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1. SCHEMI

1.1. Introduzione. Una varieta algebraica X C k™ tradizionalmente é definito come il luogo
di zeri di un insieme di polinomi fi, ..., f, con m variabili e con coefficienti in un campo k
(algebraicamente chiuso, di caratteristica 0).

Si vede subito, che X infatti non dipende dalla scelta di fi, ..., f, ma invece dall ideale I
generato dai f;. Poi ’anello di funzioni regolari su X €, per definizione,

kI X] =k[xy,...,2,]/1

, che sono ‘polinomi’ o funzioni regolari definito su X. Per avere una correspondenza biiettiva
tra ideali e varieta algebriche, si deve imporre che k[X] é un dominio: per esempio, il luogo di
zeri di (y) e (y?) ¢ identico, anche se gli ideali non lo sono. Nella perspettiva classica, si risolve
questa ambivalenza ristringendo l'insieme di ideali che sono ammessi. Nella perspettiva moderna
degli schemi, si aumenta invece I'insiemme di oggetti geometrici — c’e si introduce un oggetto
geometrico che corrisponde a (y?) ed & diverso da (y).

Perché questo e utile anche se magari si € interessato sopratutto nelle varieta algebriche? Si
consideri per esempio una degenerazione nel parametro ¢ di una parabola, ¢t — y? = 0. Per t # 0,
questo definisce una varieta algebrica. Per t = 0 invece otteniamo I'ideale (y?) e quindi la teoria
delle varieta algebriche ci dice di prendere il radicale e vederlo come la retta data da (y). Ma

questo non da una teoria soddisfacente; per esempio, il grado per ¢ # 0 sarebbe uguale a 2, metre
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per t = 0 uguale a 1. La teoria dei schemi da la possibilita di parlare in un senso formale anche
dal oggetto geometrico associato a (y?) (che dovrebbe essere una ‘retta doppia’).

Quindi, la teoria dei schemi introduce la possibilita di avere nilpotenti nel anello delle coordinati.
Ma non solo, nel mondo dei schemi si puo per esempio anche lavorare su un anello (come Z
con applicazioni alla teoria dei numeri) invece del campo k, o anello delle coordinati non e
necessariamente finitamente generato come k-algebra.

Un’altro perspettiva che gli schemi offrono, € che permettono di definire ‘varieta astratte’ —
invece delle varieta con un spazio ambientale come A}’ o IP}'. Questo passo ¢ analogo al concetto
delle varieta astratte nella geometria differenziale: si ottiene ’'oggetto astratto incollando aperti.
Nel caso degli schemi, gli ogetti di base sono i schemi affini.

1.2. Definizione di Schemi. Uno schema affine ¢ dato da

(1) Spec(R) con R anello commutativo con la topologia di Zariski e
(2) O fascio strutturale/fascio delle funzione regolare sullo schema.

Definiamo questo oggetto in tre passi, prima come insieme, poi come spazio topologico e
finalmente come ‘spazio localmente annellato’, quindi lo fascio strutturale O.

1.2.1. Schemi affini come insieme. Sia R un anello (assumiamo sempre che gli annelli sono com-
mutativi con 1).

Definizione 1.1. Gli elementi di Spec(R) come insieme sono i ideali primi p di R.

Osservazione 1.2. R C R non € un ideale primo. {0} invece lo € se R non ha divisori di zero
(R € un dominio). Se R é un campo, I'unico ideale primo e {0} perche ogni elemento x # 0 e
invertibile.

Un ideale primo m € un ideale massimale se m € massimale rispetto all’inclusione; c’é sem C p
per un ideale primo p, allora m = p. Ogni ideale diverso da R e contenuto in un ideale massimale.

Osservazione 1.3. Un ideale p € primo se e solo se R/p € un dominio, e p € massimale se e solo se
R/p & un campo.

Esempio 1.4. (1) Spec(Z) = {(p) | p interi primi } U {(0)}.

