
GEOMETRIA 5 - TEORIA DEI SCHEMI

CINZIA CASAGRANDE E KARL CHRIST

Contents

1. Schemi 1

1.1. Introduzione 1

1.2. Definizione di Schemi 2
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1. Schemi

1.1. Introduzione. Una varietà algebraica X ⊂ km tradizionalmente è definito come il luogo

di zeri di un insieme di polinomi f1, . . . , fn con m variabili e con coefficienti in un campo k
(algebraicamente chiuso, di caratteristica 0).

Si vede subito, che X infatti non dipende dalla scelta di f1, . . . , fn ma invece dall ideale I
generato dai fi. Poi l’anello di funzioni regolari su X è, per definizione,

k[X] = k[x1, . . . , xn]/I

, che sono ‘polinomi’ o funzioni regolari definito su X . Per avere una correspondenza biiettiva

tra ideali e varieta algebriche, si deve imporre che k[X] è un dominio: per esempio, il luogo di

zeri di (y) e (y2) è identico, anche se gli ideali non lo sono. Nella perspettiva classica, si risolve

questa ambivalenza ristringendo l’insieme di ideali che sono ammessi. Nella perspettiva moderna

degli schemi, si aumenta invece l’insiemme di oggetti geometrici – c’è si introduce un oggetto

geometrico che corrisponde a (y2) ed è diverso da (y).
Perché questo è utile anche se magari si è interessato sopratutto nelle varietà algebriche? Si

consideri per esempio una degenerazione nel parametro t di una parabola, xt− y2 = 0. Per t ̸= 0,

questo definisce una varietà algebrica. Per t = 0 invece otteniamo l’ideale (y2) e quindi la teoria

delle varietà algebriche ci dice di prendere il radicale e vederlo come la retta data da (y). Ma

questo non dà una teoria soddisfacente; per esempio, il grado per t ̸= 0 sarebbe uguale a 2, metre

per t = 0 uguale a 1. La teoria dei schemi dà la possibilità di parlare in un senso formale anche

dal oggetto geometrico associato a (y2) (che dovrebbe essere una ‘retta doppia’).

Quindi, la teoria dei schemi introduce la possibilità di avere nilpotenti nel anello delle coordinati.

Ma non solo, nel mondo dei schemi si puo per esempio anche lavorare su un anello (come Z
con applicazioni alla teoria dei numeri) invece del campo k, o l’anello delle coordinati non è

necessariamente finitamente generato come k-algebra.
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Un’altro perspettiva che gli schemi offrono, è che permettono di definire ‘varietà astratte’ –

invece delle varietà con un spazio ambientale come An
k o Pn

k . Questo passo è analogo al concetto

delle varietà astratte nella geometria differenziale: si ottiene l’oggetto astratto incollando aperti.

Nel caso degli schemi, gli ogetti di base sono i schemi affini.

1.2. Definizione di Schemi. Uno schema affine è dato da

(1) Spec(R) con R anello commutativo con la topologia di Zariski e

(2) O fascio strutturale/fascio delle funzione regolare sullo schema.

Definiamo questo oggetto in tre passi, prima come insieme, poi come spazio topologico e

finalmente come ‘spazio localmente annellato’, quindi lo fascio strutturale O.

1.2.1. Schemi affini come insieme. Sia R un anello (assumiamo sempre che gli annelli sono com-

mutativi con 1).

Definizione 1.1. Gli elementi di Spec(R) come insieme sono i ideali primi p di R.

Osservazione 1.2. R ⊆ R non è un ideale primo. {0} invece lo è se R non ha divisori di zero

(R è un dominio). Se R è un campo, l’unico ideale primo è {0} perchè ogni elemento x ̸= 0 è

invertibile.

Un ideale primo m è un ideale massimale se m è massimale rispetto all’inclusione; c’è se m ⊆ p
per un ideale primo p, allora m = p. Ogni ideale diverso da R è contenuto in un ideale massimale.

Osservazione 1.3. Un ideale p è primo se e solo se R/p è un dominio, e p è massimale se e solo se

R/p è un campo.

Esempio 1.4. (1) Spec(Z) = {(p) | p interi primi } ∪ {(0)}.

(2) Spec(Z/3Z) = {(0)} perchè Z/3Z è un campo

(3) Spec(C[x]) = {(x−α | α ∈ C}∪{(0)}. In questo caso, C[x]/(x−α) ≃ C via f 7→ f(α).
Quindi (x − α) è un ideale massimale. Poi tutti ideali primi hanno questa forma: Sia

p ̸= (0) un ideale primo di C[x] e f ∈ p un elemento di grado minimo. Allora f non è

costante perchè altrimenti p = C[x]. Se deg(f) > 1, allora f = c(x− α1) · . . . (x− αn)
perché C è algebraicamente chiuso. Ma p è primo e quindi deve contenere anche uno dei

(x − αi). Visto che C[x] è un dominio ad ideali principali (per esempio dovuto al fatto

che esiste un algorithmo di divisione con resto), dobbiamo avere p = (x− αi).

Dato f ∈ R si può associare a f una ‘funzione’ f con dominio Spec(R) (vogliamo vedere i

elementi in R come polinomi/funzioni regolari su Spec(R)). Dato p ∈ Spec(R), consideriamo

α : R→ R/p ↪→ Frac(R/p).

Allora, l’imagine di p sotto f è definito come α(f) e scriviamo f(p).

Osservazione 1.5. Questo non definisce una vera funzione, perchè il codominio Frac(R/p) cambia

con p.

Esempio 1.6. f = 15 ∈ Z. Allora il ‘valore’ di f a (7) per esempio è 15 mod 7 = [1] ∈ Z/7Z.
Il ‘valore’ di f a (11) è [4] ∈ Z/11Z. Il ‘valore’ di f a (0) è 15 ∈ Q.

Esempio 1.7. R = k[x]/(x2), allora Spec(R) = {(x)}. Il ‘valore’ di f = x ∈ R sul unico punto

(x) è zero. In particolare, dà una ‘funzione’ non-zero su Spec(R) che ha ‘valore’ zero a tutti i

punti di Spec(R).

1.2.2. Schemi affini come spazi topologici. La Topologia di Zariski ha chiusi dato cosi: per ogni

S ⊂ R, abbiamo un chiuso

V (S) = {p ∈ Spec(R) | S ⊂ p}.

Osservazione 1.8. Otteniamo la stessa definizione scrivendo V (S) = {p ∈ Spec(R) | f(p) = 0},

che collega alla nozione più classico che i chiusi sono luoghi di zero di un insiemme di polinomi.

Poi chiaramente V (S) = V ((S)) dove (S) è l’ideale generato da S.
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Proposizione 1.9. Prendere i V (I) per I ideali diR come chiusi definisce una topologia su Spec(R)
(la topologia di Zariski).

