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1. Schemi

1.1. Introduzione. Una varietà algebraica X ⊂ km tradizionalmente è definito come il luogo

di zeri di un insieme di polinomi f1, . . . , fn con m variabili e con coefficienti in un campo k
(algebraicamente chiuso, di caratteristica 0).

Si vede subito, che X infatti non dipende dalla scelta di f1, . . . , fn ma invece dall ideale I
generato dai fi. Poi l’anello di funzioni regolari su X è, per definizione,

k[X] = k[x1, . . . , xn]/I

, che sono ‘polinomi’ o funzioni regolari definito su X . Per avere una correspondenza biiettiva

tra ideali e varieta algebriche, si deve imporre che k[X] è un dominio: per esempio, il luogo di

zeri di (y) e (y2) è identico, anche se gli ideali non lo sono. Nella perspettiva classica, si risolve

questa ambivalenza ristringendo l’insieme di ideali che sono ammessi. Nella perspettiva moderna

degli schemi, si aumenta invece l’insiemme di oggetti geometrici – c’è si introduce un oggetto

geometrico che corrisponde a (y2) ed è diverso da (y).
Perché questo è utile anche se magari si è interessato sopratutto nelle varietà algebriche? Si

consideri per esempio una degenerazione nel parametro t di una parabola, xt− y2 = 0. Per t ̸= 0,

questo definisce una varietà algebrica. Per t = 0 invece otteniamo l’ideale (y2) e quindi la teoria

delle varietà algebriche ci dice di prendere il radicale e vederlo come la retta data da (y). Ma

questo non dà una teoria soddisfacente; per esempio, il grado per t ̸= 0 sarebbe uguale a 2, metre
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per t = 0 uguale a 1. La teoria dei schemi dà la possibilità di parlare in un senso formale anche

dal oggetto geometrico associato a (y2) (che dovrebbe essere una ‘retta doppia’).

Quindi, la teoria dei schemi introduce la possibilità di avere nilpotenti nel anello delle coordinati.

Ma non solo, nel mondo dei schemi si puo per esempio anche lavorare su un anello (come Z
con applicazioni alla teoria dei numeri) invece del campo k, o l’anello delle coordinati non è

necessariamente finitamente generato come k-algebra.

Un’altro perspettiva che gli schemi offrono, è che permettono di definire ‘varietà astratte’ –

invece delle varietà con un spazio ambientale come An
k o Pn

k . Questo passo è analogo al concetto

delle varietà astratte nella geometria differenziale: si ottiene l’oggetto astratto incollando aperti.

Nel caso degli schemi, gli ogetti di base sono i schemi affini.

1.2. Definizione di Schemi. Uno schema affine è dato da

(1) Spec(R) con R anello commutativo con la topologia di Zariski e

(2) O fascio strutturale/fascio delle funzione regolare sullo schema.

Definiamo questo oggetto in tre passi, prima come insieme, poi come spazio topologico e

finalmente come ‘spazio localmente annellato’, quindi lo fascio strutturale O.

1.2.1. Schemi affini come insieme. Sia R un anello (assumiamo sempre che gli annelli sono com-

mutativi con 1).

Definizione 1.1. Gli elementi di Spec(R) come insieme sono i ideali primi p di R.

Osservazione 1.2. R ⊆ R non è un ideale primo. {0} invece lo è se R non ha divisori di zero

(R è un dominio). Se R è un campo, l’unico ideale primo è {0} perchè ogni elemento x ̸= 0 è

invertibile.

Un ideale primo m è un ideale massimale se m è massimale rispetto all’inclusione; c’è se m ⊆ p
per un ideale primo p, allora m = p. Ogni ideale diverso da R è contenuto in un ideale massimale.

Osservazione 1.3. Un ideale p è primo se e solo se R/p è un dominio, e p è massimale se e solo se

R/p è un campo.

Esempio 1.4. (1) Spec(Z) = {(p) | p interi primi } ∪ {(0)}.

(2) Spec(Z/3Z) = {(0)} perchè Z/3Z è un campo

(3) Spec(C[x]) = {(x−α | α ∈ C}∪{(0)}. In questo caso, C[x]/(x−α) ≃ C via f 7→ f(α).
Quindi (x − α) è un ideale massimale. Poi tutti ideali primi hanno questa forma: Sia

p ̸= (0) un ideale primo di C[x] e f ∈ p un elemento di grado minimo. Allora f non è

costante perchè altrimenti p = C[x]. Se deg(f) > 1, allora f = c(x− α1) · . . . (x− αn)
perché C è algebraicamente chiuso. Ma p è primo e quindi deve contenere anche uno dei

(x − αi). Visto che C[x] è un dominio ad ideali principali (per esempio dovuto al fatto

che esiste un algorithmo di divisione con resto), dobbiamo avere p = (x− αi).

Dato f ∈ R si può associare a f una ‘funzione’ f con dominio Spec(R) (vogliamo vedere i

elementi in R come polinomi/funzioni regolari su Spec(R)). Dato p ∈ Spec(R), consideriamo

α : R→ R/p ↪→ Frac(R/p).

Allora, l’imagine di p sotto f è definito come α(f) e scriviamo f(p).

Osservazione 1.5. Questo non definisce una vera funzione, perchè il codominio Frac(R/p) cambia

con p.

Esempio 1.6. f = 15 ∈ Z. Allora il ‘valore’ di f a (7) per esempio è 15 mod 7 = [1] ∈ Z/7Z.
Il ‘valore’ di f a (11) è [4] ∈ Z/11Z. Il ‘valore’ di f a (0) è 15 ∈ Q.

Esempio 1.7. R = k[x]/(x2), allora Spec(R) = {(x)}. Il ‘valore’ di f = x ∈ R sul unico punto

(x) è zero. In particolare, dà una ‘funzione’ non-zero su Spec(R) che ha ‘valore’ zero a tutti i

punti di Spec(R).
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1.2.2. Schemi affini come spazi topologici. La Topologia di Zariski ha chiusi dato cosi: per ogni

S ⊂ R, abbiamo un chiuso

V (S) = {p ∈ Spec(R) | S ⊂ p}.

Osservazione 1.8. Otteniamo la stessa definizione scrivendo V (S) = {p ∈ Spec(R) | f(p) = 0},

che collega alla nozione più classico che i chiusi sono luoghi di zero di un insiemme di polinomi.

Poi chiaramente V (S) = V ((S)) dove (S) è l’ideale generato da S.

Proposizione 1.9. Prendere i V (I) per I ideali diR come chiusi definisce una topologia su Spec(R)
(la topologia di Zariski).

Proof. Controlliamo i requisiti per una topologia uno per uno:

• Ogni ideale contiene (0), quindi V (0) = Spec(R).
• Ogni ideale primo è proprio, quindi V (R) = ∅.

• Per un insieme di ideali {Iα}α abbiamo:

p ∈
⋂
α

V (Iα) ⇔ Iα ⊆ p,∀α⇔
⋃
α

Iα ⊂ p ⇔ p ∈ V (
⋃
α

Iα)

• Per due ideali I e J abbiamo:

p ∈ V (I) ∪ V (J) ⇔ p ∈ V (I) o p ∈ V (J) ⇔ I ⊂ p o J ⊂ p ⇔
⇔ I ∩ J ⊂ p ⇔ p ∈ V (I ∩ J),

dove I ∩ J ⊂ p ⇒ I ⊂ p o J ⊂ p perchè se non, esistono i ∈ I e j ∈ J con i, j ̸∈ p. Ma

in questo caso ij ∈ I ∩ J ⊂ p e quindi i ∈ p o j ∈ p perché p è primo, una contradizione.

□

Gli aperti sono i complementi dei chiusi. Se S = {f}, f ∈ R, allora

Spec(R) \ V (f) = Spec(Rf ) = Xf ,

dove Rf = R[f−1] è la localizzazione di R rispetto a f (c’è rispetto al insieme moltiplitivamente

chiuso {fn}n∈N):

Proposizione 1.10. Gli ideali primi di Rf sono in corrispondenza biunico con i primi di R che non
contengono f .

Proof. Per passare da R a Rf si usano due costruzioni:

• I ⊂ R ideale, allora Ie = { t
fn per t ∈ I} l’ideale di Rf generato dall immagine di I con

ϕ : R→ Rf , t 7→
t

1
.

Si chiama la estensione di I (in Rf ).

• J ⊂ Rf , J
c = ϕ−1(J), la contrazione di J .

Per ogni ideale abbiamo che I ⊆ (Ie)c e J = (Jc)e. Poi la contrazione di un ideale primo è

sempre primo, perché la preimagine di un ideale primo tramite un morfismo tra anelli è primo.

Vogliamo dimostrare che per q ⊂ R primo con f ̸∈ q abbiamo q = (qe)c e che qe è primo

(in generale, l’ideale generato dal immagine di un ideale primo non è necesseriamente un ideale

primo). Cos̀ı si vede che la corrispondenza biunica che cerchiamo è dato dalla estensione con

inverso la contrazione (si osserva che per f ∈ q, la estensione di q èRf perché f diventa invertibile

in Rf ).

Entrambe le affermazioni sequono se dimostriamo che
x
fn ∈ qe implica che x ∈ q. Lo

facciamo adesso: Sappiamo che
x
fn ∼ x′

fn′ per un x′ ∈ q. Per definizione esiste un m t.c.

fm(xfn
′ − x′fn) = 0 e quindi xfm+n′

= x′fm+n
. Visto che x′ ∈ q, anche x′fm+n ∈ q e quindi

xfm+n′ ∈ q. Ma fm+n′ ̸∈ q, e quindi x ∈ q come desiderato. □

Lemma 1.11. Gli Xf formano una base per la topologia di Zariski.
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Proof. Dobbiamo dimostrare che ogni aperto U di Spec(R) si può scrivere come unione di aperti

Xf . Per definizione abbiamao U = Spec(R) \ V (S), che possiamo rescrivere come

U = Spec(R) \ V (S) = Spec(R) \
⋂
f∈S

V (f) =
⋃
f∈S

(Spec(R) \ V (f)) =
⋃
f∈S

Xf .

□

Gli aperti Xf si comportano bene anche per intersezioni finite:

Lemma 1.12. Abbiamo Xf ∩Xg = Xfg .

Proof. L’aperto Xf è l’insiemme di primi che non contengono f . Quindi Xf ∩Xg è l’insieme di

primi che non contengono f e non contengono g. L’insiemme Xfg invece sono gli ideali primi

che non contengono fg e quindi che contengono né f né g. □

Osservazione 1.13. Spec(R) non è quasi mai di Hausdorff. Infatti, gli unici punti chiusi sono i

ideali massimali perché se p ∈ Spec(R) la chiusura è

p = {q ∈ Spec(R) | p ⊆ q}.

Esempio 1.14. In Spec(C[x]) i p = (x−α) sono punti chiusi. (0) non è chiuso e la sua chiusura

è tutto Spec(C[x]). Se f ∈ C[x], allora V (f) sono tutti i punti (x − α) t.c. (f) ⊂ (x − α) che

significa α tale che f(α) = 0.

—

Lezione 22.9. …

2. Proprietà di morfismi

2.1. Finitezza. Ci sono due condizioni di finitezza di morfismi molto importante, una molto più

restrittiva rispetto al altro. Iniziammo con quella più generale:

Definizione 2.1. Un morfismo di schemi φ : X → Y si chiama di tipo finito se per ogni punto

y ∈ Y c’è un aperto affine y ∈ V = SpecB è un ricoprimento finito del suo preimagine

φ−1(V ) =
n⋃

i=1

Ui

tale che Ui ≃ Spec(Ai) e la mappa

φ#
V : B = OY (V ) → OX(φ−1V ) → OX(Ui) = Ai

realizza Ai come un’algebra finitamente generato su B per ogni i.

Osservazione 2.2. Esiste anche il concetto di essere localmente di tipo finito dove non si richiede

che il ricoprimento di φ−1(V ) sia finito.

Molti schemi naturali soddisfano questa proprietá, per esempio:

Esempio 2.3. Sottoschemi chiusi Spec(k[x1, . . . , xn]/I) dello spazio affine An
k sono chiaramente

di tipo finito su k.

La intuiziuno è che richiedere di essere di tipo finito esclude fibre di dimensione infinita e certi

situazioni ‘non-geometrici’ come spetri di annelli locale:

Esempio 2.4. SiaR = k[x](x) lo annello locale di A1
k al punto (x). Gli elementi diR sono funzioni

razionali
f(x)
g(x) dove g(x) ̸∈ (x). Per generare l’annello come k-algebra servono almeno 1, x, 1

g(x)

con g(x) monico di grado 1 e g(x) ̸= x, un numero infinito di generatori. Quindi Spec(R) non è

di tipo finito su Spec(k).

