste un algorithmo di divisione con resto), dobbiamo avere p = (z — ;).

Dato f € R si pud associare a f una ‘funzione’ f con dominio Spec(R) (vogliamo vedere i
elementi in R come polinomi/funzioni regolari su Spec(R)). Dato p € Spec(R), consideriamo
a: R — R/p — Frac(R/p).

Allora, 'imagine di p sotto f & definito come a/(f) e scriviamo f(p).

Osservazione 1.5. Questo non definisce una vera funzione, perche il codominio Frac(R/p) cambia
con p.

Esempio 1.6. f = 15 € Z. Allora il ‘valore’ di f a (7) per esempio ¢ 15 mod 7 = [1] € Z/7Z.
Il ‘valore’ di f a (11) € [4] € Z/11Z. 11 ‘valore’ di f a (0) e 15 € Q.

Esempio 1.7. R = k[z]/(2?), allora Spec(R) = {(z)}. Il ‘valore’ di f = x € R sul unico punto
(x) e zero. In particolare, da una ‘funzione’ non-zero su Spec(R) che ha ‘valore’ zero a tutti i
punti di Spec(R).

1.2.2. Schemi affini come spazi topologici. La Topologia di Zariski ha chiusi dato cosi: per ogni
S C R, abbiamo un chiuso

V(S) = {p € Spec(R) | 5 C p}.
Osservazione 1.8. Otteniamo la stessa definizione scrivendo V (S) = {p € Spec(R) | f(p) = 0},

che collega alla nozione piu classico che i chiusi sono luoghi di zero di un insiemme di polinomi.

Poi chiaramente V' (S) = V((.9)) dove (S) e I'ideale generato da S.

Proposizione 1.9. Prendere iV (I) per I ideali di R come chiusi definisce una topologia su Spec(R)
(la topologia di Zariski).

Proof. Controlliamo i requisiti per una topologia uno per uno:



Ogni ideale contiene (0), quindi V' (0) = Spec(R).
Ogni ideale primo ¢ proprio, quindi V' (R) = 0.
Per un insieme di ideali {/,, }, abbiamo:

pe(NV) & InCpVae | JIlocpeopeV( L)
(6% (6%

[e%

Per due ideali I e J abbiamo:
peVHUV(J) & peV({)opeV(J)e&ICpoJCp&
s INnJcpepeV(Inld),

dove INJ Cp=1CpoJ Cpperche senon,esistonoi € [ ej € Jconi,j&p. Ma
in questo casoij € I NJ C pequindii € p o j € p perché p € primo, una contradizione.

O

Gli aperti sono i complementi dei chiusi. Se S = {f}, f € R, allora
Spec(R) \ V(f) = Spec(Ry) = Xy,

dove Ry = R[f~!] & lalocalizzazione di R rispetto a f (c’é rispetto al insieme moltiplitivamente

chiuso {/™ ben):

Proposizione 1.10. Gli ideali primi di Ry sono in corrispondenza biunico con i primi di R che non
contengono f.

Proof. Per passare da R a Ry si usano due costruzioni:

e | C Rideale, allora I® = {fin pert € I} I'ideale di R generato dall immagine di I con

t
¢:R—>Rf,t|—>1.

Si chiama la estensione di I (in Ry).
e JC Ry,J¢= ¢ 1(J),la contrazione di J.

Per ogni ideale abbiamo che I C (I¢)¢ e J = (J¢)®. Poi la contrazione di un ideale primo &
sempre primo, perché la preimagine di un ideale primo tramite un morfismo tra anelli & primo.

Vogliamo dimostrare che per ¢ C R primo con f ¢ ¢ abbiamo q = (q°)¢ e che q° & primo
(in generale, I'ideale generato dal immagine di un ideale primo non e necesseriamente un ideale
primo). Cosi si vede che la corrispondenza biunica che cerchiamo e dato dalla estensione con
inverso la contrazione (si osserva che per f € g, la estensione di q ¢ Ry perché f diventa invertibile
in Ry).

Entrambe le affermazioni sequono se dimostriamo che f% € q° implica che z € q. Lo

facciamo adesso: Sappiamo che fi” ~ fxT:/ per un 2’ € q. Per definizione esiste un m t.c.
fr(xf™ — 2/ f7) = 0 e quindi zf™" = &/ f™+" Visto che 2/ € g, anche 2/ f 1" € q e quindi
zf™t e q. Ma f™" & q, e quindi z € q come desiderato. g

Lemma 1.11. Gli X formano una base per la topologia di Zariski.