Proof. Controlliamo i requisiti per una topologia uno per uno:

• Ogni ideale contiene (0), quindi V (0) = Spec(R).
• Ogni ideale primo è proprio, quindi V (R) = ∅.

• Per un insieme di ideali {Iα}α abbiamo:

p ∈
⋂
α

V (Iα) ⇔ Iα ⊆ p,∀α⇔
⋃
α

Iα ⊂ p ⇔ p ∈ V (
⋃
α

Iα)

• Per due ideali I e J abbiamo:

p ∈ V (I) ∪ V (J) ⇔ p ∈ V (I) o p ∈ V (J) ⇔ I ⊂ p o J ⊂ p ⇔
⇔ I ∩ J ⊂ p ⇔ p ∈ V (I ∩ J),

dove I ∩ J ⊂ p ⇒ I ⊂ p o J ⊂ p perchè se non, esistono i ∈ I e j ∈ J con i, j ̸∈ p. Ma

in questo caso ij ∈ I ∩ J ⊂ p e quindi i ∈ p o j ∈ p perché p è primo, una contradizione.

□

Gli aperti sono i complementi dei chiusi. Se S = {f}, f ∈ R, allora

Spec(R) \ V (f) = Spec(Rf ) = Xf ,

dove Rf = R[f−1] è la localizzazione di R rispetto a f (c’è rispetto al insieme moltiplitivamente

chiuso {fn}n∈N):

Proposizione 1.10. Gli ideali primi di Rf sono in corrispondenza biunico con i primi di R che non
contengono f .

Proof. Per passare da R a Rf si usano due costruzioni:

• I ⊂ R ideale, allora Ie = { t
fn per t ∈ I} l’ideale di Rf generato dall immagine di I con

ϕ : R→ Rf , t 7→
t

1
.

Si chiama la estensione di I (in Rf ).

• J ⊂ Rf , J
c = ϕ−1(J), la contrazione di J .

Per ogni ideale abbiamo che I ⊆ (Ie)c e J = (Jc)e. Poi la contrazione di un ideale primo è

sempre primo, perché la preimagine di un ideale primo tramite un morfismo tra anelli è primo.

Vogliamo dimostrare che per q ⊂ R primo con f ̸∈ q abbiamo q = (qe)c e che qe è primo

(in generale, l’ideale generato dal immagine di un ideale primo non è necesseriamente un ideale

primo). Cos̀ı si vede che la corrispondenza biunica che cerchiamo è dato dalla estensione con

inverso la contrazione (si osserva che per f ∈ q, la estensione di q èRf perché f diventa invertibile

in Rf ).

Entrambe le affermazioni sequono se dimostriamo che
x
fn ∈ qe implica che x ∈ q. Lo

facciamo adesso: Sappiamo che
x
fn ∼ x′

fn′ per un x′ ∈ q. Per definizione esiste un m t.c.

fm(xfn
′ − x′fn) = 0 e quindi xfm+n′

= x′fm+n
. Visto che x′ ∈ q, anche x′fm+n ∈ q e quindi

xfm+n′ ∈ q. Ma fm+n′ ̸∈ q, e quindi x ∈ q come desiderato. □

Lemma 1.11. Gli Xf formano una base per la topologia di Zariski.

Proof. Dobbiamo dimostrare che ogni aperto U di Spec(R) si può scrivere come unione di aperti

Xf . Per definizione abbiamao U = Spec(R) \ V (S), che possiamo rescrivere come

U = Spec(R) \ V (S) = Spec(R) \
⋂
f∈S

V (f) =
⋃
f∈S

(Spec(R) \ V (f)) =
⋃
f∈S

Xf .

□

Gli aperti Xf si comportano bene anche per intersezioni finite:



4

Lemma 1.12. Abbiamo Xf ∩Xg = Xfg .

Proof. L’aperto Xf è l’insiemme di primi che non contengono f . Quindi Xf ∩Xg è l’insieme di

primi che non contengono f e non contengono g. L’insiemme Xfg invece sono gli ideali primi

che non contengono fg e quindi che contengono né f né g. □

Osservazione 1.13. Spec(R) non è quasi mai di Hausdorff. Infatti, gli unici punti chiusi sono i

ideali massimali perché se p ∈ Spec(R) la chiusura è

p = {q ∈ Spec(R) | p ⊆ q}.

Esempio 1.14. In Spec(C[x]) i p = (x−α) sono punti chiusi. (0) non è chiuso e la sua chiusura

è tutto Spec(C[x]). Se f ∈ C[x], allora V (f) sono tutti i punti (x − α) t.c. (f) ⊂ (x − α) che

significa α tale che f(α) = 0.

—

Lezione 22.9. …

2. Proprietà di morfismi

2.1. Finitezza. Il seguente concetto di finitezza è molto più restrittivo rispetto ad essere di tipo

finito:

Definizione 2.1. Un morfismo di schemi φ : X → Y è finito se per ogni punto y ∈ Y c’è un

aperto affine y ∈ V = SpecB tale che anche φ−1(V ) = Spec(A) è affine e

φ#
V : B = OY (V ) → OX(φ−1V ) = A

realizza A come un modulo finitamente generato su B.

Al confronto di essere di tipo finito quindi richediamio quindi in particolare di essere finitamente

generato come modulo, non solo come algebra.

Esempio 2.2. Il morfismo φ : Spec(k[x, y]/(x2 − y)) → Spec(k[y]) che corrisponde alla inclu-

sione k[y] → k[x, y]/(x2 − y), y 7→ y è finito perchè k[x, y]/(x2 − y) è generato da 1 e x come

k[y]-modulo.

Lemma 2.3. Un morfismo finito ha fibre finite.

Proof. La domanda è locale e quindi possiamo supporre che Y = Spec(B) e X = Spec(A) come

nella definizione di essere finito. Assumiamo che A è un B-modulo finitamente generato e sia

y ∈ Y . Allora la fibra k(y)⊗B A di φ è un k(y) modulo finitamente generato tramitte la mappa

B → k(y). Ma ogni k(y)-algebra che è finitamente generato come k(y)-modulo ha un numero

finito di primi (è Artiniano). □

Osservazione 2.4. Avere fibre finite (si dice anche di essere ‘quasi-finito’) non è sufficiente per

essere un morfismo finito. Per esempio, l’inclusione φ : A1 \ {0} → A1
è data dalla mappa di

annelli k[t] → k[t, t−1]. Allora φ è iniettivo quindi quasi-finito, ma non finito perchè k[t, t−1]
non è finitamente generato come k[t] modulo.

Osservazione 2.5. Si nota che nelle definizioni di (localmente) di tipo finito e finito si richiede

l’esistenza di un certo ricoprimento con aperti affini di Y . Si può dimostrare che questo implica le

condizioni per ogni ricoprimento affine di Y .