Il concetto seguente di finitezza è molto più restrittivo:
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Definizione 2.5. Un morfismo di schemi φ : X → Y è finito se per ogni punto y ∈ Y c’è un

aperto affine y ∈ V = SpecB tale che anche φ−1(V ) = Spec(A) è affine e

φ#
V : B = OY (V ) → OX(φ−1V ) = A

realizza A come un modulo finitamente generato su B.

Esempio 2.6. Il morfismo φ : Spec(k[x, y]/(x2 − y)) → Spec(k[y]) che corrisponde alla inclu-

sione k[y] → k[x, y]/(x2 − y), y 7→ y è finito perchè k[x, y]/(x2 − y) è generato da 1 e x come

k[y]-modulo.

Lemma 2.7. Un morfismo finito ha fibre finite.

Proof. La domanda è locale e quindi possiamo supporre che Y = Spec(B) e X = Spec(A) come

nella definizione di essere finito. Assumiamo che A è un B-modulo finitamente generato e sia

y ∈ Y . Allora la fibra k(y)⊗B A di φ è un k(y) modulo finitamente generato tramitte la mappa

B → k(y). Ma ogni k(y)-algebra che è finitamente generato come k(y)-modulo ha un numero

finito di primi (è Artiniano). □

Osservazione 2.8. Avere fibre finite (si dice anche di essere ‘quasi-finito’) non è sufficiente per

essere un morfismo finito. Per esempio, l’inclusione φ : A1 \ {0} → A1
è data dalla mappa di

annelli k[t] → k[t, t−1]. Allora φ è iniettivo quindi quasi-finito, ma non finito perchè k[t, t−1]
non è finitamente generato come k[t] modulo.

Osservazione 2.9. Si nota che nelle definizioni di (localmente) di tipo finito e finito si richiede

l’esistenza di un certo ricoprimento con aperti affini di Y . Si può dimostrare che questo implica le

condizioni per ogni ricoprimento affine di Y .

2.2. Morfismi separati. Abbiamo visto che ogni schema affine noetheriano è quasicompatto.

Ma questo proprietà non porta gli vantagi che ha in altre teorie. Per esempio che l’immagine di un

morfismo definito sullo spazio è chiuso. Questo perchè uno schema affine è quasi mai Hausdorff e

quindi quasi mai compatto: già per esempio A1
k non lo è. I concetti di morfismi separati e propri

danno un analogo di essere Hausdorff e compatto nella categoria degli schemi.

Si riccorda, che un spazio topologico X è Hausdorff se e solo se la diagonale ∆ in X × X
è chiuso nella topologia prodotto. Questo generalizza per gli schemi sustituendo la topologia

prodotto con il prodotto fibrato.

Sia φ : X → S un morfismo tra schemi. La diagonale ∆ ⊂ X ×S X è il sottoschema definito

su affini Spec(A) ⊂ X e Spec(B) ⊂ S con φ|Spec(A) : Spec(A) → Spec(B) dal ideale generato

da elementi

a⊗ 1− 1⊗ a ∈ A⊗B A.

Osservazione 2.10. Una definizione alternativa è: La diagonale è l’immagine del unico morfismo

X → X ×S X che composto con ognuno dei due proiezioni dà l’identitá su X (usando la

proprietá universale del prodotto fibrato): l’identità al livello di schemi corrisponde al identità

al livello di anelli. Quindi cerchiamo una mappa µ : A ⊗B A → A tale che le composizioni

con A → A ⊗B A, a 7→ 1 ⊗ a e A → A ⊗B A, a 7→ 1 ⊗ a danno l’identità. Dobbiamo avere

µ(a⊗ b) = ab e si verifica che il nucleo di questa mappa è generato da elementi a⊗ 1− 1⊗ a

Definizione 2.11. Un morfismo α : X → S si chiama separato se la diagonale ∆ ⊂ X ×S X è

chiusa. Un S-schema X si chiama separato se lo morfismo strutturale X → S lo è.

Esempio 2.12. Se X e S sono affini, allora la diagonale è un sottoschema chiuso per definizione

e quindi φ è separato.

Esempio 2.13. Sia X la ‘rette affine con l’origine sdoppiata’, c’è lo schema ottenuto incollando

X1 = Spec(k[t]) e X2 = Spec(k[s]) tramitte il morfismo k[t, t−1] → k[s, s−1], t 7→ s che

identifica X1 \ {0} con X2 \ {0}. Allora X ×k X ha un ricoprimento affine dato da X1 ×
X1, X1 × X2, X2 × X1 e X2 × X2 (quindi A2

con ‘assi sdopiati’ e ‘quattro punti di origine’).

La diagonale contiene le origini di X1 ×X1 e X2 ×X2 ma non quelle di X2 ×X1 e X1 ×X2.
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Fuori dal origine, gli (Xi \ {0}) × (Xi \ {0}) vanno tutti identificati e la diagonale in ogni

(Xi \ {0})× (Xi \ {0}) sono i punti (x, x). Quindi la diagonale in X2 ×X1 e X1 ×X2 non è

chiusa e il morfismo non separato.

Commento 2.14. Si nota che essere separato è un concetto ‘relativo’. La identitá X → X con X
come nel esempio precedente è separato.

Si ricorda che un anello di valutazione è un anello in cui gli ideali sono totalmente ordinati

(rispetto al’inclusione). Si dice che un anello locale B domina un altro anello local A se A ⊂ B e

mA = mB ∩A.

Teorema 2.15 (Criterio valutativo di separatezza). Sia f : X → S un morfismo tra schemi con
X noeteriano. Allora f è separato se e solo se si è verificata la seguente condizione. Per ogni campo
K e per ogni anello di valutazione R con campo quoziente K sia T = Spec(R), U = Spec(K) e
i : U → T il morfismo indotto dall’inclusione R ⊂ K . Dato un morfismo da T a Y e un morfismo
da U a X in modo tale che il seguente diagramma sia commutativo

U //

i
��

X

f
��

T // S,

(1)

esiste al più un morfismo T → X che ritiene commutativo il diagramma.

Osservazione 2.16. Se anche S è Noetheriano e f di tipo finito, basta controllare il criterio per

ogni anello di valutazione discreta R.

Esercizio 2.17. Sia R un anello di valutazione con campo di frazioni K . Sia T = Spec(R) e
U = Spec(K). Dare un morfismo da U a uno schema X è la stessa cosa come dare un punto x ∈ X
e un’inclusione di campi k(x) ↪→ K . Dare un morfismo da T in X è equivalente a dare due punti
x, η in X con x ∈ η e un inclusione di campi k(η) ⊂ K tale che R domina l’anello locale di x in η.

Proof. Supponiamo che f sia separato. Siano h, h′ : T → X due morfismi come nel teorema.

Allora h e h′ definiscono un morfismo h′′ : T → X ×S X . Visto che h|U = h|U ′ h e h′ mandano

il punto generico η di T nello stesso punto di X e quindi h′′ manda il punto generico di T nella

diagonale ∆ di X ×S X . Visto che ∆ è chiusa, h′′ manda anche il punto chiuso p nella diagonale.

Quindi anche h(p) = h′(p). Visto che h e h′ definiscono – per assunzione – anche lo stesso

inclusione di k(h(η)) ⊂ K , segue dal esercizio che h = h′.
Viceversa supponiamo che la condizione del criterio è soddisfatta e vogliamo dimostrare che la

diagonale è chiusa. È sufficiente dimostrare: per ogni punto η ∈ ∆ e x ∈ η abbiamo anche x ∈ ∆
(si trova una dimostrazione per esempio in Hartshorne Lemma II.4.5). Sia K = k(η) e O l’anello

locale di x nello sottoschema η (con la struttura di schema ridotto). Allora O è un sotoanello locale

di K e quindi esiste un anello di valutazione R di K che domina O. Se mettiamo T = Spec(R)
otteniamo usando l’esercizio un morfismo T → X ×S X che manda il punto generico di T in η e

il punto chiuso in x. Composizione con i due proiezioni dà due morfismi T → X che danno lo

stesso morfismo a S e che coincidono su Spec(K). La condizione quindi da che i due morfismi

coincidono. Quindi T → X ×S X fatorizza attraverso il morfismo della diagonale X → X ×S X
e otteniamo che anche x ∈ ∆. □

Corollario 2.18. Supponiamo che tutti schemi sono noetheriani:
(1) Inclusioni di sottoschemi sono separate.
(2) La composizione di due morfismi separati è separata.
(3) I morfismi separati sono stabili per cambiamento di base.
(4) Se f : X → Y e f ′ : X ′ → Y ′ sono morfismi separati di schemi su uno stesso schema di base

S, allora il prodotto fibrato

f ×S f
′ : X ×S X

′ → Y ×S Y
′

è separato.



7

(5) Se f : X → Y e g : Y → Z sono due morfismi di schemi e se g ◦ f è separato, allora anche
f è separato.

(6) Un morfismo f : X → Y è separato se e solo se Y può essere ricoperto da sottoinsiemi aperti
Vi tali che i morfismi f−1(Vi) → Vi siano separati, per ogni i.

Proof. Per esempio, (2) si può verificare cosi: Sia f : X → Y e g : Y → Z morfismi di schemi

separati. Si considera

U //

i

��

X

f
��
Y

g
��

T // Z

Una mappa T → X induce una mappa T → Y che è unica perchè g è separato. Ma anche una

mappa T → X che commuta con T → Y è unica perchè f è separato, quindi T → X è unica e

g ◦ f è separato. □

2.3. Morfismi propri. Uno dei proprietá più importante di spazzi compatti è che una mappa

continua X → Y con X compatto (e Y Hausdroff) manda chiusi in chiusi. Si usa una versione di

questo proprietá un po più forte per definire l’analogo nel mondo dei schemi:

Definizione 2.19. Un morfismo tra schemi φ : X → Y si chiama

(1) universalmente chiuso se per ogni morfismo Y ′ → Y il cambiamento di base Y ′×Y X →
Y ′

è chiuso.

(2) proprio se è di tipo finito, separato e universalmente chiuso.

Come prima, un S-schema X si chiama proprio se il morfismo strutturale X → S lo è.

Esempio 2.20. A1
k non è proprio (su k). Il cambiamento di base dato da A1

k → Spec(k) stesso

dà la mappa A1
k ×k A1

k = A2
k → A1

k che non è chiuso: l’immagine di Spec(k[x, y]/(xy − 1))
è A1

k \ {0} non è chiuso (si deve aggiungere il punto ‘a infinito’, che faremmo nella sezione

successiva).

—

Lezione

5.11.
Teorema 2.21 (Criterio valutativo di proprietà). Sia f : X → S un morfismo di tipo finito tra
schemi con X noeteriano. Allora f è separato se e solo se si è verificata la seguente condizione.
Per ogni campo K e per ogni anello di valutazione R con campo quoziente K sia T = Spec(R),
U = Spec(K) e i : U → T il morfismo indotto dall’inclusione R ⊂ K . Dato un morfismo da T a
Y e un morfismo da U a X in modo tale che il seguente diagramma sia commutativo

U //

i
��

X

f
��

T // S,

(2)

esiste un unico morfismo T → X che ritiene commutativo il diagramma.

Proof. Supponiamo che f sia proprio. Siccome f è anche separato, segue dal criterio valutativo di

separatezza che se un morfismo h : T → X esiste, allora è unico. Dobbiamo quindi dimostrare

l’esistenza.

La proprietà universale del prodotto fibrato dà lo seguente diagramma commutativa:

U
j //

i

$$

X ×S T //

f ′
��

X

f
��

T // S,
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Sia η l’immagine in X ×S T del punto unico contenuto in U . Allora f ′ è chiuso perchè f è

universalmente chiuso e quindi anche f ′(η) è chiuso e deve essere uguale a T . Quindi abbiamo

p ∈ η con f ′(p) = x dove x è il punto chiuso di T . Quindi otteniamo un morfismo locale di anneli

locali R→ Op,η . Il campo di funzioni di η, k(η), è contenuto in K . Visto che R è massimale tra

annelli locali in K rispetto a la dominanza, segue che R ≃ Op,η e in particolare R domina Op,η .

Quindi Esercizio 2.17 ci dà un morfismo T → X ×S T e composizione con X ×S T → X dà il

morfismo cercato.

Supponiamo adesso che f soddisfa il criterio e vogliamo vedere che f è proprio. Dall criterio

valutativo di separatezza segue che f è separato. Visto che supponiamo già che f sia di tipo finito,

rimane dimostrare che f è universalmente chiuso. Quindi sia f ′ : X ×S S
′ → S e Z ⊂ X ×S S

′

un chiuso e vogliamo vedere che f ′(Z) ⊂ S′
è chiuso. Usiamo come nella dimostrazione del

criterio valutativo di separatezza che basta dimostrare il seguente: per ogni η′ = f ′(η) ∈ f ′(Z) e

x ∈ η′ anche x ∈ f ′(Z).
Sia O l’anello locale di x in η′. Allora il campo di frazioni di O è k(η′) che è contenuto in k(η).