Proof. Dobbiamo dimostrare che ogni aperto U di Spec(R) si puo scrivere come unione di aperti
X . Per definizione abbiamao U = Spec(R) \ V(.S), che possiamo rescrivere come

U = Spec(R) \ V(S) = Spec(R)\ [ V() = | (Spec(R)\V(£)) = | X+.

fes fes fes

Gli aperti X si comportano bene anche per intersezioni finite:

Lemma 1.12. Abbiamo XN Xy = X¢,.
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Proof. L’aperto X ; ¢ I'insiemme di primi che non contengono f. Quindi Xy N X, e I'insieme di
primi che non contengono f e non contengono g. L’insiemme X 7, invece sono gli ideali primi
che non contengono fg e quindi che contengono né f ne g. O

Osservazione 1.13. Spec(R) non € quasi mai di Hausdorff. Infatti, gli unici punti chiusi sono i
ideali massimali perché se p € Spec(R) la chiusura &

p ={q € Spec(R) | p C q}.

Esempio 1.14. In Spec((C[:r]) ip = (z — «) sono punti chiusi. (0) non é chiuso e la sua chiusura
é tutto Spec(C[z]). Se f € C[z], allora V(f) sono tutti i punti (z — «) t.c. (f) C (v — «) che
significa « tale che f(a) = 0.

2. PROPRIETA DI MORFISMI

2.1. Finitezza. Il seguente concetto di finitezza & molto piu restrittivo rispetto ad essere di tipo
finito:

Definizione 2.1. Un morfismo di schemi ¢: X — Y é finito se per ogni puntoy € Y c’é un
aperto affine y € V' = SpecB tale che anche ¢~ (V) = Spec(A) ¢ affine e

Wl B=0y(V) > Ox(p 'V)=A
realizza A come un modulo finitamente generato su B.

Al confronto di essere di tipo finito quindi richediamio quindi in particolare di essere finitamente
generato come modulo, non solo come algebra.

Esempio 2.2. 1l morfismo ¢: Spec(k[z,y]/(z? — y)) — Spec(k[y]) che corrisponde alla inclu-
sione k[y] — k[z,y]/(z? — y),y — y & finito perché k[z,y]/(x? — y) & generato da 1 e x come
k[y]-modulo.

Lemma 2.3. Un morfismo finito ha fibre finite.

Proof. La domanda ¢ locale e quindi possiamo supporre che Y = Spec(B) e X = Spec(A) come
nella definizione di essere finito. Assumiamo che A € un B-modulo finitamente generato e sia
y € Y. Allora la fibra k(y) ® g A di ¢ € un k(y) modulo finitamente generato tramitte la mappa
B — E(y). Ma ogni k(y)-algebra che ¢ finitamente generato come k(y)-modulo ha un numero
finito di primi (¢ Artiniano). O

Osservazione 2.4. Avere fibre finite (si dice anche di essere ‘quasi-finito’) non ¢ sufficiente per
essere un morfismo finito. Per esempio, I'inclusione : Al \ {0} — A! & data dalla mappa di
annelli k[t] — k[t,t~!]. Allora ¢ ¢ iniettivo quindi quasi-finito, ma non finito perche k[t, ']
non ¢ finitamente generato come k|[t] modulo.

Osservazione 2.5. Si nota che nelle definizioni di (localmente) di tipo finito e finito si richiede
lesistenza di un certo ricoprimento con aperti affini di Y. Si puo dimostrare che questo implica le
condizioni per ogni ricoprimento affine di Y.

2.2. Morfismi separati. Abbiamo visto che ogni schema affine noetheriano e quasicompatto.
Ma questo proprieta non porta gli vantagi che ha in altre teorie. Per esempio che 'immagine di un
morfismo definito sullo spazio € chiuso. Questo perche uno schema affine & quasi mai Hausdorff e
quindi quasi mai compatto: gia per esempio A}C non lo e. I concetti di morfismi separati e propri
danno un analogo di essere Hausdorff e compatto nella categoria degli schemi.

Si riccorda, che un spazio topologico X e Hausdorff se e solo se la diagonale A in X x X
e chiuso nella topologia prodotto. Questo generalizza per gli schemi sustituendo la topologia
prodotto con il prodotto fibrato.
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Sia ¢: X — S un morfismo tra schemi. La diagonale A C X xg X ¢ il sottoschema definito
su affini Spec(A) C X e Spec(B) C S con ¢[gpec(a): Spec(A) — Spec(B) dal ideale generato
da elementi

a®l—-—1®a€ ARpg A.