2.2. Morfismi separati. Abbiamo visto che ogni schema affine noetheriano è quasicompatto.

Ma questo proprietà non porta gli vantagi che ha in altre teorie. Per esempio che l’immagine di un

morfismo definito sullo spazio è chiuso. Questo perchè uno schema affine è quasi mai Hausdorff e

quindi quasi mai compatto: già per esempio A1
k non lo è. I concetti di morfismi separati e propri

danno un analogo di essere Hausdorff e compatto nella categoria degli schemi.

Si riccorda, che un spazio topologico X è Hausdorff se e solo se la diagonale ∆ in X × X
è chiuso nella topologia prodotto. Questo generalizza per gli schemi sustituendo la topologia

prodotto con il prodotto fibrato.
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Sia φ : X → S un morfismo tra schemi. La diagonale ∆ ⊂ X ×S X è il sottoschema definito

su affini Spec(A) ⊂ X e Spec(B) ⊂ S con φ|Spec(A) : Spec(A) → Spec(B) dal ideale generato

da elementi

a⊗ 1− 1⊗ a ∈ A⊗B A.

Osservazione 2.6. Una definizione alternativa è: La diagonale è l’immagine del unico morfismo

X → X ×S X che composto con ognuno dei due proiezioni dà l’identitá su X (usando la

proprietá universale del prodotto fibrato): l’identità al livello di schemi corrisponde al identità

al livello di anelli. Quindi cerchiamo una mappa µ : A ⊗B A → A tale che le composizioni

con A → A ⊗B A, a 7→ 1 ⊗ a e A → A ⊗B A, a 7→ 1 ⊗ a danno l’identità. Dobbiamo avere

µ(a⊗ b) = ab e si verifica che il nucleo di questa mappa è generato da elementi a⊗ 1− 1⊗ a

Definizione 2.7. Un morfismo α : X → S si chiama separato se la diagonale ∆ ⊂ X ×S X è

chiusa. Un S-schema X si chiama separato se lo morfismo strutturale X → S lo è.

Esempio 2.8. Se X e S sono affini, allora la diagonale è un sottoschema chiuso per definizione e

quindi φ è separato.

Esempio 2.9. Sia X la ‘rette affine con l’origine sdoppiata’, c’è lo schema ottenuto incollando

X1 = Spec(k[t]) e X2 = Spec(k[s]) tramitte il morfismo k[t, t−1] → k[s, s−1], t 7→ s che

identifica X1 \ {0} con X2 \ {0}. Allora X ×k X ha un ricoprimento affine dato da X1 ×
X1, X1 × X2, X2 × X1 e X2 × X2 (quindi A2

con ‘assi sdopiati’ e ‘quattro punti di origine’).

La diagonale contiene le origini di X1 ×X1 e X2 ×X2 ma non quelle di X2 ×X1 e X1 ×X2.

Fuori dal origine, gli (Xi \ {0}) × (Xi \ {0}) vanno tutti identificati e la diagonale in ogni

(Xi \ {0})× (Xi \ {0}) sono i punti (x, x). Quindi la diagonale in X2 ×X1 e X1 ×X2 non è

chiusa e il morfismo non separato.

Commento 2.10. Si nota che essere separato è un concetto ‘relativo’. La identitá X → X con X
come nel esempio precedente è separato.

Si ricorda che un anello di valutazione è un anello in cui gli ideali sono totalmente ordinati

(rispetto al’inclusione). Si dice che un anello locale B domina un altro anello local A se A ⊂ B e

mA = mB ∩A.

Teorema 2.11 (Criterio valutativo di separatezza). Sia f : X → S un morfismo tra schemi con
X noeteriano. Allora f è separato se e solo se si è verificata la seguente condizione. Per ogni campo
K e per ogni anello di valutazione R con campo quoziente K sia T = Spec(R), U = Spec(K) e
i : U → T il morfismo indotto dall’inclusione R ⊂ K . Dato un morfismo da T a Y e un morfismo
da U a X in modo tale che il seguente diagramma sia commutativo

U //

i
��

X

f
��

T // S,

(1)

esiste al più un morfismo T → X che ritiene commutativo il diagramma.

Osservazione 2.12. Se anche S è Noetheriano e f di tipo finito, basta controllare il criterio per

ogni anello di valutazione discreta R.

Esercizio 2.13. Sia R un anello di valutazione con campo di frazioni K . Sia T = Spec(R) e
U = Spec(K). Dare un morfismo da U a uno schema X è la stessa cosa come dare un punto x ∈ X
e un’inclusione di campi k(x) ↪→ K . Dare un morfismo da T in X è equivalente a dare due punti
x, η in X con x ∈ η e un inclusione di campi k(η) ⊂ K tale che R domina l’anello locale di x in η.

Proof. Supponiamo che f sia separato. Siano h, h′ : T → X due morfismi come nel teorema.

Allora h e h′ definiscono un morfismo h′′ : T → X ×S X . Visto che h|U = h|U ′ h e h′ mandano

il punto generico η di T nello stesso punto di X e quindi h′′ manda il punto generico di T nella

diagonale ∆ di X ×S X . Visto che ∆ è chiusa, h′′ manda anche il punto chiuso p nella diagonale.
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Quindi anche h(p) = h′(p). Visto che h e h′ definiscono – per assunzione – anche lo stesso

inclusione di k(h(η)) ⊂ K , segue dal esercizio che h = h′.
Viceversa supponiamo che la condizione del criterio è soddisfatta e vogliamo dimostrare che la

diagonale è chiusa. È sufficiente dimostrare: per ogni punto η ∈ ∆ e x ∈ η abbiamo anche x ∈ ∆
(si trova una dimostrazione per esempio in Hartshorne Lemma II.4.5). Sia K = k(η) e O l’anello

locale di x nello sottoschema η (con la struttura di schema ridotto). Allora O è un sotoanello locale

di K e quindi esiste un anello di valutazione R di K che domina O. Se mettiamo T = Spec(R)
otteniamo usando l’esercizio un morfismo T → X ×S X che manda il punto generico di T in η e

il punto chiuso in x. Composizione con i due proiezioni dà due morfismi T → X che danno lo

stesso morfismo a S e che coincidono su Spec(K). La condizione quindi da che i due morfismi

coincidono. Quindi T → X ×S X fatorizza attraverso il morfismo della diagonale X → X ×S X
e otteniamo che anche x ∈ ∆. □

Corollario 2.14. Supponiamo che tutti schemi sono noetheriani:
(1) Inclusioni di sottoschemi sono separate.
(2) La composizione di due morfismi separati è separata.
(3) I morfismi separati sono stabili per cambiamento di base.
(4) Se f : X → Y e f ′ : X ′ → Y ′ sono morfismi separati di schemi su uno stesso schema di base

S, allora il prodotto fibrato

f ×S f
′ : X ×S X

′ → Y ×S Y
′

è separato.
(5) Se f : X → Y e g : Y → Z sono due morfismi di schemi e se g ◦ f è separato, allora anche

f è separato.
(6) Un morfismo f : X → Y è separato se e solo se Y può essere ricoperto da sottoinsiemi aperti

Vi tali che i morfismi f−1(Vi) → Vi siano separati, per ogni i.