Sia R un anello di valutazione in k(η′) che domina O. In questo modo otteniamo un diagramma

Spec(k(η)) //

i
��

Z

f
��

Spec(R) // S′,

(3)

Composizione con Z → X×S S
′ → X e S′ → S dà morfismi Spec(R) → S′

e Spec(k(η)) →
X . Il criterio ci dice che esiste una mappa Spec(R) → X tale che il diagramma diventa commu-

tativo. Visto che X ×S S
′

è un prodotto fibrato, otteniamo anche un morfismo h : Spec(R) →
X×SS

′
. Visto che h(ηR) ∈ Z eZ è chiuso, anche h(xR) ∈ Z . Ma allora x = f ′(h(xR)) ∈ f ′(Z).

□

Commento 2.22. Come per il criterio valutativo di separatezza si puo dimostrare che se anche S è

noeteriano, allora basta controllare il criterio per anelli di valutazione discreta.

Commento 2.23. Dal criterio segue, che un esempio di una mappa non-finito ma con fibre finite

(quasi finito) come in Osservazione 2.8 non è possibile per morfismi propri. Infatti, si può

dimostrare che un morfismo è finito se e solo se è quasi finito e proprio.

Corollario 2.24. Supponiamo che tutti schemi sono noetheriani:
(1) Un’immersione chiusa è un morfismo proprio.
(2) La composizione di due morfismi propri è proprio.
(3) I morfismi propri sono stabili per cambiamento di base.
(4) Se f : X → Y e f ′ : X ′ → Y ′ sono morfismi propri di schemi su uno stesso schema di base

S, allora il prodotto fibrato

f ×S f
′ : X ×S X

′ → Y ×S Y
′

è proprio.
(5) Se f : X → Y e g : Y → Z sono due morfismi di schemi e se g ◦ f è proprio e g separato,

allora f è proprio.
(6) Un morfismo f : X → Y è proprio se e solo se Y può essere ricoperto da sottoinsiemi aperti

Vi tali che i morfismi f−1(Vi) → Vi siano propri, per ogni i.

Proof. Per esempio, per vedere (3), sia S′ → S un morfismo e f ′ : X ′ = X ×S S
′ → S′

il

cambiamento di base.

Supponiamo che abbiamo

U //

i
��

X ′ //

f ′
��

X

f
��

T // S′ // S
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Sappiamo già che f ′ è separato da Corollario 2.18. Essere di tipo finito è stabile per cambiamento

di base: si restringe a affini aperti e poi f ′ è dato da f ′ : Spec(A ⊗B C) → Spec(A) con C
finitamente generato comeB-algebra. Si controlla che in questo caso ancheA⊗B C è finitamente

generato come A⊗B B = A algebra.

Finalmente, usiamo il criterio valutativo di proprietá per vedere che anche f ′ è proprio: Perché

f è proprio, esiste una mappa T → X tale che il diagramma rimane commutativo. Ma per la

proprietá universale del prodotto fibrato, viene indotto anche una mappa T → X ′
. □

Definizione 2.25. Una varietá (astratto) è uno schema integrale, separato e di tipo finito su un

campo algebraicamente chiuso k. Una varietà completa è una varietá che è anche proprio (su k).

3. Schemi e morfismi proiettivi

3.1. Proj di un anello graduato. Analogo a Spec di un anello, che generalizza varietá affini, si

può definire Proj di un anello graduato, che generalizza varietá proiettivi.

Si ricorda che un annello graduato S è una A-algebra con

S =
∞⊕
ν=0

Sν

tale che

SνSµ ⊂ Sν+µ e S0 = A.

Qua supponiamo sempre che S sia finitamente generato.

Un elemento f di S si chiama omogeneo di grado ν se f ∈ Sν . L’elemento 0 è per definizione

omogeneo, ma non ha un grado fissato. Un ideale si chiama omogeneo se è generato da elementi

omogenei. Scriviamo

S+ =
∞⊕
ν=1

Sν ,

che è un ideale che chiamiamo l’ideale irrelevante.

Dato un annello graduato S, ProjS è un A-schema. Per adesso supponiamo che S sia generato

in grado 1.

Il suo insieme di punti |ProjS| consiste in ideali primi omogenei p tale che S+ ̸⊂ p.

Esercizio 3.1. ProjS = ∅ se e solo se tutti gli elementi di S+ sono nilpotenti.

La topologia su |Proj(S)| ha chiusi della forma

V (I) = {p | p ∈ |ProjS| e I ⊂ p}

per un ideale omogeneo I di S.

Finalmente, diamo una struttura di schema su |ProjS| specificandola su una base di aperti. Sia

f ∈ S1 un elemento di grado 1 e

U = |ProjS| \ V (f).

Allora U è l’insieme di ideali primi omogenei che non contengono f . Quindi i punti di U possono

essere identificato con l’insieme di primi omogenei nella localizaione S[f−1]. Il punto chiave per

dare una struttura di schema è lo seguente:

Lemma 3.2. Gli ideali primi omogenei di S[f−1] sono in biiezione con (tutti) ideali primi di S[f−1]0,
il parte di grado 0 di S[f−1].

Proof. Sia D = {p ∈ ProjS | f ̸∈ P} e consideriamo la mappa

φ : D → Spec(S[f−1]0)

che manda un ideale primo omogeneo p in S[f−1] a p ∩ S[f−1]0. Sia

ψ : Spec(S[f−1]0) → D
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la mappa che manda un ideale q a qS[f−1]. C’è, ψ(q) è generato da elementi s tale che
s
fd ∈ q per

d = deg(s). Allora φ ◦ ψ = id: l’intersezione degli elementi s ∈ ψ(q) come sopra con S[f−1]0
sono, per definizione, gli elementi di q.

Per vedere che anche ψ ◦ φ = id, sia s ∈ p ∈ D. Allora
s

fdeg(s) ∈ φ(p) e quindi s ∈ ψ(φ(p)) e

p ⊂ ψ(φ(p)).

Se invece s ∈ ψ(φ(p)), allora
s

fdeg(s) ∈ φ(p) e quindi esiste s′ ∈ p tale che
s′

fdeg(s′) = s
fdeg(s) .

Questo vuole dire che esiste un e ∈ N tale che

fe(s′fdeg(s) − sfdeg(s
′)) = 0.

Allora s′ ∈ p e quindi anche sfdeg(s
′)+e ∈ p. Ma fdeg(s

′)+e ̸∈ p e quindi s ∈ p perché p è primo.

Insomma, abbiamo anche ψ(φ(p)) ⊂ p. □

Quindi possiamo identificare un aperto U = |Proj(S)| \ V (f) con Spec(S[f−1]0) come spazi

topologici. Prendiamo la struttura di schema su U come quella di Spec(S[f−1]0) e chiamiamo

U = (ProjS)f . Per ogni scelta di fi tale che (f1, f2, . . .) ha radicale S+, i (ProjS)fi danno un

ricoprimento diProjS con schemi affini. Per due di quelli aperti abbiamo che (ProjS)f∩(ProjS)g
dentro (ProjS)f è lo spettro di

S[f−1]0[(
g

f
)−1] = S[f−1, g−1]0.

In particolare, possiamo incollare (ProjS)f e (ProjS)g lungo questi aperti affini e otteniamo una

struttura di schema su ProjS.

Si osserva che otteniamo un’inclusioneS0 ↪→ OProjS(ProjS) che induce una mappaProj(S) →
Spec(S0) che realizza ProjS come S0-schema.

—

Lezione 3.11. Definizione 3.3 (Morfismi proiettivi su schemi affini). Sia B = Spec(A) uno schema affine.

Allora un morfismo di schemi φ : X → B è proiettivo se X = ProjS per un anello graduato

e finitamente generato da elementi in grado 1, tale che A ≃ S0 e φ è il morfismo strutturale

ProjS → SpecS0.

Esempio 3.4. Sia S = C[x, y] con la graduazione normale dato dal grado dei polinomi. Allora

S+ = (x, y) e Proj(S) = P1
C. Ideali massimali di C[x, y, z] hanno la forma (x− c1, y − c2) per

ci ∈ C; se (c1, c2) ̸= (0, 0), l’ideale non è omogeneo e altrimenti non è rilevante. Sia f ∈ I con I
omogeneo. Allora f(x) = 0 ⇒ f(λx) = 0 per ogni λ ∈ C. Quindi per ogni punto x contenuto

in V (I) ⊂ A2
, V (I) contiene anche la retta in x. Gli unici curve integrali in A2

per cui questa

proprietà è vero, sono le rette che contengono l’origine. Quindi I punti chiusi hanno la forma

(ax + by) (che corrispondono al punto [a : b] nei coordinati proiettivi classici di P1
C). L’unico

punto non-chiuso è dato da (0). Le mappe della dimostrazione di Lemma 3.2 sono dati cos̀ı: sia

per esempio f = x. Allora

φ(ax+ by) = (
ax+ by

x
) = (a+ b

y

x
) ⊂ C[x, y][x−1]0 ≃ C[

y

x
]

e

ψ(a+ b
y

x
) = (ax+ by).

L’anello S di ProjS si chiama l’anello delle coordinate omogenee. Diverso da SpecA, S non è

determinata da ProjS:

Esempio 3.5. Sia

S(d) =
∞⊕
ν=0

Sdν .

Allora ProjS = ProjS(d)
. Questo perché possiamo identificare affini aperti:

(ProjS)fd = (ProjS(d))f .
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Gli elementi in (ProjS)fd sono ideali primi in SpecS[(fd)−1]0 quindi generato da elementi

s
(fd)k

dove kd = deg(s). Invece gli elementi in (ProjS(d))f sono ideali primi in SpecS[(f)−1]0

generato da elementi
s
fk dove kd = deg(s) (nella vecchia graduazione). Un isomorfismo è dato

da f 7→ fd.

Ma in generale S(d) ̸≃ S. Per esempio, per S = k[x, y], S è generato da 2 elementi (x, y) in

grado 1 e S(2)
da tre elementi (x2, xy, y2).

Commento 3.6. Anche se S e S(d)
danno lo stesso Proj, in generale Proj(S) dipende dalla scelta

della graduazione. Per esempio, se prendiamo k[x, y, z] dove x, y, z hanno grado a, b, c > 0,

allora oteniamo lo schema che si chiama piano proiettivo pesato P(a, b, c). Si puo realizzare

come quotiente di (k3 \ {0})/(k∗) dove λ(x, y, z) = (λax, λby, λcz). In generale P(a, b, c) ̸=
P(a′, b′, c′).

Commento 3.7. Si puo usare la costruzione di Esempio 3.5 per vedere che se S è un anello graduato

finitamente generato allora esistono d tale che S(d)
è finitamente generato da elementi di grado 1.

Quindi, il fatto che supponiamo che S sia generato in grado 1 nella costruzione di ProjS non è

una restrizione.

3.2. Spazio proiettivo e sottoschemi chiusi. Sia S = A[x0, . . . , xn] graduato dal grado dei

polinomi. Sia Ui = (ProjS)xi . Allora

Ui = Spec(S[x−1
i ]0) = Spec(A[x′0, . . . , x̂

′
i . . . x

′
n]) ≃ An

A

dove x′j =
xj

xi
. In questo caso si scrive ProjS = Pn

A, lo spazio proiettivo, e si vede che è lo stesso

schema che abbiamo ottenuto incollando i An
in Sezione ??. In particolare, la dimensione di Pn

A è

n ovunque.

Sia I un ideale omogeneo di A[x0, . . . , xn] e Ui un aperto come sopra. Allora definiamo

Ĩ(Ui) = I ·A[x0, . . . , xn, x−1
i ] ∩A[x0, . . . , xn, x−1

i ]0.

Si verifica che gli ideali Ĩ(Ui) sugli aperti affini danno un fascio coerente Ĩ di ideali su Pn
A e quindi

un sottoschema chiuso V (Ĩ). Infatti, abbiamo che

V (Ĩ) ≃ ProjS/I.

Si nota anche che si puo ottenere Ĩ(Ui)mettendoxi = 1 sotto l’identificazioneA[x0, . . . , xn, x
−1
i ]0 ≃

A[x′0, . . . , x
′
n].

Nel altra direzione, dato un sottoschema chiuso X ⊂ Pn
A con fascio coerente di ideali IX ,

possiamo definire l’ideale I(X) come gli elementi omogenei f di A[x0, . . . , xn] tale che per ogni

i abbiamo che

f |xi=1 ∈ IX(Ui) ⊂ A[x′0, . . . , x
′
n] ≃ A[x0, . . . , xn, x

−1
i ](0).

Si controlla che se I = I(X) allora IX = Ĩ .