Osservazione 2.6. Una definizione alternativa e: La diagonale e I'immagine del unico morfismo
X — X xg X che composto con ognuno dei due proiezioni da I'identita su X (usando la
proprieta universale del prodotto fibrato): 'identita al livello di schemi corrisponde al identita
al livello di anelli. Quindi cerchiamo una mappa p: A ®p A — A tale che le composizioni
conA = ARpA,a— 1®ae A — A®p A,a — 1 ® a danno I'identita. Dobbiamo avere
p(a ® b) = ab e si verifica che il nucleo di questa mappa € generato da elementia® 1 — 1 ® a

Definizione 2.7. Un morfismo a: X — S si chiama separato se la diagonale A C X xg X e
chiusa. Un S-schema X si chiama separato se lo morfismo strutturale X — S'lo é.

Esempio 2.8. Se X e S sono affini, allora la diagonale e un sottoschema chiuso per definizione e
quindi ¢ € separato.

Esempio 2.9. Sia X la ‘rette affine con 'origine sdoppiata’, ¢’e lo schema ottenuto incollando
X1 = Spec(k[t]) e Xo = Spec(k[s]) tramitte il morfismo k[t,t~1] — k[s,s™1],t > s che
identifica X; \ {0} con X5 \ {0}. Allora X xj X ha un ricoprimento affine dato da X; x
X1, X1 x X9, X2 x X7 e Xo X Xo (quindi A2 con ‘assi sdopiati’ e ‘quattro punti di origine’).
La diagonale contiene le origini di X; x X7 e X2 X X3 ma non quelle di X9 x X; e X; x X5.
Fuori dal origine, gli (X; \ {0}) x (X; \ {0}) vanno tutti identificati e la diagonale in ogni
(Xi\ {0}) x (X; \ {0}) sono i punti (z,z). Quindi la diagonale in X2 x X; e X7 x X2 non e
chiusa e il morfismo non separato.

Commento 2.10. Si nota che essere separato € un concetto ‘relativo’. La identita X — X con X
come nel esempio precedente ¢ separato.

Si ricorda che un anello di valutazione e un anello in cui gli ideali sono totalmente ordinati
(rispetto al’inclusione). Si dice che un anello locale B domina un altro anello local Ase A C B e
my =mpnA.

Teorema 2.11 (Criterio valutativo di separatezza). Sia f: X — S un morfismo tra schemi con
X noeteriano. Allora f é separato se e solo se si é verificata la seguente condizione. Per ogni campo
K e per ogni anello di valutazione R con campo quoziente K siaT = Spec(R), U = Spec(K) e
i: U — T il morfismo indotto dall’inclusione R C K. Dato un morfismodaT a'Y e un morfismo
daU a X in modo tale che il seguente diagramma sia commutativo

U—X (1)

ool

T—8,
esiste al pitt un morfismo T — X che ritiene commutativo il diagramma.

Osservazione 2.12. Se anche S e Noetheriano e f di tipo finito, basta controllare il criterio per
ogni anello di valutazione discreta R.

Esercizio 2.13. Sia R un anello di valutazione con campo di frazioni K. Sia T = Spec(R) e
U = Spec(K). Dare un morfismo da U a uno schema X é la stessa cosa come dare un puntox € X
e un’inclusione di campi k(x) — K. Dare un morfismo da'T in X ¢é equivalente a dare due punti
x,n in X conx € 7] e un inclusione di campi k(n) C K tale che R domina ’anello locale di x: in 7.

Proof. Supponiamo che f sia separato. Siano h,h': T — X due morfismi come nel teorema.
Allora h e h' definiscono un morfismo h”: T' — X x g X. Visto che h|y = h|ys h e b’ mandano
il punto generico 7 di T nello stesso punto di X e quindi 4" manda il punto generico di T nella
diagonale A di X xg X. Visto che A ¢ chiusa, h”/ manda anche il punto chiuso p nella diagonale.
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Quindi anche h(p) = h/(p). Visto che h e b’ definiscono — per assunzione — anche lo stesso
inclusione di k(h(n)) C K, segue dal esercizio che h = h'.

Viceversa supponiamo che la condizione del criterio e soddisfatta e vogliamo dimostrare che la
diagonale ¢ chiusa. E sufficiente dimostrare: per ogni punto 77 € A e & € 7j abbiamo anche z € A
(si trova una dimostrazione per esempio in Hartshorne Lemma I1.4.5). Sia K = k(n) e O l'anello
locale di = nello sottoschema 7 (con la struttura di schema ridotto). Allora O e un sotoanello locale
di K e quindi esiste un anello di valutazione R di K che domina O. Se mettiamo 7" = Spec(R)
otteniamo usando ’esercizio un morfismo 7' — X X g X che manda il punto genericodi T in n e
il punto chiuso in z. Composizione con i due proiezioni da due morfismi 7' — X che danno lo
stesso morfismo a S e che coincidono su Spec(K). La condizione quindi da che i due morfismi
coincidono. Quindi " — X X g X fatorizza attraverso il morfismo della diagonale X — X xg X
e otteniamo che anche z € A. O

Corollario 2.14. Supponiamo che tutti schemi sono noetheriani:

(1) Inclusioni di sottoschemi sono separate.