Proof. Per esempio, (2) si può verificare cosi: Sia f : X → Y e g : Y → Z morfismi di schemi

separati. Si considera

U //

i

��

X

f
��
Y

g
��

T // Z

Una mappa T → X induce una mappa T → Y che è unica perchè g è separato. Ma anche una

mappa T → X che commuta con T → Y è unica perchè f è separato, quindi T → X è unica e

g ◦ f è separato. □

2.3. Morfismi propri. Uno dei proprietá più importante di spazzi compatti è che una mappa

continua X → Y con X compatto (e Y Hausdroff) manda chiusi in chiusi. Si usa una versione di

questo proprietá un po più forte per definire l’analogo nel mondo dei schemi:

Definizione 2.15. Un morfismo tra schemi φ : X → Y si chiama

(1) universalmente chiuso se per ogni morfismo Y ′ → Y il cambiamento di base Y ′×Y X →
Y ′

è chiuso.

(2) proprio se è di tipo finito, separato e universalmente chiuso.

Come prima, un S-schema X si chiama proprio se il morfismo strutturale X → S lo è.

Esempio 2.16. A1
k non è proprio (su k). Il cambiamento di base dato da A1

k → Spec(k) stesso

dà la mappa A1
k ×k A1

k = A2
k → A1

k che non è chiuso: l’immagine di Spec(k[x, y]/(xy − 1))
è A1

k \ {0} non è chiuso (si deve aggiungere il punto ‘a infinito’, che faremmo nella sezione

successiva).

—

Lezione

30.10.
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Teorema 2.17 (Criterio valutativo di proprietà). Sia f : X → S un morfismo di tipo finito tra
schemi con X noeteriano. Allora f è separato se e solo se si è verificata la seguente condizione.
Per ogni campo K e per ogni anello di valutazione R con campo quoziente K sia T = Spec(R),
U = Spec(K) e i : U → T il morfismo indotto dall’inclusione R ⊂ K . Dato un morfismo da T a
Y e un morfismo da U a X in modo tale che il seguente diagramma sia commutativo

U //

i
��

X

f
��

T // S,

(2)

esiste un unico morfismo T → X che ritiene commutativo il diagramma.

Proof. Supponiamo che f sia proprio. Siccome f è anche separato, segue dal criterio valutativo di

separatezza che se un morfismo h : T → X esiste, allora è unico. Dobbiamo quindi dimostrare

l’esistenza.

La proprietà universale del prodotto fibrato dà lo seguente diagramma commutativa:

U
j //

i

$$

X ×S T //

f ′
��

X

f
��

T // S,

Sia η l’immagine in X ×S T del punto unico contenuto in U . Allora f ′ è chiuso perchè f è

universalmente chiuso e quindi anche f ′(η) è chiuso e deve essere uguale a T . Quindi abbiamo

p ∈ η con f ′(p) = x dove x è il punto chiuso di T . Quindi otteniamo un morfismo locale di anneli

locali R→ Op,η . Il campo di funzioni di η, k(η), è contenuto in K . Visto che R è massimale tra

annelli locali in K rispetto a la dominanza, segue che R ≃ Op,η e in particolare R domina Op,η .

Quindi Esercizio 2.13 ci dà un morfismo T → X ×S T e composizione con X ×S T → X dà il

morfismo cercato.

Supponiamo adesso che f soddisfa il criterio e vogliamo vedere che f è proprio. Dall criterio

valutativo di separatezza segue che f è separato. Visto che supponiamo già che f sia di tipo finito,

rimane dimostrare che f è universalmente chiuso. Quindi sia f ′ : X ×S S
′ → S e Z ⊂ X ×S S

′

un chiuso e vogliamo vedere che f ′(Z) ⊂ S′
è chiuso. Usiamo come nella dimostrazione del

criterio valutativo di separatezza che basta dimostrare il seguente: per ogni η′ = f ′(η) ∈ f ′(Z) e

x ∈ η′ anche x ∈ f ′(Z).
Sia O l’anello locale di x in η′. Allora il campo di frazioni di O è k(η′) che è contenuto in k(η).

Sia R un anello di valutazione in k(η′) che domina O. In questo modo otteniamo un diagramma

Spec(k(η)) //

i
��

Z

f
��

Spec(R) // S′,

(3)

Composizione con Z → X×S S
′ → X e S′ → S dà morfismi Spec(R) → S′

e Spec(k(η)) →
X . Il criterio ci dice che esiste una mappa Spec(R) → X tale che il diagramma diventa commu-

tativo. Visto che X ×S S
′

è un prodotto fibrato, otteniamo anche un morfismo h : Spec(R) →
X×SS

′
. Visto che h(ηR) ∈ Z eZ è chiuso, anche h(xR) ∈ Z . Ma allora x = f ′(h(xR)) ∈ f ′(Z).

□

Commento 2.18. Come per il criterio valutativo di separatezza si puo dimostrare che se anche S è

noeteriano, allora basta controllare il criterio per anelli di valutazione discreta.

Commento 2.19. Dal criterio segue, che un esempio di una mappa non-finito ma con fibre finite

(quasi finito) come in Osservazione 2.4 non è possibile per morfismi propri. Infatti, si può

dimostrare che un morfismo è finito se e solo se è quasi finito e proprio.

Corollario 2.20. Supponiamo che tutti schemi sono noetheriani:
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(1) Un’immersione chiusa è un morfismo proprio.
(2) La composizione di due morfismi propri è proprio.
(3) I morfismi propri sono stabili per cambiamento di base.
(4) Se f : X → Y e f ′ : X ′ → Y ′ sono morfismi propri di schemi su uno stesso schema di base

S, allora il prodotto fibrato

f ×S f
′ : X ×S X

′ → Y ×S Y
′

è proprio.
(5) Se f : X → Y e g : Y → Z sono due morfismi di schemi e se g ◦ f è proprio e g separato,

allora f è proprio.
(6) Un morfismo f : X → Y è proprio se e solo se Y può essere ricoperto da sottoinsiemi aperti

Vi tali che i morfismi f−1(Vi) → Vi siano propri, per ogni i.

Proof. Per esempio, per vedere (3), sia S′ → S un morfismo e f ′ : X ′ = X ×S S
′ → S′

il

cambiamento di base.