Esempio 3.8. L’ideale omogeneo (x0x1 − x22) ⊂ k[x0, x1, x2] dá gli ideali (x′0 − (x′2)
2), (x′1 −

(x′2)
2) e (x′0x

′
1 − 1) nei tre aperti affini dati da x0 ̸= 0, x1 ̸= 0 e x2 ̸= 0.

Esempio 3.9. Il complemento di un aperto affine Ui è, per definizione, V (xi). Questo è isomorfo

a

Proj(A[x0, . . . , xn]/(xi)) ≃ Pn−1
A .

Quindi la decomposizione Pn = Pn−1 ∪ An
che conosciamo dal contesto classico è vale anche su

anelli più generale (per esempio Pn
Z).

Osserviamo che la corrispondenza tra sottoschemi chiusi diPn
A e ideali omogenei diA[x0, . . . , xn]

non è biettivo:
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Esempio 3.10. Gli ideali (x0) e (x20, x0x1) danno lo stesso sottoschema diP2
k = Projk[x0, x1]: Nel

aperto affineU0, abbiamo che (x0) e (x20, x0x1) sono entrambi uguale a tutto l’anello k[x0, x1, x
−1
0 ].

Invece su U1 abbiamo che x1 è invertibile quindi (x20, x0x1) = (x20, x0) = (x0). (Si nota che lo

spettro degli ideali non è isomorfo: uno dà la rette x = 0, l’altro la stessa rette ma con un punto

non-ridotto al’origine).

Per ristorare una biezione serve lo seguente definizione:

Definizione 3.11. Sia I und ideale omogeneo in S = A[x0, . . . , xn]. Allora

I = {s ∈ S | ∃m, ∀i : xmi s ∈ I}
denota la saturazione di I . L’ideale I si chiama saturato se I = I .

Nel esempio precedente, la saturazione di (x20, x0x1) è (x0).

Esercizio 3.12. Siano I e J ideali omogenei di S = A[x0, . . . , xn]. Allora
(1) I è un ideale omogeneo
(2) ProjS/I = ProjS/I
(3) ProjS/I = ProjS/J se e solo se I = J .

Esercizio 3.13. Ogni schema proiettivo su A si puó realizzare come sottoschema chiuso di Pn
A.

Quindi otteniamo: ogni sottoschema chiuso di Pn
A è proiettivo. E per ogni schema proiettivo X

su A esiste un n tale che si puo realizzare X come un sottoschema chiuso di Pn
A.

3.3. Morfismi proiettivi e loro proprietá. Usiamo questo oservazione per definire morfismi

proiettivi in generale:

Definizione 3.14. Un morfismo tra schemi X → Y è proiettivo se è la composizione di un

immersione chiuso X → Pn
Y con il morfismo Pn

Y → Y .

Quindi si può pensare di un morfismo proiettivo X → Y come una famiglia di sottoschemi

chiusi di Pn
parametrizzati da Y .

Qua Pn
Y si puo definire incollando gli Pn

Ai
su un ricoprimento con affini Spec(Ai) di Y o come

Pn
Y = Pn

Z ×Z Y.

Un’altra differenza tra Spec e Proj sono i sezioni globali del fascio strutturale:

Proposizione 3.15. Sia X uno schema integrale e proiettivo su k un campo algebraicamente chiuso.
Allora OX(X) = k.

Proof. Sia f ∈ OX(X) una funzione regolare globalmente definito. Per definizione di morfismi

proiettivi, possiamo vedere X come un sottoschema chiuso di Pn
k quindi X = ProjS con S =

k[x0, . . . , xn]/I . Sia Xi = X ∩Ui dove Ui ⊂ Pn
k sono gli apperti affini di prima. La restrizione di

f a Xi dà un elemento di OXi(Xi) = S[x−1
i ]0. Quindi possiamo scrivere f = gi

x
Ni
i

con gi ∈ S

omogeneo di grado Ni. Siccome X è integrale, S è un dominio e segue che xNi
i f ∈ SNi per ogni

i.
Sia N ≥

∑
Ni. Allora SN è generato come spazio vettoriale su k di monomi di grado N e

ogni monomio cosi ha un termine in cui il grado di un xi è almeno Ni. Quindi f · SN ⊂ SN e

anche f qSN ⊂ SN per ogni q (dove vediamo f ∈ OX(X) e SN entrambi nel campo di frazioni

di S). In particolare, xN0 f
q ∈ S per ogni q > 0 e quindi il sottoanello S[f ] del campo di frazioni

di S è contenuto in x−N
0 S: se g ∈ S[f ], allora

g = s0 + fs1 + f2s2 + · · · = (xN0 x
−N
0 )(s0 + fs1 + f2s2 + · · · )

= x−N
0 (xN0 s0 + fxN0 s1 + f2xN0 s2 + · · · ) ∈ x−N

0 S.

Visto che x−N
0 S è un S-modulo finitamente generato e S è noeteriano, anche S[f ] è finitamente

generato su S e otteniamo che f è integrale su S. Quindi ci sono elementi ai ∈ S tale che

fm + am−1f
m−1 + . . .+ a0 = 0.
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Possiamo sostituire l’equazione con i parti in grado zero. Ma f stesso ha grado 0 e S0 = k, quindi

possiamo suppore che ai ∈ k senza cambiare l’equazione. Segue che f è integrale su k. Ma k è

algebraicamente chiuso e quindi f ∈ k. □

Esercizio 3.16. Sia ψ : S → T un morfismo di annelli graduati. Sia

U = {p ∈ Proj(T ) | ψ(S+) ̸⊂ p}.
Allora U ⊂ ProjS è aperto e ψ induce un morfismo

φ : U → Proj(S).

Commento 3.17. Il morfismo φ puó essere un isomorfismo, anche se ψ non lo è (simile a come

abbiamo visto che ProjS = ProjT non implica S ≃ T ).

Esempio 3.18. Sia ψ : k[x, y] → k[x, y, z] l’inclusione. Allora ψ(S+) = ψ((x, y)) = (x, y) e

U = P2
k \ {(x, y)} con φ : U → P1

k dato in coordinati omogenei [x : y : z] 7→ [x : y].

Teorema 3.19. Un morfismo proiettivo φ : X → Y tra schemi noeteriani è proprio.

Proof. Per definizione di un morfismo proiettivo abbiamo che φ fattorizza come X → Pn
Y → Y .

Quindi otteniamo

X //

i

��

Pn
Y

//

��

Pn
Z

��
Y // Spec(Z)

È sufficiente dimostrare che Pn
Z → Spec(Z) è proprio usando Corollario 2.24: in questo caso il

cambio di base è proprio, quindi Pn
Y → Y è proprio; il morfismo X → Pn

Y è un immersione

chiuso e quindi proprio; di consequenza anche X → Y come composizione di morfismi propri è

proprio. Dimostrare che Pn
Z → Spec(Z) è proprio lasciamo come esercizio.

□

Commento 3.20. Essere proiettivo e essere proprio sono molto simile ma si puó costruire esempi

di schemi propri che non sono proettivi. Per una varietá astratta X si sa:

(1) Se X è di dimensione 1 e proprio allora è proiettivo.

(2) Se X è di dimensione 2, non-singolare e proprio allora è proiettivo.

(3) Ci sono esempi di X di dimensione 2, singolare e proprio ma non proiettivo.

(4) Ci sono esempi di X di dimensione 3, non-singolare e proprio ma non proiettivo.

—

Lezione

6.11.
3.4. Proj globale. Invece di costruire Proj di un anello graduato S su SpecS0, si puó anche

costruire ProjF di un fascio coerente graduato F su qualsiasi base B.

Un fascio quasicoerente graduato F su B è un fascio quasicoerente di OB-moduli Fν tale che

F =
⊕

Fν

con FνFµ ⊂ Fν+µ e F0 = OB . Quindi, dato un aperto affine U = Spec(A) si B, abbiamo che

F(U) è un anello graduato con F(U)0 = A.

Mettiamo XU = ProjF(U), uno schema su U . Se U ⊂ V è un inclusione di aperti affini,

abbiamo la mappa di restrizione

ψ : F(V ) → F(U).

La restrizione diψ allo parte di grado 0 è la mappa di restrizioneψ0 : OV (V ) → OV (U) = OU (U).
In particolare, ψ manda l’ideale irrelevant nel ideale irrelevante e quindi induce un morfismo

φ : XU → XV

che commuta con i morfismi XU → U , XV → V e l’inclusione U ↪→ V . Quindi possiamo usare i

morfismi di restrizione per incollare i XU in uno schema globale

X = ProjF → B.
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Esempio 3.21. Abbiamo visto chePn
A = ProjA[x0, . . . , xn]. Visto cheA[x0, . . . , xn] ≃ Sym(An+1)

possiamo mettere

Pn
B = Sym(O⊕n+1

B ),

che dá una terza possibilitá di definire Pn
B per uno schema qualsiasi B.

Esempio 3.22. Piú generale, sia E un fascio coerente su B. Allora definiamo

PE = Proj(Sym(E)) → B,

il fibrato proiettivo associato a E .

3.5. Fasci invertibili da moduli graduati. Come per Spec, si puó definire anche per Proj fasci

(quasicoerenti) associato a un modulo, che in questo caso deve essere graduato:

Sia B uno schema, e

A = A0 ⊕A1 ⊕ . . .

un fascio di OB algebre graduate. Allora otteniamo come prima P = ProjA dato dal Proj
globale. Sia M un fascio quasicoerente su B con una struttura di A modulo graduato; c’è con

una decomposizione

M = . . .⊕Mi ⊕Mi+1 ⊕ . . .

con mappe

Aj ⊗B Mi → Mi+j

che soddisfanno le proprietá di un modulo (distributivitá, associativitá, identitá).

Allora possiamo definire un fascio M̃ su P cosi: Sia U ⊂ B un aperto affine. Quindi A(U) è

un anello graduato. Per ogni elemento omogeneo f ∈ A(U) abbiamo un aperto affine

PU,f = (ProjA(U))f = Spec(A(U)[f−1]0) ⊂ P.
Allora i PU,f danno un ricoprimento di aperti affini di P e M(U) è un A(U) modulo graduato su

ogni U . Sia MU,f il A(U)[f−1]0-modulo

MU,f = (M(U)⊗A(U) A(U)[f−1])0.

Associatio a MU,f abbiamo un fascio quasicoerent su Spec(A(U)[f−1]0) e quelli si incollano per

dare un fascio quasicoerente M̃ su P.

Commento 3.23. Ogni fascio quasicoerente su ProjA è ottenuto in questo modo. Ma due fasci di

moduli M possono dare lo stesso fascio.

Commento 3.24. In caso che B = Spec(k), A è semplicemente una k-algebra graduato e M un

A-modulo graduato.

Esempio 3.25. Se prendiamo M = A, otteniamo il fascio strutturale M̃ = OP. Dato M come

sopra definiamo M(n) come lo stesso fascio di moduli ma con graduazione

M(n)i = Mn+i

e con OP(n) lo fascio Ã(n) associato a A(n).

Esempio 3.26. Sia B = Spec(k),A = A = k[x, y] e M = M = A(1). Quindi P = P1
k e

U = Spec(k). Poi abbiamo

P(Spec(k),x) = Spec(k[x, y][x−1]0) e P(Spec(k),y) = Spec(k[x, y][y−1]0)

e

MSpec(k),x = (k[x, y]⊗k[x,y] k[x, y][x
−1])0 = { f

xdeg(f)−1
| f ∈ k[x, y], deg(f) ̸= 0}

perché (k[x, y]⊗k[x,y] k[x, y][x
−1]) = k[x, y][x−1] con deg(h⊗ g

xn ) = deg(h)− 1+deg(g)−n.

Analogo per

MSpec(k),y = (k[x, y]⊗k k[x, y][y
−1])0 = { f

ydeg(f)−1
| f ∈ k[x, y], deg(f) ̸= 0}.
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Un elemento
f

xdeg(f)−1 definisce quindi anche un elemento MSpec(k),y se e solo se deg(f) = 1. O

in altre parole, le sezioni globali Γ(OP1(1)) sono k[x, y]1. Più in generale abbiamo

Γ(OPn(m)) = k[x0, . . . , xn]m per ogni m,n ≥ 1.

Per m > 0, otteniamo in particolare che OPn(m) è generato da k =
(
n+m
n

)
sezioni globali,

dato da xm0
0 . . . xmn

n per ogni scelta di mi tale che

∑
imi = m.

Se prendiamo inveceOP1(−1) otteniamo sezioni locali
f

xdeg(f)+1 e
f

ydeg(f)+1 che non si estendono

mai a sezioni globali. Anche qua abbiamo in generale

Γ(OPn(m)) = {0} per ogni m < 0.