(2) La composizione di due morfismi separati € separata.

(3) I morfismi separati sono stabili per cambiamento di base.

(4) Sef: X - Y ef: X' — Y’ sonomorfismi separati di schemi su uno stesso schema di base
S, allora il prodotto fibrato

fXSf/:XXSX/—>Y><5Y/

é separato.

(5) Sef: X =Y eqg: Y — Z sono due morfismi di schemi e se g o f é separato, allora anche
f é separato.

(6) Un morfismo f: X — Y é separato se e solo se Y puo essere ricoperto da sottoinsiemi aperti
V; tali che i morfismi f~(V;) — V; siano separati, per ogni i.

Proof. Per esempio, (2) si puo verificare cosi: Sia f: X -+ Y eg: Y — Z morfismi di schemi
separati. Si considera
U—X

T—Z7
Una mappa 7' — X induce una mappa I — Y che e unica perche g ¢ separato. Ma anche una
mappa 1" — X che commuta con 7" — Y e unica perche f e separato, quindi 7' — X ¢ unica e
g o f & separato. O

2.3. Morfismi propri. Uno dei proprieta piu importante di spazzi compatti € che una mappa
continua X — Y con X compatto (e ¥ Hausdroff) manda chiusi in chiusi. Si usa una versione di
questo proprieta un po piu forte per definire I’analogo nel mondo dei schemi:

Definizione 2.15. Un morfismo tra schemi ¢: X — Y si chiama
(1) universalmente chiuso se per ogni morfismo Y’ — Y il cambiamento di base Y’ xy X —
Y’ & chiuso.
(2) proprio se e di tipo finito, separato e universalmente chiuso.

Come prima, un S-schema X si chiama proprio se il morfismo strutturale X — S'lo e.

Esempio 2.16. A} non ¢ proprio (su k). Il cambiamento di base dato da A} — Spec(k) stesso
da la mappa A} xx A} = A? — Al che non ¢é chiuso: I'immagine di Spec(k[xz,y]/(zy — 1))
¢ A} \ {0} non & chiuso (si deve aggiungere il punto ‘a infinito’, che faremmo nella sezione
successiva).
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Teorema 2.17 (Criterio valutativo di proprieta). Sia f: X — S un morfismo di tipo finito tra
schemi con X noeteriano. Allora f ¢é separato se e solo se si € verificata la seguente condizione.
Per ogni campo K e per ogni anello di valutazione R con campo quoziente K sia T = Spec(R),
U = Spec(K) ei: U — T il morfismo indotto dall’inclusione R C K. Dato un morfismodaT a
Y e un morfismo da U a X in modo tale che il seguente diagramma sia commutativo

U—X (2)
ool
T—5,

esiste un unico morfismol’ — X che ritiene commutativo il diagramma.

Proof. Supponiamo che f sia proprio. Siccome f € anche separato, segue dal criterio valutativo di
separatezza che se un morfismo h: T' — X esiste, allora € unico. Dobbiamo quindi dimostrare
Pesistenza.

La proprieta universale del prodotto fibrato da lo seguente diagramma commutativa:

U—LXxsT—X

\ IV lf

T S,

Sia 7 'immagine in X xg T del punto unico contenuto in U. Allora f’ é chiuso perche f &
universalmente chiuso e quindi anche f’(7]) ¢ chiuso e deve essere uguale a 7. Quindi abbiamo
p € con f'(p) = x dove x ¢é il punto chiuso di 7. Quindi otteniamo un morfismo locale di anneli
locali R — O, 5. 1l campo di funzioni di 7, k(n), & contenuto in K. Visto che R & massimale tra
annelli locali in K rispetto a la dominanza, segue che R ~ O, 7 e in particolare R domina O, 7.
Quindi Esercizio ci da un morfismo T' — X X g T e composizione con X xgT — X dail
morfismo cercato.

Supponiamo adesso che f soddisfa il criterio e vogliamo vedere che f e proprio. Dall criterio
valutativo di separatezza segue che f € separato. Visto che supponiamo gia che f sia di tipo finito,
rimane dimostrare che f ¢ universalmente chiuso. Quindisia f': X xgS" — SeZ C X xg 5’
un chiuso e vogliamo vedere che f/(Z) C S’ é chiuso. Usiamo come nella dimostrazione del
criterio valutativo di separatezza che basta dimostrare il seguente: per ognin’ = f'(n) € f'(Z) e
x €1 anche z € f'(2).