Supponiamo che abbiamo

U //

i
��

X ′ //

f ′
��

X

f
��

T // S′ // S

Sappiamo già che f ′ è separato da Corollario 2.14. Essere di tipo finito è stabile per cambiamento

di base: si restringe a affini aperti e poi f ′ è dato da f ′ : Spec(A ⊗B C) → Spec(A) con C
finitamente generato comeB-algebra. Si controlla che in questo caso ancheA⊗B C è finitamente

generato come A⊗B B = A algebra.

Finalmente, usiamo il criterio valutativo di proprietá per vedere che anche f ′ è proprio: Perché

f è proprio, esiste una mappa T → X tale che il diagramma rimane commutativo. Ma per la

proprietá universale del prodotto fibrato, viene indotto anche una mappa T → X ′
. □

Definizione 2.21. Una varietá (astratto) è uno schema integrale, separato e di tipo finito su un

campo algebraicamente chiuso k. Una varietà completa è una varietá che è anche proprio (su k).

3. Schemi e morfismi proiettivi

3.1. Proj di un anello graduato. Analogo a Spec di un anello, che generalizza varietá affini, si

può definire Proj di un anello graduato, che generalizza varietá proiettivi.

Si ricorda che un annello graduato S è una A-algebra con

S =
∞⊕
ν=0

Sν

tale che

SνSµ ⊂ Sν+µ e S0 = A.

Qua supponiamo sempre che S sia finitamente generato.

Un elemento f di S si chiama omogeneo di grado ν se f ∈ Sν . L’elemento 0 è per definizione

omogeneo, ma non ha un grado fissato. Un ideale si chiama omogeneo se è generato da elementi

omogenei. Scriviamo

S+ =

∞⊕
ν=1

Sν ,

che è un ideale che chiamiamo l’ideale irrelevante.

Dato un annello graduato S, ProjS è un A-schema. Per adesso supponiamo che S sia generato

in grado 1.

Il suo insieme di punti |ProjS| consiste in ideali primi omogenei p tale che S+ ̸⊂ p.

Esercizio 3.1. ProjS = ∅ se e solo se tutti gli elementi di S+ sono nilpotenti.
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La topologia su |Proj(S)| ha chiusi della forma

V (I) = {p | p ∈ |ProjS| e I ⊂ p}
per un ideale omogeneo I di S.

Finalmente, diamo una struttura di schema su |ProjS| specificandola su una base di aperti. Sia

f ∈ S1 un elemento di grado 1 e

U = |ProjS| \ V (f).

Allora U è l’insieme di ideali primi omogenei che non contengono f . Quindi i punti di U possono

essere identificato con l’insieme di primi omogenei nella localizaione S[f−1]. Il punto chiave per

dare una struttura di schema è lo seguente:

Lemma 3.2. Gli ideali primi omogenei di S[f−1] sono in biiezione con (tutti) ideali primi di S[f−1]0,
il parte di grado 0 di S[f−1].

Proof. Sia D = {p ∈ ProjS | f ̸∈ P} e consideriamo la mappa

φ : D → Spec(S[f−1]0)

che manda un ideale primo omogeneo p in S[f−1] a p ∩ S[f−1]0. Sia

ψ : Spec(S[f−1]0) → D

la mappa che manda un ideale q a qS[f−1]. C’è, ψ(q) è generato da elementi s tale che
s
fd ∈ q per

d = deg(s). Allora φ ◦ ψ = id: l’intersezione degli elementi s ∈ ψ(q) come sopra con S[f−1]0
sono, per definizione, gli elementi di q.

Per vedere che anche ψ ◦ φ = id, sia s ∈ p ∈ D. Allora
s

fdeg(s) ∈ φ(p) e quindi s ∈ ψ(φ(p)) e

p ⊂ ψ(φ(p)).

Se invece s ∈ ψ(φ(p)), allora
s

fdeg(s) ∈ φ(p) e quindi esiste s′ ∈ p tale che
s′

fdeg(s′) = s
fdeg(s) .

Questo vuole dire che esiste un e ∈ N tale che

fe(s′fdeg(s) − sfdeg(s
′)) = 0.

Allora s′ ∈ p e quindi anche sfdeg(s
′)+e ∈ p. Ma fdeg(s

′)+e ̸∈ p e quindi s ∈ p perché p è primo.

Insomma, abbiamo anche ψ(φ(p)) ⊂ p. □

Quindi possiamo identificare un aperto U = |Proj(S)| \ V (f) con Spec(S[f−1]0) come spazi

topologici. Prendiamo la struttura di schema su U come quella di Spec(S[f−1]0) e chiamiamo

U = (ProjS)f . Per ogni scelta di fi tale che (f1, f2, . . .) ha radicale S+, i (ProjS)fi danno un

ricoprimento diProjS con schemi affini. Per due di quelli aperti abbiamo che (ProjS)f∩(ProjS)g
dentro (ProjS)f è lo spettro di

S[f−1]0[(
g

f
)−1] = S[f−1, g−1]0.

In particolare, possiamo incollare (ProjS)f e (ProjS)g lungo questi aperti affini e otteniamo una

struttura di schema su ProjS.

Si osserva che otteniamo una inclusioneS0 ↪→ OProjS(ProjS) che induce una mappaProj(S) →
Spec(S0) che realizza ProjS come S0-schema.

—

Lezione

3.11.
Definizione 3.3 (Morfismi proiettivi su schemi affini). Sia B = Spec(A) uno schema affine.

Allora un morfismo di schemi φ : X → B è proiettivo se X = ProjS per un anello graduato

e finitamente generato da elementi in grado 1, tale che A ≃ S0 e φ è il morfismo strutturale

ProjS → SpecS0.

Esempio 3.4. Sia S = C[x, y] con la graduazione normale dato dal grado dei polinomi. Allora

S+ = (x, y) e Proj(S) = P1
C. Ideali massimali di C[x, y, z] hanno la forma (x− c1, y − c2) per

ci ∈ C; se (c1, c2) ̸= (0, 0), l’ideale non è omogeneo e altrimenti non è rilevante. Sia f ∈ I con I
omogeneo. Allora f(x) = 0 ⇒ f(λx) = 0 per ogni λ ∈ C. Quindi per ogni punto x contenuto
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in V (I) ⊂ A2
, V (I) contiene anche la retta in x. Gli unici curve integrali in A2

per cui questa

proprietà è vero, sono le rette che contengono l’origine. Quindi I punti chiusi hanno la forma

(ax + by) (che corrispondono al punto [a : b] nei coordinati proiettivi classici di P1
C). L’unico

punto non-chiuso è dato da (0). Le mappe della dimostrazione di Lemma 3.2 sono dati cos̀ı: sia

per esempio f = x. Allora

φ(ax+ by) = (
ax+ by

x
) = (a+ b

y

x
) ⊂ C[x, y][x−1]0 ≃ C[

y

x
]

e

ψ(a+ b
y

x
) = (ax+ by).