Definizione 3.27. Sia X un Y -schema. Un fascio invertibile P su X si chiama molto ampio se

esiste un immersione i : X → Pn
Y tale che P ≃ i∗OPn

Y
(1). Il fascio si chiama ampio se P⊗n

è

molto ampio per un n ∈ N.

Qua un morfismo si chiama un immersione se induce un isomorfismo tra X e un sottoschema

aperto di un sottoschema chiuso di Pn
Y .

Commento 3.28. Uno schema noetheriano X su k è proiettivo se e solo se X è proprio e amette

un fascio molto ampio: se X è proiettivo, allora X è proprio (Teorema 3.19) e per definizione

l’inclusione i : X → Pn
k dà il fascio molto ampio i∗OPn

k
(1). Vice versa, se X e proprio su k, anche

X → Pn
k è proprio (Corollario 2.24 (5)) e quindi ha immagine chiuso e definisce un immersione

chiuso.

4. Divisori e fasci invertibili

4.1. Divisori di Weil. In questa sezione supponiamo cheX sia uno schema integrale, noetheriano,

separato che è regolare in codimensione 1 (l’ultima proprietà vuole dire che ogni anello locale

OX,x di dimensione 1 è regolare).

Definizione 4.1. Un divisore primo Y di uno schema X è un sottoschema integrale chiuso di

codimensione 1. Un divisore di Weil è una combinazione lineare D =
∑n

i=1 niYi di divisori primi

Yi con ni ∈ Z. D si chiama effetivo se ni ≥ 0 per ogni i. Si scrive Div(X) per il gruppo di

divisori di Weil su X .

Una funzione razionale su X è un elemento del campo K = Oη,X , dove η è il punto generico

di X . Per ogni divisore primo D abbiamo il punto generico ηD di D e perché D ha codimensione

1, OηD,X è un anello di valutazione discreta con valutazione νD con campo di frazioni K (perché

OηD,X è un dominio locale Noetheriano con ideale massimale principale e non è un campo).

Definiamo l’ordine di zero/poli di una funzione razionale non-zero f ∈ K∗
lungo D come νD(f).

C’è se νD(f) > 0 diciamo che f ha un zero lungo D di ordine νD(f); e se νD(f) < 0 diciamo

che f ha un polo lungo D di ordine −νD(f).

Esempio 4.2. Se prendiamo come D = Spec(k[x, y]/(x)) ⊂ Spec(k[x, y]) = A2
, allora ηD è il

punto dato dal ideale primo (x). Quindi OηD,X = k[x, y](x). Ogni elemeto in f ∈ K = k(x, y) si

può scrivere come f = xng con g ̸∈ (x) e νD(f) = n. Per esempio, νD(
y
x) = −1, νD(x

2−y) = 0
e νD(xy) = 1.

Sempre con gli assunzioni su X di sopra abbiamo:

Lemma 4.3. Sia f ∈ K∗. Allora ci sono solo un numero finito di divisori primiD tale che νD(f) ̸= 0.

Proof. Per ogni aperto affine U = Spec(A) ⊂ X abbiamo K = Frac(A). Possibilmente restrin-

gendo a Uf , possiamo scegliere U = Spec(A) ⊂ X affine tale che f è regolare, c’è f ∈ OX(U).
Il complemento X \ U è chiuso e quindi un unione finito di componenti irreducibili (X è noethe-

riano). In particolare, esiste solo un numero finito di divisori primi D con D ∩ U = ∅ e quindi

è sufficiente mostrare l’affermazione per U . Visto che f ∈ OX(U), νD(f) ≥ 0. Poi νD(f) > 0
se e solo se D è contenuto nello sottoschema chiuso Z di U definito da f ·A. Ma visto che X è

noetheriano, Z contiene un numero finito di divisori primi. □
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Quindi possiamo definire:

Definizione 4.4. (1) Dato f ∈ K∗
, il divisore di Weil associato a f è

div(f) =
∑
D

νD(f)D,

il divisore di zeri e poli di f . Un divisore D che ha la forma div per una funzione razionale

f ∈ K∗
si chiama divisore principale.

(2) Due divisori di Weil D,D′
si chiamano linearmente equivalente e scriviamo D ∼ D′

se

D −D′
è principale.

Se f, g ∈ K∗
, abbiamo che νD(fg) = νD(f) + νD(g) e νD(1) = 0. In altre parole, div

definisce un morfismo di gruppi da K∗
con la molteplicazione a Div(X) con l’addizione. Quindi

l’immagine, i divisori principali, formano un sottogruppo e si scrive Cl(X) per il quoziente.

Esempio 4.5. (1) PerX = A1
k abbiamoK = k(x). Se prendiamo per esempio f = x2, allora

νD(f) = 0 per D ̸= 0 e ν0(f) = 2, e quindi div(f) = 2(0). Quindi 2(0) ∼ 0.

(2) Per X = P1
k abbiamo anche K = k(x). Se prendiamo un altra volta f = x2, allora

νD(f) = 0 per D ̸= [1 : 0], [0 : 1] e ν[0:1](f) = −2 e ν[1:0](f) = 2, quindi div(f) =
2(0)− 2(∞). Quindi 2(0) ∼ 2(∞).

Entrambi si puo generalizzare:

Esempio 4.6. Abbiamo che Cl(An) = 0. Sia D ∈ Div(An) un divisore primo. Allora D =
Spec(k[x1, . . . , xn]/(f)) per un polinomio f irreducibile e abbiamo div(f) = D. Quindi ogni

divisore primitivo è principale e quindi tutti i divisori di Weil sono principali.

Proposizione 4.7. SiaX = Pn
k lo spazio proiettivo. Per un divisore di WeilD =

∑
niYi si definisce

deg(D) =
∑

nideg(Yi).

Sia H l’iperpiano x0 = 0. Allora
(1) Per ogni divisore D di grado d abbiamo D ∼ dH
(2) Per ogni f ∈ K∗ abbiamo deg(div(f)) = 0.
(3) La mappa deg : Cl(Pn

k) → Z è un isomorfismo.

Proof. Iniziamo con (2): Sia S = k[x0, . . . , xn] tale che Pn
k = Proj(S). Se g ∈ S è omogeneo

di grado n possiamo scrivere g = gn1
1 · . . . · gnr

r con gi irreducibile. Allora gi definisce un

ipersuperfice Yi di grado deg(gi) e possiamo definire div(g) =
∑

i niYi con deg(div(g)) =∑
ni deg(Yi) = deg(g). Una funzione razionale f ∈ K∗

è dato da un quotiente
g
h con g, h

omogeneo e deg(g) = deg(h). Visto che div(f) = div(g)− div(h) otteniamo deg(div(f)) = 0.

Per (1), sia D un divisore di grado d. Possiamo scrivere D = D1 −D2 per divisori effetivi D1, D2

di grado d1, d2 con d1 − d2 = d. Possiamo scrivere Di = div(gi) con gi omogeneo di grado di:
ogni ipersuperfice irreducibile di Pn

k corrisponde a un ideale principale generato da un elemento

omogeneo. Prendendo prodotti, segue che ogni sottoschema di codimensione 1 è dato come il

luogo di zeri di un singolo polinomio omogeneo. Allora D − hH = div(f) dove f = g1
g2xd

0
è una

funzione razionale su Pn
.

(3) segue da (1) e (2) osservando che deg(H) = 1. □

Proposizione 4.8. Sia Z ⊂ X un sottoschema chiuso è U = X \ Z . Allora:
(1) Il morfismo

φ : Cl(X) → Cl(U),
∑

niYi 7→
∑

ni(Yi ∩ U)

è suriettivo.
(2) se codim(Z,X) ≥ 2, allora φ è un isomorfismo.
(3) Se Z è irreducibile di codimensione 1 esiste una succesione esatta corta:

Z → Cl(X) → CL(U) → 0.
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Proof. (1) Se Y è un divisore primo su X allora U ∩ Y è vuoto o un divisore primo su U . Se

f ∈ K∗
è una funzione razionale con div(f) =

∑
niYi, possiamo vedere f anche come

funzione razionale su U e otteniamo divU (f) =
∑
ni(Yi ∩ U). Quindi φ definisce un

morfismo. È suriettivo, perché ogni divisore primo di U è la restrizione della sua chiusura.

(2) Un divisore primo ha codimensione 1, quindi U ∩ Y non puó essere vuoto in questo caso

e φ è anche iniettivo.

(3) Il nucleo di φ sono i divisori di Weil con supporto inZ . SeZ è irreducibile di codimensione

1, sono essatamente i moltipli di Z .

□

Esempio 4.9. Sia A = k[x, y, z]/(xy − z2) e X = Spec(A) una superficie conica in A3
. Allora

Cl(X) ≃ Z/2Z ed è generato da una retta generatrice Y , per esempio dato da (y, z). Infatti,

Proposizione 4.8 dà

Z → Cl(X) → Cl(X \ Y ) → 0. (4)

Adesso Y come insieme è il luogo y = 0 su X . Come divisore invece abbiamo div(y) = 2Y :

l’anello locale a Y in X è dato da A(y,z) ≃ k[x, x−1, z] con ideale massimale generato da z. Visto

che y = z2

x , y ha un zero di ordine 2 lungo Y .

Otteniamo che X \ Y = SpecAy e Ay = k[x, y, y−1, z]/(xy − z2). In Ay abbiamo x = z2

y e

quindi Ay ≃ k[y, y−1, z]. Segue che Spec(Ay) e un sottoschema aperto di A2 = Spec(k[y, z])
e quindi Cl(X \ Y ) = 0. Quindi otteniamo da (4) che Cl(X) è generato da Y e visto che

div(y) = 2 · Y abbiamo 2 · Y = 0 in Cl(X).
Rimane vedere che Y non è principale, che si puo dimostrare che in questo caso (X essendo

normale) è equivalente a (y, z), l’ideale che definisce Y , è principale. Sia m = (x, y, z) l’ideale

massimale del vertice di X . Allora m/m2
è di dimensione 3 come spazio vettoriale su k generato

dai immagini di x, y e z. Se Y fosse principale, allora l’immagine di (y, z) in m/m2
avrebbe

dimensione 0 o 1. Ma in questo caso lo contiene l’immagine di y e z, quindi ha dimensione 2 e

(y, z) non è principale.

Esempio 4.10. Per un altro esempio, si puo calcolare che

Cl(P1 × P1) = Z× Z,

dove ogni divisoreD è l’insieme di zeri di un polinomio bi-omogeneo f e l’invariante che descrive

OP1×P1(D) è il bigrado di f .

4.2. Divisori di Cartier. Adesso vogliamo introdurre una nozione di divisore che non ha bisogna

dei restrizioni su X che erano necessario per i divisori di Weil (noetheriano, separato, integrale e

regolare in codimensione 1).

Iniziamo con una generalizzazione del concetto del campo di funzioni: Sia X uno schema. Per

U = Spec(A) ⊂ X aperto affine sia S ⊂ A l’insiemme di elementi che non sono divisori di 0
e sia K(U) la localizazione di A in S. Piu generale, per un aperto U ⊂ X qualsiasi, sia S(U)
l’insiemme di elementi di OX(U) che non sono divisori di zero in ogni anello locale Ox con

x ∈ U . Allora gli anelli S(U)−1OX(U) formano un pre-fascio e chiamiamo il fascio associato

K il fascio delle anelli totali delle frazioni (sheaf of total quotient rings). Chiamiamo K∗
e O∗

il

fascio di elementi invertibili di K e OX .

Definizione 4.11. Sia X uno schema. Un divisore di Cartier è una sezione globale del fascio

K∗/O∗
.

Piu esplicitamente, un divisore di Cartier è dato da un ricoprimento aperto X =
⋃

i Ui e

per ogni Ui un elemento fi ∈ K∗(Ui) (= una funzione razionale) tale che per ogni i, j abbiamo

fi
fj

∈ O∗(Ui ∩ Uj) ( = una funzione regolare senza zeri).

Definizione 4.12. Un divisore di Cartier si chiama principale se è nel immagine della mappa

K∗(X) → K∗/O∗(X).
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Due divisori di Cartier si chiamano linearmente equivalente se la loro differenza è un divisore

principale.

In generale le nozione di divisori Cartier e Weil non coincidono (come abbiamo visto, il divisore

di Weil in Esempio 4.9 non è principale vicino 0). Ma se supponiamo che X ha le proprietà per

cui ha senso di parlare di divisori di Weil e di più che tutti i anelli locali OX,x sono domini a

fattorizzazione unica (in cui caso X si chiama localmente fattoriale), le due nozioni coincidono:

Proposizione 4.13. Sia X integrale, separato, noetheriano, regolare in codimensione 1 e localmente
fattoriale. Allora, il gruppo di divisori di Weil è isomorfo al gruppo di divisori di Cartier. Tramite
questa identificazione, i divisori di Weil principali corrispondono ai divisori di Cartier principali.