Sia O I'anello locale di « in 77/. Allora il campo di frazioni di O & k(n’) che & contenuto in k().
Sia R un anello di valutazione in k(1) che domina O. In questo modo otteniamo un diagramma

Spec(k(n)) — 2 ®)

b
Spec(R) ——= 5',

Composizione con Z — X xg S’ — X e S’ — S da morfismi Spec(R) — S’ e Spec(k(n)) —
X. 1l criterio ci dice che esiste una mappa Spec(R) — X tale che il diagramma diventa commu-
tativo. Visto che X x g S’ & un prodotto fibrato, otteniamo anche un morfismo h: Spec(R) —
X x g5 Visto che h(ng) € Z e Z & chiuso, anche h(xr) € Z. Maallorax = f'(h(zg)) € f'(Z).

O

Commento 2.18. Come per il criterio valutativo di separatezza si puo dimostrare che se anche S ¢
noeteriano, allora basta controllare il criterio per anelli di valutazione discreta.

Commento 2.19. Dal criterio segue, che un esempio di una mappa non-finito ma con fibre finite
(quasi finito) come in Osservazione non € possibile per morfismi propri. Infatti, si puo
dimostrare che un morfismo e finito se e solo se e quasi finito e proprio.

Corollario 2.20. Supponiamo che tutti schemi sono noetheriani:



(1) Un’immersione chiusa e un morfismo proprio.

(2) La composizione di due morfismi propri e proprio.

(3) I morfismi propri sono stabili per cambiamento di base.

(4) Sef: X =Y ef': X' = Y’ sono morfismi propri di schemi su uno stesso schema di base
S, allora il prodotto fibrato

fXSfIIXXSX,—)YXSY/

e proprio.

(5) Sef: X Y eqg: Y — Z sono due morfismi di schemi e se g o f & proprio e g separato,
allora f ¢ proprio.

(6) Un morfismo f: X — Y e proprio se e solo se Y puo essere ricoperto da sottoinsiemi aperti
V; tali che i morfismi f~1(V;) — V; siano propri, per ogni i.

Proof. Per esempio, per vedere (3), sia S’ — S un morfismoe f': X' = X xg 5§ — §"il
cambiamento di base.
Supponiamo che abbiamo

U—>X —>X

A

T—S—38

Sappiamo gia che f’ € separato da Corollario Essere di tipo finito € stabile per cambiamento
di base: si restringe a affini aperti e poi f’ e dato da f’: Spec(A ®p C) — Spec(A) con C
finitamente generato come B-algebra. Si controlla che in questo caso anche A ® g C ¢ finitamente
generato come A ®p B = A algebra.

Finalmente, usiamo il criterio valutativo di proprieta per vedere che anche f’ é proprio: Perché
f e proprio, esiste una mappa 7" — X tale che il diagramma rimane commutativo. Ma per la
proprieta universale del prodotto fibrato, viene indotto anche una mappa 7' — X'. g

Definizione 2.21. Una varieta (astratto) € uno schema integrale, separato e di tipo finito su un
campo algebraicamente chiuso k. Una varieta completa € una varieta che & anche proprio (su k).

3. SCHEMI E MORFISMI PROIETTIVI

3.1. Proj di un anello graduato. Analogo a Spec di un anello, che generalizza varieta affini, si
puo definire Proj di un anello graduato, che generalizza varieta proiettivi.
Si ricorda che un annello graduato S é una A-algebra con

S = é&,
v=0

tale che
S,S, CSyppeSo=A.

Qua supponiamo sempre che S sia finitamente generato.

Un elemento f di S si chiama omogeneo di grado v se f € S,. L’elemento 0 e per definizione
omogeneo, ma non ha un grado fissato. Un ideale si chiama omogeneo se € generato da elementi
omogenei. Scriviamo

Sy =S,
v=1

che € un ideale che chiamiamo 'ideale irrelevante.

Dato un annello graduato .S, ProjS e un A-schema. Per adesso supponiamo che S' sia generato
in grado 1.

Il suo insieme di punti |ProjS| consiste in ideali primi omogenei p tale che S ¢ p.

Esercizio 3.1. ProjS = () se e solo se tutti gli elementi di S sono nilpotenti.