(2) Spec(Z/3Z) = {(0)} percheé Z/37Z & un campo

(3) Spec(C[z]) = {(z—a | a € C}U{(0)}. In questo caso, C[z]/(x —a) ~ Cvia f — f(a).
Quindi (x — «) € un ideale massimale. Poi tutti ideali primi hanno questa forma: Sia
p # (0) un ideale primo di C[z] e f € p un elemento di grado minimo. Allora f non é
costante perche altrimenti p = Clz]. Se deg(f) > 1, allora f = c(x — a1) ... (z — ay)
perché C e algebraicamente chiuso. Ma p e primo e quindi deve contenere anche uno dei
(x — ;). Visto che C[z] &€ un dominio ad ideali principali (per esempio dovuto al fatto
che esiste un algorithmo di divisione con resto), dobbiamo avere p = (z — «;).

Dato f € R si puo associare a f una ‘funzione’ f con dominio Spec(R) (vogliamo vedere i
elementi in R come polinomi/funzioni regolari su Spec(R)). Dato p € Spec(R), consideriamo

a: R — R/p — Frac(R/p).
Allora, 'imagine di p sotto f & definito come «/(f) e scriviamo f(p).

Osservazione 1.5. Questo non definisce una vera funzione, perche il codominio Frac(R/p) cambia
con p.

Esempio 1.6. f =15 € Z. Allora il ‘valore’ di f a (7) per esempio € 15 mod 7 = [1] € Z/7Z.
Il ‘valore’ di f a (11) e [4] € Z/11Z. 11 ‘valore’ di f a (0) ¢ 15 € Q.

Esempio 1.7. R = k[xz]/(x?), allora Spec(R) = {(x)}. 1l ‘valore’ di f = x € R sul unico punto
(x) € zero. In particolare, da una ‘funzione’ non-zero su Spec(R) che ha ‘valore’ zero a tutti i
punti di Spec(R).
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1.2.2. Schemi affini come spazi topologici. La Topologia di Zariski ha chiusi dato cosi: per ogni
S C R, abbiamo un chiuso

V(S) = {p € Spec(R) | S C p}.

Osservazione 1.8. Otteniamo la stessa definizione scrivendo V' (S) = {p € Spec(R) | f(p) = 0},
che collega alla nozione piu classico che i chiusi sono luoghi di zero di un insiemme di polinomi.

Poi chiaramente V' (S) = V((.5)) dove (S) é I'ideale generato da S.

Proposizione 1.9. Prendere iV (I) per I ideali di R come chiusi definisce una topologia su Spec(R)
(la topologia di Zariski).
Proof. Controlliamo i requisiti per una topologia uno per uno:
Ogni ideale contiene (0), quindi V' (0) = Spec(R).
Ogni ideale primo € proprio, quindi V(R) = 0.
Per un insieme di ideali {/,, }, abbiamo:

pe(NVa) & InCpVae | JIlocpeope V(L)

« «

[e%

Per due ideali I e J abbiamo:
peV(HUV(J) & peV{)opeV(J)eICpoJCp&
s INnJcpepeV(Inl),

dove INJ Cp=1CpoJ Cpperche senon,esistonoi € I ej € Jconi,j&p Ma
in questo casoij € INJ C pequindii € po j € p perché p é primo, una contradizione.
0

Gli aperti sono i complementi dei chiusi. Se S = {f}, f € R, allora
Spec(R) \ V(f) = Spec(Ry) = Xy,

dove Ry = R[f ~1] ¢ la localizzazione di R rispetto a f (c’é rispetto al insieme moltiplitivamente

chiuso { ™ }nen):

Proposizione 1.10. Gli ideali primi di Ry sono in corrispondenza biunico con i primi di R che non
contengono f.

Proof. Per passare da R a R si usano due costruzioni:

e | C Rideale, allora I® = {fin per t € I} I'ideale di Ry generato dall immagine di / con

t
¢:R—>Rf,t|—>1.

Si chiama la estensione di I (in Ry).
e J C Ry, J¢ = ¢ 1(J),lacontrazione di .J.

Per ogni ideale abbiamo che I C (I¢)¢ e J = (J°)®. Poi la contrazione di un ideale primo &
sempre primo, perché la preimagine di un ideale primo tramite un morfismo tra anelli & primo.

Vogliamo dimostrare che per ¢ C R primo con f ¢ ¢ abbiamo q = (q°)¢ e che q° & primo
(in generale, I'ideale generato dal immagine di un ideale primo non e necesseriamente un ideale
primo). Cosi si vede che la corrispondenza biunica che cerchiamo e dato dalla estensione con
inverso la contrazione (si osserva che per f € g, la estensione di q ¢ Ry perché f diventa invertibile
in Ry).