Commento 4.14. Infatti, regolare in codimensione 1 segue dalle altre assunzioni.

Commento 4.15. Visto che un anello locale regolare è un dominio a fattorizzazione unica, schemi

regolari sono localmente fattoriali. Quindi una varietà regolare soddisfa le assunzioni della

proposizione.

Proof. Visto che X è integrale, K corrisponde al fascio costante K(U) = K , dove K è il campo di

funzioni K = OX,η .

Dato un divisore di Cartier {(Ui, fi)} definiamo un divisore di Weil come segue. Per ogni

divisore primo D prendiamo il coefficiente nD come νD(fi) per un Ui con D ∩ Ui ̸= ∅. Se

abbiamo un altro j con Uj ∩D ̸= ∅, allora fi/fj è invertibile su Ui ∩Uj e quindi νD(fi/fj) = 0 e

νD(fi) = νD(fjfi/fj) = νD(fj) + 0. Quindi

∑
D nDD è ben definito. Perché X è noetheriano,

segue che la somma è finita e quindi otteniamo un divisore di Weil associato al divisore di Cartier.

Viceversa, sia D un divisore die Weil su X e x ∈ X un punto. Allora D definisce un di-

visore di Weil Dx su Spec(OX,x). Ma OX,x è un dominio a fattorizzazione unica e quindi

Cl(Spec(OX,x)) = 0 (Esercizio). Quindi Dx = div(fx) dove fx ∈ K . Quindi la restrizione di D
e div(fx) coincidono su Spec(OX,x) quindi sono diversi solo rispetto a divisori primi D che non

passano per x. C’è un numero finito di tali D che hanno un coefficiente non-zero in D o div(fx)
e quindi c’è un aperto Ux su cui D e div(fx) coincidono. Variando x i Ux danno un ricoprimento

di X e assieme con i fx un divisore di Cartier. □

—
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4.3. Fasci invertibili e sistemi lineari.

Definizione 4.16. Un fascio F di OX moduli su uno schema X si chiama localmente libero se

esiste un ricoprimento di X con aperti U tale che F|U ≃ OX |⊕r
U . In questo caso, r si chiama il

rango del fascio localmente libero. Se F è localmente libero di rango 1, si chiama invertibile.

Commento 4.17. Il nome ‘invertibile’ viene dal fatto che se F è invertibile esiste F−1
tale che

F ⊗ F−1 ≃ OX (Esercizio). Quindi i fasci invertibili formano un gruppo tramite il prodotto

tensoriale con elemento neutrale OX , che si chiama il gruppo di Picard Pic(X).

Esempio 4.18. I fasci OP(n) definito in Esempio 3.25 sono invertibili con

OP(n)
−1 = OP(−n)

e piu generale

OP(n)⊗OP(m) ≃ OP(n+m).

Sia D un divisore di Cartier dato da {(Ui, fi)} su uno schema X . Definiamo il sottofascio di

K associato a D, L(D), come il sotto-OX -modulo generato da f−1
i su Ui. Questo è ben definito,

perché fi/fj è invertibile su Ui ∩ Uj e quindi f−1
i e f−1

j generanno lo stesso OX-modulo su

Ui ∩ Uj .

Esempio 4.19. Il divisore D = 1 · [1 : 0] su P1
è dato da {(Ux, y/x = y′), (Uy, 1)}. Quindi

OP1(D) ha sezioni
f

xdeg(f) · x
y = f

xdeg(f)−1y
su Ux e sezioni in OUy(Uy) su Uy . Molteplicazione

con y da un isomorfismo con OP1(1) (cf. Esempio 3.26).
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Proposizione 4.20. Sia X uno schema. Allora.
(1) Per ogni divisore di Cartier D, L(D) è un fascio invertibile. La mappa D 7→ L(D) da una

biiezione tra divisori di Cartier e sottofasci invertibili di K.
(2) L(D1 −D2) ≃ L(D1)⊗ L(D2)

−1.
(3) D1 ∼ D2 se e solo se L(D1) ≃ L(D2).

Proof. (1) Visto che fi ∈ K∗(Ui), la mappa OUi → L(D)|Ui , 1 7→ f−1
i è un isomorfismo e

quindi L(D) è invertibile. Il divisore di Cartier D può essere ricostruito da L(D) ⊂ K
prendendo come fi su Ui l’inverso di un generatore locale che da per ogni sottofascio

invertibile di K un divisore di Cartier.

(2) Se D1 è localmente dato da fi e D2 da gi, allora D1 − D2 è localmente dato da f−1
i gi

e quindi L(D1 −D2) = L(D1) · L(D2)
−1

come sottofascio di K. Come fascio astratto

questo è isomorfo a L(D1)⊗ L(D2)
−1

.

(3) Usando 2), è sufficiente dimostrare cheD = D1−D2 è principale se e solo se L(D) ≃ OX .

Se D è principale, D è definito da f ∈ K∗(X). Allora L(D) è globalmente generato da

f e 1 7→ f−1
da un isomorfismo OX ≃ L(D). Viceversa, dato un tale isomorfismo,

l’immagine di 1 da un elemento di K∗(X) che definisce D.

□

Corollario 4.21. Su ogni schema X , D 7→ L(D) da un morfismo iniettivo tra il gruppo CaCl(X)
di divisori di Cartier modulo equivalenza lineare in Pic(X).

Commento 4.22. In generale, la mappa CaCl(X) → Pic(X) non è suriettivo, perchè è possibile

che esistono fasci invertibili che non si puo realizzare come sottofaschi di K∗
. Ma per esempio se

X è integrale, la mappa è suriettiva.

Esempio 4.23. Pic(Pn
k) ≃ Z dove 1 7→ OPn

k
(1): Abbiamo visto che Cl(Pn

k) ≃ Z generato dalla

classe di un iperpiano. Visto che Pn
k è integrale è localmente fattoriale abbiamo

Cl(Pn
k) ≃ CaCl(Pn

k) ≃ Pic(Pn
k).

Tramitte queste identificazioni, l’iperpiano corrisponde a OPn
k
(1) (cf. Esempio 4.19 per n = 1).

Una raggione per cui fasci invertibili sono utili è che si può usargli per descrivere morfismi in

Pn
.

Definizione 4.24. Un fascio F su X si chiama globalmente generato se ci sono sezioni globali

{si}i in Γ(X,F) tale che per ogni x ∈ X la spiga Fx è generato dagli immagini delle si in OX,x.

Proposizione 4.25. Sia A un anello e X uno schema su A.
(1) Sia φ : X → Pn

A unA-morfismo. Allora φ∗OPn
A
(1) è un fascio invertibile generato da sezioni

globali si = φ∗xi, i = 0, . . . , n.
(2) Viceversa, se L è un fascio invertibile suX e s0, . . . , sn sezioni globali che generano L, allora

esiste un unico A-morfismo φ : X → Pn
A tale che L ≃ φ∗OPn

A
(1) e si = φ∗xi.

Proof. (1) Sappiamo già che OPn
A
(1) è invertibile e che i xi definiscono sezioni globali. Visto

che non c’è un punto in cui i xi vaniscono, OPn
A
(1) è globalmente generato dai xi. Quindi

le stesse proprietà sono anche vero per il pull back φ∗OPn
A
(1) e φ∗xi.

(2) Viceversa, sia L globalmente generato da sezioni globali s0, . . . , sn. Per ogni i sia

Xi = {x ∈ X | (si)x ̸∈ mxLx}.
AlloraXi è aperto e siccome i si generannoL, iXi danno un ricoprimento diX . Definiamo

un morfismo φi : Xi → Ui dove Ui ≃ Spec(A[x′1, . . . , x
′
n]) è l’aperto affine standard con

x′j =
xj

xi
: φi è dato dal morfismo su anelli

A[x′1, . . . , x
′
n] → OXi(Xi), x

′
j 7→ sj/si.

Incollando i φi dà il morfismo φ : X → Pn
A che cerchiamo.

□
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Esempio 4.26. Se prendiamo L = OP1(3) abbiamo una base delle sezioni globali dato da

x3, x2y, xy2, y3. La mappa che corrisponde a questi sezioni è P1 → P3, [x : y] 7→ [x3 : x2y :
xy2 : y3] (twisted cubic). Se prendiamo invece solo x3, y3 otteniamo la mappa P1 → P1, [x :
y] 7→ [x3 : y3].

Commento 4.27. Se L non è generato dai s0, . . . , sn, allora nonostante definiscono un morfismo

U → Pn
k dove U ⊂ X è l’aperto (possibilmente vuoto) su cui i si generanno L (= i punti di X

dove almeno una dei si non vanisce).

Commento 4.28. Un fascio molto ampio quindi in particolare è generato da sezioni globali. Il

viceversa non è sempre vero, perché il morfismo in Proposizione 4.25 non è necessariamente un

immersione (come la mappa P1 → P1
nel esempio precedente).

Proposizione 4.29. Sia k algebraicamente chiuso, X uno schema proiettivo su k e φ : X → Pn
k un

morfismo che corrisponde a L e s0, . . . , sn ∈ Γ(X,L) come sopra. Sia V ⊂ Γ(X,L) il sottospazio
generato dai si. Allora φ è un’immersione chiusa se e solo se

(1) elementi di V separano punti: per ogni due punti distinti chiusi p, q ∈ X esiste s ∈ V tale
che s ∈ mpLp ma s ̸∈ mqLq o viceversa; e

(2) elementi di V separanno vettori tangenti: per ogni punto chiuso p ∈ X , l’insieme {s ∈ V |
sp ∈ mpLp} genera mpLp/m

2
pLp come spazio vettoriale su k

Proof. Saltato, cf. Hartshorne Proposition II.7.3. □

Definizione 4.30. Un divisore di CartierD dato da {(Ui, fi)}i si chiama effetivo se fi ∈ OX(Ui).
Il sottoschema chiuso Y associato a D è il sottoschema che corrisponde al fascio di ideali IY
localmente generato dai fi. In questo caso abbiamo che IY ≃ L(−D).

Sia L un fascio invertibile e s ∈ Γ(X,L) una sezione globale non-zero. Definiamo un divisore

di Cartier effetivo (s)0 associato a s come segue. Sia U un aperto di X su cui L è triviale e sia

φ : L|U → OU una trivializazione. Allora φ(s) ∈ OU (U). Variando U , la collezione {(U,φ(s))}
definisce un divisore di Cartier effetivo.

Esempio 4.31. Sia D = 1 · [1 : 0] come in Esempio 4.19. Sezioni di L(D) sono
f

xdeg(f) · x
y =

f
xdeg(f)−1y

su Ux e OUy(Uy) su Uy . Quindi una trivilalizzazione è dato da moltiplicazione con
y
x

su Ux e 1 su Uy . Una sezione globale è per esempio dato da s = x
y che ha divisore associato [1 : 0]

(che non è diverso dal divisore principale associato a
x
y visto come funzione razionale).

Proposizione 4.32. Sia X una varietà non-singolare proiettiva su un campo algebraicamente
chiuso k. Sia D un divisore su X e L ≃ L(D). Allora:

(1) per ogni sezione globale non-zero s ∈ Γ(X,L) abbiamo (s)0 ∼ D
(2) ogni divisore effetivo che è linearmente equivalente a D è (s)0 per un s ∈ Γ(X,L) e
(3) due sezioni s, s′ ∈ Γ(X,L) danno lo stesso divisore se e solo se s = λs′ per un λ ∈ k∗.

Proof. (1) Visto che L ≃ L(D), possiamo vedere L come sottofascio di K. Siccome X è una

varietà e quindi integrale, K è il fascio costante, dato da K . Quindi possiamo vedere s
come un elemento di K , una funzione razionale su X .

Se D è dato da {(Ui, fi)}i, allora L è localmente generato da f−1
i e otteniamo un

isomorfismo locale L|Ui → OUi dato da molteplicazione con fi. Quindi D′ = (s)0 è

localmente definito da fif e D′ = D + div(f).
(2) Viceversa, se D′

è effetivo con D′ = D + div(f) allora il ordine di poli di f lungo un

divisore Y e minore o uguale a quello delli fi che localmente definiscono D. Quindi

possiamo vedere f come una sezione globale di L(D).
(3) Se (s)0 = (s′)0 allora s e s′ corrispondono a funzioni razionali f, f ′ ∈ K tale che

div f
f ′ = 0. Quindi

f
f ′ ∈ O∗

X(X). Ma visto che X è proiettivo e k algebraicamente chiuso,

segue
f
f ′ ∈ k∗ usando Proposizione 3.15.

□
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Definizione 4.33. Un sistema lineare completo |D| su una varietà proiettiva nonsingolare è

l’insieme di tutti divisori effetivi D′ ∼ D.