La topologia su |Proj(.S)| ha chiusi della forma
V(L) ={p [p € [ProjS|el C p}

per un ideale omogeneo I di S.
Finalmente, diamo una struttura di schema su |ProjS| specificandola su una base di aperti. Sia
f € 51 un elemento di grado 1 e

U = |ProjS|\ V(f).
Allora U e I'insieme di ideali primi omogenei che non contengono f. Quindi i punti di U possono

essere identificato con I'insieme di primi omogenei nella localizaione S[f ~!]. Il punto chiave per
dare una struttura di schema ¢ lo seguente:

Lemma 3.2. Gli ideali primi omogenei di S[f ~!] sono in biiezione con (tutti) ideali primi di S[f o,
il parte di grado 0 di S[f~1].
Proof. Sia D = {p € ProjS | f ¢ P} e consideriamo la mappa
p: D — Spec(S[f o)
che manda un ideale primo omogeneo p in S[f =] ap N S[f~1]o. Sia
¥: Spec(S[f~)o) = D
la mappa che manda un ideale q a q.S[f~!]. C’¢, ¥(q) & generato da elementi s tale che ﬁ € q per

d = deg(s). Allora ¢ o 1) = id: I'intersezione degli elementi s € 1(q) come sopra con S[f ]y
sono, per definizione, gli elementi di .
Per vedere che anche ) o ¢ = id, sia s € p € D. Allora @ € ¢(p) e quindi s € ¥ (p(p)) e

p C Y(p(p))

Se invece s € ¥ (¢(p)), allora @ € ¢(p) e quindi esiste s’ € p tale che

s’ _ s
fdeg(s') - fdeg(s) .
Questo vuole dire che esiste un e € N tale che

fe(slfdeg(s) o Sfdeg(sl)) =0.

Allora s’ € p e quindi anche sfd°8(s)+e ¢ p. Ma fdeg(s)+e & p e quindi s € p perché p & primo.
Insomma, abbiamo anche 1 (p(p)) C p. O

Quindi possiamo identificare un aperto U = |[Proj(S)|\ V(f) con Spec(S[f~!]o) come spazi
topologici. Prendiamo la struttura di schema su U come quella di Spec(S[f~!]o) e chiamiamo
U = (ProjS)¢. Per ogni scelta di f; tale che (f1, fo,...) haradicale S, i (ProjS)y, danno un
ricoprimento di Proj.S con schemi affini. Per due di quelli aperti abbiamo che (ProjS) ;N (ProjS),
dentro (ProjS) ¢ lo spettro di

In particolare, possiamo incollare (ProjS) ¢ e (ProjS), lungo questi aperti affini e otteniamo una
struttura di schema su Projs.

Si osserva che otteniamo una inclusione Sy — Opyojs(ProjS) che induce una mappa Proj(S) —
Spec(Sp) che realizza ProjS come Sp-schema.

Definizione 3.3 (Morfismi proiettivi su schemi affini). Sia B = Spec(A) uno schema affine.
Allora un morfismo di schemi ¢: X — B e proiettivo se X = ProjS per un anello graduato
e finitamente generato da elementi in grado 1, tale che A ~ Sy e ¢ ¢ il morfismo strutturale
ProjS — SpecSp.

Esempio 3.4. Sia S = C[z, y] con la graduazione normale dato dal grado dei polinomi. Allora
St = (2,y) e Proj(S) = PL. Ideali massimali di C[z, y, z] hanno la forma (z — ¢1,y — c2) per
¢i € C;se (c1,¢2) # (0,0), I'ideale non € omogeneo e altrimenti non é rilevante. Sia f € I con
omogeneo. Allora f(x) = 0 = f(Ax) = 0 per ogni A € C. Quindi per ogni punto x contenuto

Lezione
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in V(I) C A% V(I) contiene anche la retta in z. Gli unici curve integrali in A2 per cui questa
proprieta e vero, sono le rette che contengono 'origine. Quindi I punti chiusi hanno la forma
(ax + by) (che corrispondono al punto [a : b] nei coordinati proiettivi classici di P{). L'unico
punto non-chiuso & dato da (0). Le mappe della dimostrazione di Lemma ?? sono dati cosi: sia per
esempio f = x. Allora

ax + by
plaz +by) = (—

)= (a+b2) € Clay)le™ o = L]

P(a+ b%) = (ax + by).

L’anello S di ProjS si chiama I'anello delle coordinate omogenee. Diverso da SpecA, S non é
determinata da ProjS:

Esempio 3.5. Sia
o0
S =B Sa.
v=0

Allora ProjS = ProjS?. Questo perché possiamo identificare affini aperti:
(ProjS) sa = (ProjS@);.

Gli elementi in (ProjS) s« sono ideali primi in SpecS|( 971 quindi generato da elementi
ﬁ dove kd = deg(s). Invece gli elementi in (ProjS?); sono ideali primi in SpecS[(f) o
generato da elementi ﬁ dove kd = deg(s) (nella vecchia graduazione). Un isomorfismo € dato
da f > f4.

Ma in generale S (@) o S. Per esempio, per S = k[x,y], S € generato da 2 elementi (z, y) in
grado 1 e S(2) da tre elementi (22, zy, y?).