L’anello S di ProjS si chiama l’anello delle coordinate omogenee. Diverso da SpecA, S non è

determinata da ProjS:

Esempio 3.5. Sia

S(d) =
∞⊕
ν=0

Sdν .

Allora ProjS = ProjS(d)
. Questo perché possiamo identificare affini aperti:

(ProjS)fd = (ProjS(d))f .

Gli elementi in (ProjS)fd sono ideali primi in SpecS[(fd)−1]0 quindi generato da elementi

s
(fd)k

dove kd = deg(s). Invece gli elementi in (ProjS(d))f sono ideali primi in SpecS[(f)−1]0

generato da elementi
s
fk dove kd = deg(s) (nella vecchia graduazione). Un isomorfismo è dato

da f 7→ fd.

Ma in generale S(d) ̸≃ S. Per esempio, per S = k[x, y], S è generato da 2 elementi (x, y) in

grado 1 e S(2)
da tre elementi (x2, xy, y2).

Commento 3.6. Anche se S e S(d)
danno lo stesso Proj, in generale Proj(S) dipende dalla scelta

della graduazione. Per esempio, se prendiamo k[x, y, z] dove x, y, z hanno grado a, b, c > 0,

allora oteniamo lo schema che si chiama piano proiettivo pesato P(a, b, c). Si puo realizzare

come quotiente di (k3 \ {0})/(k∗) dove λ(x, y, z) = (λax, λby, λcz). In generale P(a, b, c) ̸=
P(a′, b′, c′).

Commento 3.7. Si puo usare la costruzione di Esempio 3.5 per vedere che se S è un anello graduato

finitamente generato allora esistono d tale che S(d)
è finitamente generato da elementi di grado 1.

Quindi, il fatto che supponiamo che S sia generato in grado 1 nella costruzione di ProjS non è

una restrizione.

3.2. Spazio proiettivo e sottoschemi chiusi. Sia S = A[x0, . . . , xn] graduato dal grado dei

polinomi. Sia Ui = (ProjS)xi . Allora

Ui = Spec(S[x−1
i ]0) = Spec(A[x′0, . . . , x̂

′
i . . . x

′
n]) ≃ An

A

dove x′j =
xj

xi
. In questo caso si scrive ProjS = Pn

A, lo spazio proiettivo, e si vede che è lo stesso

schema che abbiamo ottenuto incollando i An
in Sezione ??. In particolare, la dimensione di Pn

A è

n ovunque.

Sia I un ideale omogeneo di A[x0, . . . , xn] e Ui un aperto come sopra. Allora definiamo

Ĩ(Ui) = I ·A[x0, . . . , xn, x−1
i ] ∩A[x0, . . . , xn, x−1

i ]0.

Si verifica che gli ideali Ĩ(Ui) sugli aperti affini danno un fascio coerente Ĩ di ideali su Pn
A e quindi

un sottoschema chiuso V (Ĩ). Infatti, abbiamo che

V (Ĩ) ≃ ProjS/I.

Si nota anche che si puo ottenere Ĩ(Ui)mettendoxi = 1 sotto l’identificazioneA[x0, . . . , xn, x
−1
i ]0 ≃

A[x′0, . . . , x
′
n].
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Nel altra direzione, dato un sottoschema chiuso X ⊂ Pn
A con fascio coerente di ideali IX ,

possiamo definire l’ideale I(X) come gli elementi omogenei f di A[x0, . . . , xn] tale che per ogni

i abbiamo che

f |xi=1 ∈ IX(Ui) ⊂ A[x′0, . . . , x
′
n] ≃ A[x0, . . . , xn, x

−1
i ](0).

Si controlla che se I = I(X) allora IX = Ĩ .

Esempio 3.8. L’ideale omogeneo (x0x1 − x22) ⊂ k[x0, x1, x2] dá gli ideali (x′0 − (x′2)
2), (x′1 −

(x′2)
2) e (x′0x

′
1 − 1) nei tre aperti affini dati da x0 ̸= 0, x1 ̸= 0 e x2 ̸= 0.

Esempio 3.9. Il complemento di un aperto affine Ui è, per definizione, V (xi). Questo è isomorfo

a

Proj(A[x0, . . . , xn]/(xi)) ≃ Pn−1
A .

Quindi la decomposizione Pn = Pn−1 ∪ An
che conosciamo dal contesto classico è vale anche su

anelli più generale (per esempio Pn
Z).

Osserviamo che la corrispondenza tra sottoschemi chiusi diPn
A e ideali omogenei diA[x0, . . . , xn]

non è biettivo:

Esempio 3.10. Gli ideali (x0) e (x20, x0x1) danno lo stesso sottoschema diP2
k = Projk[x0, x1]: Nel

aperto affineU0, abbiamo che (x0) e (x20, x0x1) sono entrambi uguale a tutto l’anello k[x0, x1, x
−1
0 ].

Invece su U1 abbiamo che x1 è invertibile quindi (x20, x0x1) = (x20, x0) = (x0). (Si nota che lo

spettro degli ideali non è isomorfo: uno dà la rette x = 0, l’altro la stessa rette ma con un punto

non-ridotto al’origine).

Per ristorare una biezione serve lo seguente definizione:

Definizione 3.11. Sia I und ideale omogeneo in S = A[x0, . . . , xn]. Allora

I = {s ∈ S | ∃m, ∀i : xmi s ∈ I}

denota la saturazione di I . L’ideale I si chiama saturato se I = I .

Nel esempio precedente, la saturazione di (x20, x0x1) è (x0).

Esercizio 3.12. Siano I e J ideali omogenei di S = A[x0, . . . , xn]. Allora
(1) I è un ideale omogeneo
(2) ProjS/I = ProjS/I
(3) ProjS/I = ProjS/J se e solo se I = J .

Esercizio 3.13. Ogni schema proiettivo su A si puó realizzare come sottoschema chiuso di Pn
A.

Quindi otteniamo: ogni sottoschema chiuso di Pn
A è proiettivo. E per ogni schema proiettivo X

su A esiste un n tale che si puo realizzare X come un sottoschema chiuso di Pn
A.

3.3. Morfismi proiettivi e loro proprietá. Usiamo questo oservazione per definire morfismi

proiettivi in generale:

Definizione 3.14. Un morfismo tra schemi X → Y è proiettivo se è la composizione di un

immersione chiuso X → Pn
Y con il morfismo Pn

Y → Y .

Quindi si può pensare di un morfismo proiettivo X → Y come una famiglia di sottoschemi

chiusi di Pn
parametrizzati da Y .

Qua Pn
Y si puo definire incollando gli Pn

Ai
su un ricoprimento con affini Spec(Ai) di Y o come

Pn
Y = Pn

Z ×Z Y.