Dalla proposizione precedente segue che |D| ≃ PΓ(X,L(D)). Piu general, un sistema lineare

d è un sottospazio lineare di |D|. La dimensione di un sistema lineare è la sua dimensione come

spazio lineare proiettivo.

Definizione 4.34. Un punto p ∈ X si chiama punto di base di un sistema lineare d se p è

contenuto nel supporto di ogni divisore D ∈ d.

Commento 4.35. p ∈ X è punto di base se e solo se per ogni s ∈ V abbiamo che sp ∈ mpLp. In

particolare d è senza punti di base se e solo se L è generato dai sezioni in V .

Commento 4.36. Possiamo riformulare Proposizione 4.29 in questo linguaggio: Sia φ : X → Pn

un morfismo che corrisponde al sistema lineare senza punti di base d. Allora φ è un imersione

chiusa se e solo se

(1) d separa punti: per ogni p, q ∈ X esiste D ∈ d con p ∈ supp(D) ma q ̸∈ supp(D).
(2) d separa vettori tangenti: per ogni p ∈ X e t ∈ TpX = (mp/m

2
p)

∗
esiste D ∈ d tale

che P ∈ supp(D) ma t ̸∈ Tp(D) (dove per l’ultima affermazione vediamo D come un

sottoschema chiuso, localmente principale).

Esempio 4.37. Il morfismo φ : P1 → P3
dato da OP1(3) e x3, x2y, xy2, y3 di esempio 4.26 da un

immersione chiusa. Il sistema lineare in questo caso sono i luoghi di zeri di polinomi omogenei

di grado 3 quindi tutti i divisori di grado 3 su P1
. Questi divisori si può anche vedere come i

intersezioni di φ(P1) con iperpiani in P3
.

Il morfismo φ : P1 → P1
dato dalle sezioni x3, y3 non è un immersione chiusa. Per [0 : 1] e

[1 : 0] non separa vettori tangenti, mentre per ogni altro punto ci sono 3 punti nella fibra di φ e

quindi in questo caso φ non separa punti.

—

Lezione

20.11.

5. Panoramica su argumenti scelti

5.1. Coomologia. …

5.2. Fascio canonico e geometria birazionale. Sia A un anello (commutativo con 1), B una

A-algebra e M un B-modulo.

Definizione 5.1. Una A-derivazione di B in M è un morfismo d : B →M tale che:

(1) d è additivo,

(2) d(bb′) = b′db+ bdb′, e

(3) da = 0 per ogni a ∈ A

Definizione 5.2. Il modulo di forme differenziali diB suA è unB-modulo ΩB/A assieme con una

A-derivazione d : B → ΩB/A che soddisfa lo seguente proprietà universale: per ogni B-modulo

M e A-derivazione d′ : B →M esiste un unico morfismo di B-moduli f : ΩB/A →M tale che

d′ = f ◦ d.

Non è difficile vedere che il modulo di forme differenziali sempre esiste ed è unico.

Proposizione 5.3. Sia B una A-algebra, f : B ⊗A B → B il morfismo dato da f(b⊗ b′) = bb′ e
I = ker(f). Allora (I/I2, d) è il modulo di forme differenziali, dove d : B → I/I2, b 7→ 1⊗b−b⊗1.

Definizione 5.4. Sia f : X → Y un morfismo di schemi e ∆: X → X×Y X la diagonale. Allora

∆(X) è localmente chiuso (= un chiuso di un aperto U ). Sia I il fascio di ideali di ∆(X) in U .

Allora definiamo il fascio ΩX/Y = ∆∗(I/I2) delle differenziali relative di X su Y .
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Commento 5.5. Se X = SpecB, Y = SpecA sono affini, allora ∆(X) è il fascio definito come

nucleo del morfismo B ⊗A B → B, b ⊗ b′ 7→ bb′. Quindi I/I2
è il fascio associato a I/I2 di

Proposizione 5.3 e ΩX/Y ≃ Ω̃B/A. Una definizione alternativa di ΩX/Y è definirlo su aperti affini

in questo modo, e poi incollare i pezzi affini. In particolare, ΩX/Y è quasicoerente (e coerente se

f è di tipo finito e Y noeteriano).

Teorema 5.6. Sia X una varietà su k. Allora X è non-singolare se e solo se ΩX/k è localmente
libero di rango n = dim(X).

Definizione 5.7. Sia X una varietà non-singolare. Allora definiamo il fascio tangenziale di X
come

TX = HomOX
(ΩX/k,OX)

(che è localmente libero di rango n = dim(X)). Definiamo lo fascio canonico di X come

ωX =
n∧
ΩX/k.

Il fascio canonico è un fascio invertibile. Se X è proiettivo, definiamo il genere geometrico di X
come

pg = dim(Γ(X,ωX)).

Visto che ΩX/Y è definito usando solo X , pg è una invariante di X e non cambia tramitte

isomorfismi. Meno chiaro è:

Teorema 5.8. Siano X e X ′ varietà proiettive, non singolari, birazionalmente equivalente (c’è esiste
φ : U → U ′ isomorfismo con U,U ′ ⊂ X,X ′ aperti densi). Allora pg(X) = pg(X

′).

Proof. Sia V ⊂ X l’aperto denso più grande su cuiφ è definito. Abbiamo (in generale) un morfismo

φ∗ΩX′/k → ΩV/k. Quelli sono fasci localmente liberi dello stesso rango, quindi otteniamo un

morfismo indotto sul prodotto esterno, φ∗ωX′ → ωV , che induce una mappa su sezioni globali

φ∗ : Γ(X ′, φ∗ωX′) → Γ(V, ωV ). Visto che U ≃ U ′
tramitte φ abbiamo che ωV |U ≃ ωX′ |U ′ . Una

sezione globale non-zero di un fascio invertibile non puo essere zero su un denso aperto. Quindi

otteniamo che φ∗ : Γ(X ′, φ∗ωX′) → Γ(V, ωV ) è iniettivo.

Adesso confrontiamoΓ(V, ωV ) eΓ(X,ωX). Inanzitutto, osserviamo cheX\V ha codimensione

almeno 2 in X : se p ∈ X ha codimensione 1, allora OX,p è un anello di valutazione discreta.

Abbiamo già una mappa dal punto generico di X in X ′
e quindi anche del punto generico di

Spec(OX,p); maX ′
e proiettivo e quindi proprio su k e il criterio valutativo di proprietezza ci dice

che esiste un’unica mappa Spec(OX,p) → X ′
che estende la mappa sul punto generico. Questa

mappa estende a un aperto che contiene P e quindi P ∈ V perché abbiamo scelto V massimale.

Per finire vogliamo dimostrare che la mappa di restrizione Γ(X,ωX) → Γ(V, ωV ) è biietivo.

Basta dimostrare che per ogni aperto affine U ⊂ X con ωX |U ≃ OU abbiamo che Γ(U,OU ) →
Γ(U ∩V,OU∩V ) è biiettivo. In generale, la mappa è iniettiva perchè una sezione globale non-zero

di un fascio invertibile non può essere zero su un denso aperto. Per vedere che è suriettivo

usiamo che X è non-singolare e X \ V ha codimensione almeno 2: sia f ∈ Γ(U ∩ V,OU∩V ) e

U = Spec(A). Siccome X \ V ha codimensione almeno 2, f ∈ Ap per ogni p ⊂ A ideale primo

di altezza 1. Ma X non singolare implica che A è integralmente chiuso (X è normale) e in questo

caso abbiamo

A =
⋂

ht(p)=1

Ap

dove l’intersezione è preso su tutti ideali primi di altezza 1. □

Si dice che pg è un’invariante birazionale di X .

Esempio 5.9. PerX = An
k il fascio canonico ΩX/k è libero di rango n, generato dai dx1, . . . , dxn.

Esempio 5.10. Sia X = Pr
k e Ui l’aperto affine standard con xi ̸= 0. Siano (u1, · · · , ur) e

(w1, · · · , wr) coordinati su U0 e U1. Quindi u1 =
1
w1

e ui =
wi
w1

. Il fascio canonico su U0 e U1 è
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generato da du1∧· · ·∧dur e dw1∧· · ·∧dwr , rispettivamente. Inserendo i funzioni di transizione,

otteniamo du1 = d 1
w1

= −1
w2

1
dw1 e dui = dwi

w1
= −wi

w2
1
dw1 +

1
w1

dwi. Quindi

du1 ∧ · · · ∧ dur =
−1

wr+1
1

dw1 ∧ · · · ∧ dwr.

C’è, du1 ∧ · · · ∧ dur non ha zeri o poli su U0 ma un polo di ordine r + 1 lungo il divisore x0 = 0.

Concludiamo che ωX ≃ OPr(−r − 1). Visto che Γ(Pr,OPr(−r − 1)) = 0 abbiamo che pg = 0.

Per un A-modulo B e un ideale I ⊂ B abbiamo una sequenza esatta

I/I2 →δ ΩA/B ⊗B C → ΩC/A → 0

dove C = B/I e δ(b) = db⊗ 1. Sul livello di fasci questo ci dà per ogni sottoschema chiuso Z di

X con fascio di ideali I :

I/I2 → ΩX/k ⊗OZ → ΩZ/k → 0

Teorema 5.11. Sia X una varietà nonsingolare su k e Z ⊂ X un chiuso irreducibile definito da un
fascio di ideali I . Allora Z è nonsingolare se e solo se

(1) ΩZ/k è localmente libero, e
(2) la seguenza di sopra è esatto anche a sinistra:

0 → I/I2 → ΩX/k ⊗OZ → ΩZ/k → 0

Corollario 5.12. (formula di aggiunzione) Sia X una varietà nonsingolare e Z ⊂ X chiuso
nonsingolare di codimensione r. Allora ωZ ≃ ωX ⊗

∧r NZ/X . Se r = 1 possiamo vedere Z come
divisore e sia L il fascio associato a Z . In questo caso ωZ ≃ ωX ⊗ L⊗OZ .

Definizione 5.13. Sia Z ⊂ X chiuso e nonsingolare con X una varietà nonsingolare su k. Allora

I/I2
si chiama il fascio conormale e il duale

NZ/X = HomOX
(I/I2,OZ)

si chiama il fascio normale di Z in X . NZ/X è localmente libero di rango codim(Z,X).

Esempio 5.14. Sia Z una ipersuperfice nonsingolare di grado d in X = Pn
k . Allora ωY ≃

ωX ⊗OX(Z)⊗OZ = OX(−r − 1)⊗O(d)⊗OZ = OZ(d− r − 1).

(1) r = 2, d = 1: Z è una retta in P2
e ωZ = OZ(−2).

(2) r = 2, d = 2: Z è una conica in P2
e ωZ = OZ(−1). Infatti, è l’immagine di P1

tramite

OP1(2).
(3) r = 2, d = 3: abbiamo ωY ≃ OY . In particolare pg = 1 e una cubica liscia non è

birazionale a P1
(si dice: non è razionale).

(4) r = 2, d ≥ 4: in questi casi d− r − 1 > 0 e quindi anche qua pg > 0 e Z non è razionale.

Si puo dimostrare che pg = (d−1)(d−2)
2 .

(5) r = 3, d = 1: Z ≃ P2
e ωZ = OZ(−3).

(6) r = 3, d = 2: ωZ = OZ(−2) e in questo caso Z ≃ P1 × P1
. Abbiamo che Z è razionale e

quindi pg = 0 (ma Z non è isomorfo a P2
, solo birazionalmente equivalente).

(7) r = 3, d = 3: ωZ ≃ OZ(−1) e anche in questo caso Z è razionale.

(8) r = 3, d = 4: ωZ ≃ OZ e quindi Z non è razionale. Infatti è una superfice K3.

(9) r = 3, d ≥ 5: ωZ ≃ OZ(d− 4) con d− 4 > 0. In questo caso il fascio canonico è molto

ampio, e varietà con questa proprietà si chiamano di tipo generale.

(10) r = 4, d = 3, 4: ωZ in questo caso è OZ(−1) o OZ(−2) e quindi pg = 0. È un risultato

molto importante delli anni ’70 che Z in generale non è razionale in questo caso.

(11) r = 5, d = 3: ωZ ≃ OZ(−3) e quindi pg = 0. Una dimostrazione che in generale Z non

è razionale in questo caso è stato annunciato questo anno.

—

Lezione

1.12.
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5.3. Piatezza e famiglie di varietà.

Definizione 5.15. Sia X ⊂ Pn
k un sottoschema chiuso. Allora la funzione di Hilbert è definita

come

FX : N → N,m 7→ dimΓ(X,OX(m))

Si osserva che la funzione di Hilbert non è un’invariante di X come schema astratto, ma del

modello proiettivo X ↪→ Pn
k .

Teorema 5.16. La funzione FX coincide con un polinomio PX per m >> 0.

Il polinomio PX si chiama polinomio di Hilbert.