Commento 3.6. Anche se S e S danno lo stesso Proj, in generale Proj(S) dipende dalla scelta
della graduazione. Per esempio, se prendiamo k[x,y, z| dove z,y, z hanno grado a,b,c > 0,
allora oteniamo lo schema che si chiama piano proiettivo pesato P(a, b, c). Si puo realizzare
come quotiente di (k% \ {0})/(k*) dove A(z,¥y,2) = (A%, Ay, \°z). In generale P(a, b,c) #
P(a’, b, ).

Commento 3.7. Sipuo usare la costruzione di Esempio[3.5|per vedere che se S € un anello graduato
finitamente generato allora esistono d tale che S(?) ¢ finitamente generato da elementi di grado 1.
Quindi, il fatto che supponiamo che S sia generato in grado 1 nella costruzione di ProjS non e
una restrizione.

3.2. Spazio proiettivo e sottoschemi chiusi. Sia S = Afzo,...,z,| graduato dal grado dei
polinomi. Sia U; = (ProjS),,. Allora

U; = Spec(S[z; o) = Spec(Afzy, ..., 7). ..ah]) ~ A

i
Zj . . . . . . . \
dove x3 = ~2. In questo caso si scrive ProjS = P}, lo spazio proiettivo, e si vede che ¢ lo stesso
K
schema che abbiamo ottenuto incollando i A™ in Sezione ??. In particolare, la dimensione di P’} e

n ovunque.
Sia I un ideale omogeneo di A[zy,...,2,] e U; un aperto come sopra. Allora definiamo

IU) =1 - Alzo, ..., xn, 21N Alzo, . .. , Tny 5 o

7

Si verifica che gli ideali I (U;) sugli aperti affini danno un fascio coerente I di ideali su IP"; e quindi

un sottoschema chiuso V (I). Infatti, abbiamo che

V(I) ~ ProjS/I.

Sinota anche che si puo ottenere I (U;) mettendo x; = 1 sotto I'identificazione A|xq, . . ., z, a:i_l]o
Alzg, ..., x)).

rrn

~
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Nel altra direzione, dato un sottoschema chiuso X C P’ con fascio coerente di ideali Zy,
possiamo definire 'ideale 7(X) come gli elementi omogenei f di A[zy,...,z,] tale che per ogni
1 abbiamo che

flai=1 € Ix(Us) C Alxg, ... 23] = Alao, . .. >$n,$i_1](0)-

Si controlla che se I = I(X) allora Ty = I.
Esempio 3.8. L’ideale omogeneo (rox1 — 23) C k[wo, 71, 72] da gli ideali (zf, — (25)?), (2} —
(z4)?) e (xfxy — 1) nei tre aperti affini dati da 2 # 0, 71 # 0 e 73 # 0.
Esempio 3.9. Il complemento di un aperto affine U; €, per definizione, V' (z;). Questo € isomorfo
a

Proj(Alzo, . .., zn)/(x;)) ~ P4

Quindi la decomposizione P = P"~! U A" che conosciamo dal contesto classico ¢ vale anche su
anelli piu generale (per esempio IP7).

Osserviamo che la corrispondenza tra sottoschemi chiusi di P"} e ideali omogenei di A[zo, . . . , 2]
non ¢ biettivo:

Esempio 3.10. Gliideali (z0) e (3, 2971 ) danno lo stesso sottoschema di P4 = Projk[z¢, z1]: Nel
aperto affine Up, abbiamo che () e (3, 2921 ) sono entrambi uguale a tutto 'anello k[xg, 21, 75 '].
Invece su U abbiamo che x & invertibile quindi (23, zoz1) = (23, 29) = (20). (Si nota che lo
spettro degli ideali non é isomorfo: uno da la rette x = 0, I’altro la stessa rette ma con un punto
non-ridotto al’origine).

Per ristorare una biezione serve lo seguente definizione:
Definizione 3.11. Sia [ und ideale omogeneo in S = A[xo, ..., zy]. Allora
I={seS|3m,Vi: 2"sc I}
denota la saturazione di I. L’ideale I si chiama saturato se [ = 1.
Nel esempio precedente, la saturazione di (22, zox1) & (20).

Esercizio 3.12. Siano I e J ideali omogenei di S = Alxy, ..., x,|. Allora

(1) I é un ideale omogeneo
(2) ProjS/I = ProjS/T o
(3) ProjS/I = ProjS/J seesolosel = J.

Esercizio 3.13. Ogni schema proiettivo su A si puo realizzare come sottoschema chiuso di P"}.

Quindi otteniamo: ogni sottoschema chiuso di P’} ¢ proiettivo. E per ogni schema proiettivo X
su A esiste un n tale che si puo realizzare X come un sottoschema chiuso di IP"}.