Un’altra differenza tra Spec e Proj sono i sezioni globali del fascio strutturale:

Proposizione 3.15. Sia X uno schema integrale e proiettivo su k un campo algebraicamente chiuso.
Allora OX(X) = k.
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Proof. Sia f ∈ OX(X) una funzione regolare globalmente definito. Per definizione di morfismi

proiettivi, possiamo vedere X come un sottoschema chiuso di Pn
k quindi X = ProjS con S =

k[x0, . . . , xn]/I . Sia Xi = X ∩Ui dove Ui ⊂ Pn
k sono gli apperti affini di prima. La restrizione di

f a Xi dà un elemento di OXi(Xi) = S[x−1
i ]0. Quindi possiamo scrivere f = gi

x
Ni
i

con gi ∈ S

omogeneo di grado Ni. Siccome X è integrale, S è un dominio e segue che xNi
i f ∈ SNi per ogni

i.
Sia N ≥

∑
Ni. Allora SN è generato come spazio vettoriale su k di monomi di grado N e

ogni monomio cosi ha un termine in cui il grado di un xi è almeno Ni. Quindi f · SN ⊂ SN e

anche f qSN ⊂ SN per ogni q (dove vediamo f ∈ OX(X) e SN entrambi nel campo di frazioni

di S). In particolare, xN0 f
q ∈ S per ogni q > 0 e quindi il sottoanello S[f ] del campo di frazioni

di S è contenuto in x−N
0 S: se g ∈ S[f ], allora

g = s0 + fs1 + f2s2 + · · · = (xN0 x
−N
0 )(s0 + fs1 + f2s2 + · · · )

= x−N
0 (xN0 s0 + fxN0 s1 + f2xN0 s2 + · · · ) ∈ x−N

0 S.

Visto che x−N
0 S è un S-modulo finitamente generato e S è noeteriano, anche S[f ] è finitamente

generato su S e otteniamo che f è integrale su S. Quindi ci sono elementi ai ∈ S tale che

fm + am−1f
m−1 + . . .+ a0 = 0.

Possiamo sostituire l’equazione con i parti in grado zero. Ma f stesso ha grado 0 e S0 = k, quindi

possiamo suppore che ai ∈ k senza cambiare l’equazione. Segue che f è integrale su k. Ma k è

algebraicamente chiuso e quindi f ∈ k. □

Esercizio 3.16. Sia ψ : S → T un morfismo di annelli graduati. Sia

U = {p ∈ Proj(T ) | ψ(S+) ̸⊂ p}.
Allora U ⊂ ProjS è aperto e ψ induce un morfismo

φ : U → Proj(S).

Commento 3.17. Il morfismo φ puó essere un isomorfismo, anche se ψ non lo è (simile a come

abbiamo visto che ProjS = ProjT non implica S ≃ T ).

Esempio 3.18. Sia ψ : k[x, y] → k[x, y, z] l’inclusione. Allora ψ(S+) = ψ((x, y)) = (x, y) e

U = P2
k \ {(x, y)} con φ : U → P1

k dato in coordinati omogenei [x : y : z] 7→ [x : y].

Teorema 3.19. Un morfismo proiettivo φ : X → Y tra schemi noeteriani è proprio.

Proof. Per definizione di un morfismo proiettivo abbiamo che φ fattorizza come X → Pn
Y → Y .

Quindi otteniamo

X //

i

��

Pn
Y

//

��

Pn
Z

��
Y // Spec(Z)

È sufficiente dimostrare che Pn
Z → Spec(Z) è proprio usando Corollario 2.20: in questo caso il

cambio di base è proprio, quindi Pn
Y → Y è proprio; il morfismo X → Pn

Y è un immersione

chiuso e quindi proprio; di consequenza anche X → Y come composizione di morfismi propri è

proprio. Dimostrare che Pn
Z → Spec(Z) è proprio lasciamo come esercizio.

□

Commento 3.20. Essere proiettivo e essere proprio sono molto simile ma si puó costruire esempi

di schemi propri che non sono proettivi. Per una varietá astratta X si sa:

(1) Se X è di dimensione 1 e proprio allora è proiettivo.

(2) Se X è di dimensione 2, non-singolare e proprio allora è proiettivo.

(3) Ci sono esempi di X di dimensione 2, singolare e proprio ma non proiettivo.

(4) Ci sono esempi di X di dimensione 3, non-singolare e proprio ma non proiettivo.
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—

Lezione

6.11.
3.4. Proj globale. Invece di costruire Proj di un anello graduato S su SpecS0, si puó anche

costruire ProjF di un fascio coerente graduato F su qualsiasi base B.

Un fascio quasicoerente graduato F su B è un fascio quasicoerente di OB-moduli Fν tale che

F =
⊕

Fν

con FνFµ ⊂ Fν+µ e F0 = OB . Quindi, dato un aperto affine U = Spec(A) si B, abbiamo che

F(U) è un anello graduato con F(U)0 = A.

Mettiamo XU = ProjF(U), uno schema su U . Se U ⊂ V è un inclusione di aperti affini,

abbiamo la mappa di restrizione

ψ : F(V ) → F(U).

La restrizione diψ allo parte di grado 0 è la mappa di restrizioneψ0 : OV (V ) → OV (U) = OU (U).
In particolare, ψ manda l’ideale irrelevant nel ideale irrelevante e quindi induce un morfismo

φ : XU → XV

che commuta con i morfismi XU → U , XV → V e l’inclusione U ↪→ V . Quindi possiamo usare i

morfismi di restrizione per incollare i XU in uno schema globale

X = ProjF → B.

Esempio 3.21. Abbiamo visto chePn
A = ProjA[x0, . . . , xn]. Visto cheA[x0, . . . , xn] ≃ Sym(An+1)

possiamo mettere

Pn
B = Sym(O⊕n+1

B ),

che dá una terza possibilitá di definire Pn
B per uno schema qualsiasi B.

Esempio 3.22. Piú generale, sia E un fascio coerente su B. Allora definiamo

PE = Proj(Sym(E)) → B,

il fibrato proiettivo associato a E .

3.5. Fasci invertibili da moduli graduati. Come per Spec, si puó definire anche per Proj fasci

(quasicoerenti) associato a un modulo, che in questo caso deve essere graduato:

Sia B uno schema, e

A = A0 ⊕A1 ⊕ . . .

un fascio di OB algebre graduate. Allora otteniamo come prima P = ProjA dato dal Proj
globale. Sia M un fascio quasicoerente su B con una struttura di A modulo graduato; c’è con

una decomposizione

M = . . .⊕Mi ⊕Mi+1 ⊕ . . .

con mappe

Aj ⊗B Mi → Mi+j

che soddisfanno le proprietá di un modulo (distributivitá, associativitá, identitá).