Entrambe le affermazioni sequono se dimostriamo che f% € q° implica che z € q. Lo

facciamo adesso: Sappiamo che fin ~ fxT:/ per un 2’ € q. Per definizione esiste un m t.c.
fr(af™ — 2/ f7) = 0 e quindi zf™" = 2/ f™+" Visto che 2/ € g, anche 2/ f" € q e quindi
zf™t e q. Ma f™" & q, e quindi z € q come desiderato. O

Lemma 1.11. Gli X formano una base per la topologia di Zariski.
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Proof. Dobbiamo dimostrare che ogni aperto U di Spec(R) si puo scrivere come unione di aperti
X . Per definizione abbiamao U = Spec(R) \ V(.5), che possiamo rescrivere come

U = Spec(R) \ V(S) = Spec(R) \ (| V(f) = [J (Spec(R)\ V(1)) = | X-

fes fes fes

Gli aperti X si comportano bene anche per intersezioni finite:
Lemma 1.12. Abbiamo X; N Xy = Xy,.

Proof. L’aperto Xy ¢ I'insiemme di primi che non contengono f. Quindi X; N X, e I'insieme di
primi che non contengono f e non contengono g. L’insiemme X 7, invece sono gli ideali primi
che non contengono fg e quindi che contengono né f né g. O

Osservazione 1.13. Spec(R) non é quasi mai di Hausdorff. Infatti, gli unici punti chiusi sono i
ideali massimali perché se p € Spec(R) la chiusura e

p = {a € Spec(R) | p € q}-

Esempio 1.14. In Spec(C[z]) i p = (x — ) sono punti chiusi. (0) non & chiuso e la sua chiusura
é tutto Spec(C[z]). Se f € C[z], allora V(f) sono tutti i punti (z — ) t.c. (f) C (v — «) che
significa « tale che f(a) = 0.

2. PROPRIETA DI MORFISMI

2.1. Finitezza. Ci sono due condizioni di finitezza di morfismi molto importante, una molto piu
restrittiva rispetto al altro. Iniziammo con quella piu generale:

Definizione 2.1. Un morfismo di schemi ¢: X — Y si chiama di tipo finito se per ogni punto
y € Y c’é un aperto affine y € V' = SpecB e un ricoprimento finito del suo preimagine

e (V) =J Ui
=1

tale che U; ~ Spec(A;) e la mappa
go‘#f: B = Oy(V) — OX(QO71V) — Ox(Ul) = A;
realizza A; come un’algebra finitamente generato su B per ogni i.

Osservazione 2.2. Esiste anche il concetto di essere localmente di tipo finito dove non si richiede
che il ricoprimento di ¢~ *(V) sia finito.

Molti schemi naturali soddisfano questa proprieta, per esempio:

Esempio 2.3. Sottoschemi chiusi Spec(k[z1, ..., 2y]/I) dello spazio affine A} sono chiaramente
di tipo finito su k.

La intuiziuno e che richiedere di essere di tipo finito esclude fibre di dimensione infinita e certi
situazioni ‘non-geometrici’ come spetri di annelli locale:

Esempio 2.4. Sia R = k[z](,) lo annello locale di A}, al punto (). Gli elementi di R sono funzioni

razionali % dove g(x) & (x). Per generare I’annello come k-algebra servono almeno 1, z, ﬁ

con g(x) monico di grado 1 e g(x) # x, un numero infinito di generatori. Quindi Spec(R) non &
di tipo finito su Spec(k).

Il concetto seguente di finitezza € molto piu restrittivo:
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Definizione 2.5. Un morfismo di schemi ¢: X — Y é finito se per ogni puntoy € Y c¢’¢ un
aperto affine y € V' = SpecB tale che anche o~ (V) = Spec(A) ¢ affine e

ol B=0y(V) > Ox(¢ 'V)=A
realizza A come un modulo finitamente generato su B.

Esempio 2.6. Il morfismo ¢: Spec(k[z,y]/(z? — y)) — Spec(k[y]) che corrisponde alla inclu-
sione k[y] — k[x,y]/(z? — y),y — y & finito perché k[z,y]/(x? — y) & generato da 1 e x come
k[y]-modulo.

Lemma 2.7. Un morfismo finito ha fibre finite.