3.3. Morfismi proiettivi e loro proprieta. Usiamo questo oservazione per definire morfismi
proiettivi in generale:

Definizione 3.14. Un morfismo tra schemi X — Y é proiettivo se € la composizione di un
immersione chiuso X — Py. con il morfismo P{, — Y.

Quindi si puo pensare di un morfismo proiettivo X — Y come una famiglia di sottoschemi
chiusi di P"* parametrizzati da Y.
ua IPY. si puo definire incollando gli P”;  su un ricoprimento con affini Spec(A4;) di Y o come
y S1P ghliy, p p

y =Pz xzY.
Un’altra differenza tra Spec e Proj sono i sezioni globali del fascio strutturale:

Proposizione 3.15. Sia X uno schema integrale e proiettivo su k un campo algebraicamente chiuso.

Allora Ox(X) = k.
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Proof. Sia f € Ox(X) una funzione regolare globalmente definito. Per definizione di morfismi
proiettivi, possiamo vedere X come un sottoschema chiuso di P} quindi X = ProjS con S =
klzo,...,xn]/1. Sia X; = X NU; dove U; C IP}} sono gli apperti affini di prima. La restrizione di

f a X; da un elemento di Ox,(X;) = S[z; ']o. Quindi possiamo scrivere f = xg& cong; €S

omogeneo di grado NN;. Siccome X ¢ integrale, S € un dominio e segue che val f € Sn, per ogni
1.

Sia N > )" N,. Allora Sy € generato come spazio vettoriale su k& di monomi di grado N e
ogni monomio cosi ha un termine in cui il grado di un z; € almeno N;. Quindi f - Sy C Sy e
anche 1Sy C Sy per ogni g (dove vediamo f € Ox(X) e Sy entrambi nel campo di frazioni
di S). In particolare, 22’ f¢ € S per ogni ¢ > 0 e quindi il sottoanello S[f] del campo di frazioni
di S ¢ contenuto in 25" S: se g € S[f], allora

g = sotfsi+ fsat- = (agwg™)(s0 + fo1+ frsa+ o)
= ayN(adso+ fals1+ fPalsa+ ) € xS,

Visto che x, N § ¢ un S-modulo finitamente generato e S € noeteriano, anche S[f] é finitamente
generato su S e otteniamo che f ¢ integrale su S. Quindi ci sono elementi a; € S tale che

"4 am f™ L ag=0.

Possiamo sostituire 'equazione con i parti in grado zero. Ma f stesso ha grado 0 e Sy = k, quindi
possiamo suppore che a; € k senza cambiare ’equazione. Segue che f € integrale su k. Ma k e
algebraicamente chiuso e quindi f € k. 0

Esercizio 3.16. Siat: S — T un morfismo di annelli graduati. Sia
U = {p € Proj(T) | ¥(S:) ¢ p}-
AlloraU C ProjS é aperto e 1) induce un morfismo
@: U — Proj(9).

Commento 3.17. 1l morfismo ¢ puo essere un isomorfismo, anche se ) non lo & (simile a come
abbiamo visto che ProjS = ProjT non implica S >~ T').

Esempio 3.18. Sia ¢: k[z,y] — k[z,y, z] Uinclusione. Allora ¢(Sy) = ¥((z,y)) = (z,y) e
U =P\ {(z,y)} con p: U — P} dato in coordinati omogenei [z : y : 2] — [z : y].

Teorema 3.19. Un morfismo proiettivo ¢: X — Y tra schemi noeteriani é proprio.

Proof. Per definizione di un morfismo proiettivo abbiamo che ¢ fattorizza come X — Py, — Y.
Quindi otteniamo

X —Py ——P7

NG
Y —— Spec(Z)

E sufficiente dimostrare che [P — Spec(Z) e proprio usando Corollario in questo caso il
cambio di base ¢ proprio, quindi P{; — Y ¢ proprio; il morfismo X — P{ ¢ un immersione
chiuso e quindi proprio; di consequenza anche X — Y come composizione di morfismi propri e
proprio. Dimostrare che P}, — Spec(Z) é proprio lasciamo come esercizio.

O

Commento 3.20. Essere proiettivo e essere proprio sono molto simile ma si pu6 costruire esempi
di schemi propri che non sono proettivi. Per una varieta astratta X si sa:

(1) Se X e di dimensione 1 e proprio allora é proiettivo.

(2) Se X e di dimensione 2, non-singolare e proprio allora € proiettivo.

(3) Cisono esempi di X di dimensione 2, singolare e proprio ma non proiettivo.

(4) Ci sono esempi di X di dimensione 3, non-singolare e proprio ma non proiettivo.
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