Allora possiamo definire un fascio M̃ su P cosi: Sia U ⊂ B un aperto affine. Quindi A(U) è

un anello graduato. Per ogni elemento omogeneo f ∈ A(U) abbiamo un aperto affine

PU,f = (ProjA(U))f = Spec(A(U)[f−1]0) ⊂ P.
Allora i PU,f danno un ricoprimento di aperti affini di P e M(U) è un A(U) modulo graduato su

ogni U . Sia MU,f il A(U)[f−1]0-modulo

MU,f = (M(U)⊗A(U) A(U)[f−1])0.

Associatio a MU,f abbiamo un fascio quasicoerent su Spec(A(U)[f−1]0) e quelli si incollano per

dare un fascio quasicoerente M̃ su P.

Commento 3.23. Ogni fascio quasicoerente su ProjA è ottenuto in questo modo. Ma due fasci di

moduli M possono dare lo stesso fascio.
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Commento 3.24. In caso che B = Spec(k), A è semplicemente una k-algebra graduato e M un

A-modulo graduato.

Esempio 3.25. Se prendiamo M = A, otteniamo il fascio strutturale M̃ = OP. Dato M come

sopra definiamo M(n) come lo stesso fascio di moduli ma con graduazione

M(n)i = Mn+i

e con OP(n) lo fascio Ã(n) associato a A(n). Tutti i OP(n) sono invertibili con

OP(n)
−1 = OP(−n)

e piu generale

OP(n)⊗OP(m) ≃ OP(n+m).

Esempio 3.26. Sia B = Spec(k),A = A = k[x, y] e M = M = A(1). Quindi P = P1
k e

U = Spec(k). Poi abbiamo

P(Spec(k),x) = Spec(k[x, y][x−1]0) e P(Spec(k),y) = Spec(k[x, y][y−1]0)

e

MSpec(k),x = (k[x, y]⊗k[x,y] k[x, y][x
−1])0 = { f

xdeg(f)−1
| f ∈ k[x, y], deg(f) ̸= 0}

perché (k[x, y]⊗k[x,y] k[x, y][x
−1]) = k[x, y][x−1] con deg(h⊗ g

xn ) = deg(h)− 1+deg(g)−n.

Analogo per

MSpec(k),y = (k[x, y]⊗k k[x, y][y
−1])0 = { f

ydeg(f)−1
| f ∈ k[x, y], deg(f) ̸= 0}.

Un elemento
f

xdeg(f)−1 definisce quindi anche un elemento MSpec(k),y se e solo se deg(f) = 1. O

in altre parole, le sezioni globali Γ(OP1(1)) sono k[x, y]1. Più in generale abbiamo

Γ(OPn(m)) = k[x0, . . . , xn]m per ogni m,n ≥ 1.

Per m > 0, otteniamo in particolare che OPn(m) è generato da k =
(
n+m
n

)
sezioni globali,

dato da xm0
0 . . . xmn

n per ogni scelta di mi tale che

∑
imi = m.

Se prendiamo inveceOP1(−1) otteniamo sezioni locali
f

xdeg(f)+1 e
f

ydeg(f)+1 che non si estendono

mai a sezioni globali. Anche qua abbiamo in generale

Γ(OPn(m)) = {0} per ogni m < 0.

Definizione 3.27. Sia X un Y -schema. Un fascio invertibile P su X si chiama molto ampio se

esiste un immersione i : X → Pn
Y tale che P ≃ i∗OPn

Y
(1). Il fascio si chiama ampio se P⊗n

è

molto ampio per un n ∈ N.

Qua un morfismo si chiama un immersione se induce un isomorfismo tra X e un sottoschema

aperto di un sottoschema chiuso di Pn
Y .

Commento 3.28. Uno schema noetheriano X su k è proiettivo se e solo se X è proprio e amette

un fascio molto ampio: se X è proiettivo, allora X è proprio (Teorema 3.19) e per definizione

l’inclusione i : X → Pn
k dà il fascio molto ampio i∗OPn

k
(1). Vice versa, se X e proprio su k, anche

X → Pn
k è proprio (Corollario 2.20 (5)) e quindi ha immagine chiuso e definisce un immersione

chiuso.

4. Divisori e fasci invertibili

4.1. Divisori di Weil. In questa sezione supponiamo cheX sia uno schema integrale, noetheriano,

separato che è regolare in codimensione 1 (l’ultima proprietà vuole dire che ogni anello locale

OX,x di dimensione 1 è regolare).
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Definizione 4.1. Un divisore primo Y di uno schema X è un sottoschema integrale chiuso di

codimensione 1. Un divisore di Weil è una combinazione lineare D =
∑n

i=1 niYi di divisori primi

Yi con ni ∈ Z. D si chiama effetivo se ni ≥ 0 per ogni i. Si scrive Div(X) per il gruppo di

divisori di Weil su X .

Una funzione razionale su X è un elemento del campo K = Oη,X , dove η è il punto generico

di X . Per ogni divisore primo D abbiamo il punto generico ηD di D e perché D ha codimensione

1, OηD,X è un anello di valutazione discreta con valutazione νD con campo di frazioni K (perché

OηD,X è un dominio locale Noetheriano con ideale massimale principale e non è un campo).

Definiamo l’ordine di zero/poli di una funzione razionale non-zero f ∈ K∗
lungo D come νD(f).

C’è se νD(f) > 0 diciamo che f ha un zero lungo D di ordine νD(f); e se νD(f) < 0 diciamo

che f ha un polo lungo D di ordine −νD(f).

Esempio 4.2. Se prendiamo come D = Spec(k[x, y]/(x)) ⊂ Spec(k[x, y]) = A2
, allora ηD è il

punto dato dal ideale primo (x). Quindi OηD,X = k[x, y](x). Ogni elemeto in f ∈ K = k(x, y) si

può scrivere come f = xng con g ̸∈ (x) e νD(f) = n. Per esempio, νD(
y
x) = −1, νD(x

2−y) = 0
e νD(xy) = 1.

Sempre con gli assunzioni su X di sopra abbiamo:

Lemma 4.3. Sia f ∈ K∗. Allora ci sono solo un numero finito di divisori primiD tale che νD(f) ̸= 0.

Proof. Per ogni aperto affine U = Spec(A) ⊂ X abbiamo K = Frac(A). Possibilmente restrin-

gendo a Uf , possiamo scegliere U = Spec(A) ⊂ X affine tale che f è regolare, c’è f ∈ OX(U).
Il complemento X \ U è chiuso e quindi un unione finito di componenti irreducibili (X è noethe-

riano). In particolare, esiste solo un numero finito di divisori primi D con D ∩ U = ∅ e quindi

è sufficiente mostrare l’affermazione per U . Visto che f ∈ OX(U), νD(f) ≥ 0. Poi νD(f) > 0
se e solo se D è contenuto nello sottoschema chiuso Z di U definito da f ·A. Ma visto che X è

noetheriano, Z contiene un numero finito di divisori primi. □

—

Lezione

13.11.
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