Se I è il fascio di ideali che definisce X , abbiamo una sequenza corta esatta

0 → I(m) → OPn(m) → OX(m) → 0

che dà una sequenza lunga in coomologia

0 → H0(Pn
k , I(m)) → H0(Pn

k ,OPn(m)) → H0(X,OX(m))

→ H1(Pn
k , I(m)) → H1(Pn

k ,OPn(m)) = 0

Quindi FX(m) = h0(Pn
k ,OPn(m))− h0(Pn

k , I(m)) + h1(Pn
k ,OPn(m)).

Un modo per dimostrare il teorema è dimostrare che h1(Pn
k , I(m)) = 0 per m >> 0 e

che h0(Pn
k ,OPn(m)) − h0(Pn

k , I(m)) è un polinomio. Quindi PX(m) = h0(Pn
k ,OPn(m)) −

h0(Pn
k , I(m)), o in altre parole, la dimensione dello spazio delle ipersuperfici di grado m, meno

la dimensione dello spazio di quelli che vaniscono su X .

Proposizione 5.17. La dimensione n di X è uguale al grado di PX . Il grado di X è uguale a n!
volte il coefficiente principale di PX . Cioè,

PX(m) =
deg(X)

dim(X)!
mdim(X) + termini di ordine più piccolo

Definizione 5.18. Il genere aritmetico di X ⊂ Pn
k è

pa = (−1)n(PX(0)− 1).

Commento 5.19. Se X è proiettivo, in generale pa(X) ̸= pg(X) anche se X è regolare. Ma per

curve regolari abbiamo pa(X) = pg(X).

Esempio 5.20. Se X = Pn
k , allora FX(m) = PX(m) =

(
m+n
n

)
= (m+n)(m+n−1)...(m+1)

n! . Quindi,

pa(Pn
k) = 0 e per esempio FP1(m) = m+ 1.

Esempio 5.21. Siano p1, p2, p3 ∈ P2
k tre punti e X la loro unione. Calcoliamo prima PX(m):

h0(P2
k,OP2(m)) =

(
2+m
2

)
e h0(P2

k, I(m)) =
(
2+m
2

)
− 3. Quindi PX(m) = 3. Se m ≥ 2 abbiamo

PX(m) = FX(m) = 3 perchè si puo trovare per ogni scelta di due dei tre punti una conica che

vanisce sui due punti ma non sul terzo. Per m = 1 invece abbiamo FX(1) = 3 se i punti non sono

collineari (in questo caso h0(P2
k, I(1)) = 0) e FX(1) = 2 se i punti sono collineari (in questo caso

h0(P2
k, I(1)) = 1 e si pu‘o controllare che H0(P2

k,OPn(1)) → H0(X,OX(1)) è suriettivo).

Esempio 5.22. Se C ∈ P2
k è una curva di grado d, abbiamo che I ≃ OP2(−d). In particolare,

H1(P2
k, I(m)) = 0. Quindi

FX(m) = PX(m) =

(
m+ 2

2

)
−
(
m+ 2− d

2

)
=

(m+ 2)(m+ 1)− (m+ 2− d)(m+ 1− d)

2

=
2dm+ 3d− d2

2
= dm− (d− 1)(d− 2)

2
+ 1.

Adesso vogliamo definire un concetto che ci permette di definire ‘famiglie continue’ di schemi.

La condizione che si usa normalmente e quella di preservare il polinomio di Hilbert delle fibre, e

si chiama famiglie piatte.
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Definizione 5.23. Sia A un anello e M un A-modulo. M si chiama piatto (su A) se il funtore

N 7→M ⊗A N è esatto, dove il dominio del funtore sono A-moduli.

In generale, · ⊗A N è esatto di destra (preserva suriettività) ma non di sinistra.

Esempio 5.24. Se prendiamo 0 → Z → Z, x 7→ 2x, la mappa indotta Z⊗ Z/2Z → Z⊗ Z/2Z
non è iniettiva.

Commento 5.25. Un A-modulo N è piatto se e solo se a ⊗ N → A ⊗ N = N è iniettivo per

ogni ideale finitamente generato a ⊂ A. Se adesso A è un dominio di ideali principali, allora un

A-modulo N è piatto se e solo se è senza torsione ( ̸ ∃n ∈ N con an = 0). Infatti, sia a = (t)
principale e consideriamo a⊗N → N . Questo è iniettivo per ogni a finitamente generato se e

solo se N non ha torsione.

Definizione 5.26. Sia f : X → Y un morfismo di schemi e F un OX-modulo. Diciamo che

F è piatto su Y vicino un punto x ∈ X se Fx è piatto come OY,y-modulo tramitte la mappa

f# : OY,y → OX,x dove y = f(x). Diciamo che F è piatto su Y se lo è vicino ogni punto di X .

Diciamo che X è piatto su Y se OX lo è.

Proposizione 5.27. Sia f : X → Y un morfismo di schemi con X ridotto e Y integrale e nonsingo-
lare di dimensione 1. Allora f è piatto se e solo se mappa il punto generico di ogni componente di X
nel punto generico di Y .

Proof. I punti generici x di X sono i punti per cui mx è un primo associato a (0) in OX,x; o in

altre parole, per cui mx contiene solo divisori di zero.

Supponiamo prima che f è piatto. Sia x ∈ X un punto in X tale che f(x) = y è un punto

chiuso. Allora OY,y è un anello di valutazione discreta. Sia t ∈ my \m2
y . Allora t non è un divisore

di 0 in OY,y . Visto che f è piatto, anche f#t ∈ OX,x non è un divisore di 0. Quindi x non è un

punto generico di X .

Viceversa, supponiamo che f manda ogni punto generico di X nel punto generico di Y .

Dobbiamo mostrare che per ogni x ∈ X con y = f(x), OX,x è piatto su OY,y . Se y è il punto

generico, OY,y è un campo e tutti moduli sono piatti su un campo. Quindi supponiamo che y è

chiuso e OY,y un anello di valutazione discreta. Usando Commento 5.25, dobbiamo dimostrare

che OX,x è senza torsione. Se OX,x contiene torsione, dobbiamo avere che f#t è un divisor di

zero dove t ∈ my \m2
y . Segue che f#t è contenuto in un ideale primo p associato a (0) in OX,x.

Adesso p dà un punto generico di X con imagine y, che dà una contradizione. □

Teorema 5.28. Sia T uno schema integrale noeteriano e X ⊂ Pr
T un sottoschema chiuso. per ogni

t ∈ T sia Pt il polinomio di Hilbert della fibra Xt di X su t, visto come un sottoschema chiuso di
Pr
k(t). Allora X → T è piatto se e solo se Pt non dipende da t.

Commento 5.29. In particolare, in una famiglia piatta di varietà proiettivi come nel teorema, la

dimensione delle fibre, il genere aritmetico e il grado sono costanti.

Commento 5.30. D’altra parte essere ridotto o irreducibile non è preservato: Sia xy − tz2 una

famiglia di schemi proiettivi in P2
Y con Y = Spec(k[t]). Allora per t ̸= 0 abbiamo che la fibra Xt

è irreducibile. Ma X0 è dato da xy = 0 che è reducibile. Usando Proposizione 5.27, si vede che

la famiglia è piatta su Y . Analogamente, per la famiglia x(x− t) in P1
Y , che è piatta ed in cui la

fibra generale è ridotto mentre la fibra su 0 non è ridotto.

Anche la funzione di Hilbert non è costante, come si può vedere per esempio nella famiglia

V ((y, x) ∩ (y − 1, x) ∩ (y + 1, x+ t)) in P2
Y dove i tre punti sono colineari per t = 0 e non lo

sono per t ̸= 0.

Fissando un polinomio di Hilbert P possiamo guardare all’insieme

HP,r = {X ⊂ Pr
k | X chiuso con PX = P}.

È un teorema importante, che HP,r stesso è uno schema, chiamato lo schema di Hilbert. È

caratterizzato dalla seguente proprietà: dare una famiglia piatta X ⊂ Pr
T su uno schema T su k
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tale che le fibre hanno polinomio di Hilbert P è la stessa cosa come dare un morfismo T → HP,r

(si dice che HP,r rappresenta il funtore che associa a uno schema T le famiglie piatte su T di

sottovarietà proiettive di Pr
k con polinomio di Hilbert fissato). Questo è un esempio di un ‘spazio

di moduli’.

Tramite il criterio valutativo, la sequente proposizione dice che HP,r è proprio:

Proposizione 5.31 (Esistenza di limiti piatti). Sia Y uno schema regolare di dimensione 1, p ∈ Y
un punto chiuso, e X ◦ ⊂ Pr

Y \p un sottoinsieme chiuso, piatto su Y \ p. Allora esiste un unico
sottoinsieme chiuso X ⊂ Pr

Y tale che X è piatto su Y e X ◦ = X|Pr
Y \p

.

Proof. Si può prendere come X la chiusura di X ◦
in Pr

Y . Segue da Proposizione 5.27 che è

piatto. □

Esempio 5.32. Sia P = [0 : 0 : 0 : 1] ∈ P3
k e consideriamo la proiezione da P , φP : P3

k \ {0} →
P2
k, [x : y : z : w] 7→ [x : y : z]. Adesso sia C una curva in P3

k che non contiene P e per ogni

t ∈ k∗ sia σt l’automorfismo di P3
k dato da [x : y : z : w] 7→ [x : y : z : tw] e Ct = σt(C). Allora

si vede (per esempio usando Proposizione 5.27) che i Ct formano una famiglia piatta su A1
k \ {0}.

Quindi Proposizione 5.31 ci dice che esiste un unico limite C0. Come insieme è chiaro che C0

deve essere uguale a φ(C).
Per calcolare il limite scegliamo un esempio concreto per C che è dato in coordinati affini

dalla parametrizazzione Spec(k[s]) → A3
k, x = s2 − 1, y = s3 − s, z = s (una twisted cubic) e

consideriamo la proiezione su A2
k con coordinati x e y. L’immagine della proiezione è la curva

C ′
0 in A2

k con equazione y2 = x2(x− 1) (una cubica nodale). Ma questo non può essere il limite

piatto (come schema), perchè il polinomio di Hilbert di C è

PC(m) = deg(C)m+ 1− pa(C) = 3m+ 1

mentre il polinomio di Hilbert di C ′
0 è

PC′
0
(m) = deg(C ′

0)m− (d− 1)(d− 2)

2
+ 1 = 3m.

Quindi calcoliamo il limite piatto: per t ̸= 0, la curva Ct è dato da: x = s2− 1, y = s3− s, z = ts.
Vogliamo trovare l’ideale I tale che C ≃ Spec(k[x, y, z, t]/I) dove C è la estensione della famiglia

Ct come in Proposizione 5.31. Eliminiamo prima s e otteniamo

t2(x+ 1)− z2 = 0 e yt3 + zt2 − z3 = 0

Per avere una famiglia piatta, dobbiamo avere che t non è un divisore di 0 in k[x, y, z, t])/I (cf.

la dimostrazione di Proposizione 5.27). Sostituendo t2(x + 1) = z2 in yt3 + zt2 − z3 = 0 dà

t2(yt + z − (x + 1)z) = t2(yt − xz) e quindi aggiungiamo yt − xz come generatore di I e

togliamo yt3 + zt2 − z3. Ma allora abbiamo ancora che

x(t2(x+ 1)− z2) = xt2(x+ 1)− ytz = t(tx(x+ 1)− yz)

e aggiungiamo tx(x+ 1)− yz a I . Rimane che

x(tx(x+ 1)− yz) = tx2(x+ 1)− y2t = t(x2(x+ 1)− y2)

e aggiungiamo x2(x+ 1)− y2 a I . Mettiamo

I = (t2(x+ 1)− z2, yt− xz, tx(x+ 1)− yz, x2(x+ 1)− y2)

e si verifica che t non è un divisore di 0 in k[x, y, z, t]/I . Mettendo t = 0 otteniamo

I0 = (z2, xz, yz, x2(x+ 1)− y2)

l’ideale di C0 in k[x, y, z]. Quindi C0 ha supporto x2(x + 1) − y2 = 0 in A2
(dato da z = 0)

che coincide con φ(C) come atteso. Ad ogni punto p con x ̸= 0 o y ̸= 0 abbiamo che z è nel

immagine di I0 nella localizazione OX,x e segue cheC0 è ridotto a p; ma per p = (0, 0, 0) abbiamo

che z non è nella localizzazione del ideale, e quindi dà un elemento non-zero con z2 = 0 e p non

è ridotto. Quindi, il limite piatto della famiglia è la cubica nodale con un ‘punto immerso’ vicino

la noda (in particolare, non è un sottoschema di A2
k). E finiamo dove abbiamo iniziato motivando
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l’introduzione degli schemi: anche parlando solo di varietà classiche servono schemi per avere

una teoria che si comporta bene in famiglie.

—

Lezione

4.12.
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