Proof. La domanda é locale e quindi possiamo supporre che Y = Spec(B) e X = Spec(A) come
nella definizione di essere finito. Assumiamo che A € un B-modulo finitamente generato e sia
y € Y. Allora la fibra k(y) ® p A di ¢ € un k(y) modulo finitamente generato tramitte la mappa
B — E(y). Ma ogni k(y)-algebra che ¢ finitamente generato come k(y)-modulo ha un numero
finito di primi (€ Artiniano). O

Osservazione 2.8. Avere fibre finite (si dice anche di essere ‘quasi-finito’) non ¢ sufficiente per
essere un morfismo finito. Per esempio, I'inclusione : Al \ {0} — A! & data dalla mappa di
annelli k[t] — k[t,t=!]. Allora ¢ ¢ iniettivo quindi quasi-finito, ma non finito perche k[t,t!]
non ¢ finitamente generato come k|[t] modulo.

Osservazione 2.9. Si nota che nelle definizioni di (localmente) di tipo finito e finito si richiede
Pesistenza di un certo ricoprimento con aperti affini di Y. Si puo dimostrare che questo implica le
condizioni per ogni ricoprimento affine di Y.

2.2. Morfismi separati. Abbiamo visto che ogni schema affine noetheriano e quasicompatto.
Ma questo proprieta non porta gli vantagi che ha in altre teorie. Per esempio che I'immagine di un
morfismo definito sullo spazio € chiuso. Questo perché uno schema affine € quasi mai Hausdorff e
quindi quasi mai compatto: gia per esempio A} non lo &. I concetti di morfismi separati e propri
danno un analogo di essere Hausdorff e compatto nella categoria degli schemi.

Si riccorda, che un spazio topologico X € Hausdorff se e solo se la diagonale A in X x X
e chiuso nella topologia prodotto. Questo generalizza per gli schemi sustituendo la topologia
prodotto con il prodotto fibrato.

Sia ¢: X — S un morfismo tra schemi. La diagonale A C X xg X ¢ il sottoschema definito
su affini Spec(A4) C X e Spec(B) C S con ¢[gpec(a): Spec(A) — Spec(B) dal ideale generato
da elementi

a®l-1®ac ARp A.

Osservazione 2.10. Una definizione alternativa e: La diagonale e 'immagine del unico morfismo
X — X xg X che composto con ognuno dei due proiezioni da 'identita su X (usando la
proprieta universale del prodotto fibrato): 'identita al livello di schemi corrisponde al identita
al livello di anelli. Quindi cerchiamo una mappa pu: A ®p A — A tale che le composizioni
conA —+ ARpA,a—1®ae A — A®Rp A,a — 1® a danno 'identita. Dobbiamo avere
p(a ® b) = ab e si verifica che il nucleo di questa mappa € generato da elementia ® 1 — 1 ® a

Definizione 2.11. Un morfismo «: X — S si chiama separato se la diagonale A C X xg X e
chiusa. Un S-schema X si chiama separato se lo morfismo strutturale X — S'lo é.

Esempio 2.12. Se X e S sono affini, allora la diagonale € un sottoschema chiuso per definizione
e quindi @ & separato.

Esempio 2.13. Sia X la ‘rette affine con 'origine sdoppiata’, c’¢ lo schema ottenuto incollando
X1 = Spec(k[t]) e Xo = Spec(k[s]) tramitte il morfismo k[t,t~1] — k[s,s71],t — s che
identifica X; \ {0} con X5 \ {0}. Allora X Xxj X ha un ricoprimento affine dato da X; x
X1, X1 X X9, X9 x X1 e Xo x X5 (quindi A? con ‘assi sdopiati’ e ‘quattro punti di origine’).
La diagonale contiene le origini di X7 x X7 e X2 X X5 ma non quelle di Xy x X7 e X7 X Xo.
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Fuori dal origine, gli (X; \ {0}) x (X; \ {0}) vanno tutti identificati e la diagonale in ogni
(Xi\ {0}) x (X; \ {0}) sono i punti (z, z). Quindi la diagonale in X2 x X; e X7 x X2 non e
chiusa e il morfismo non separato.

Commento 2.14. Si nota che essere separato € un concetto ‘relativo’. La identita X — X con X
come nel esempio precedente € separato.

Si ricorda che un anello di valutazione e un anello in cui gli ideali sono totalmente ordinati
(rispetto al’inclusione). Si dice che un anello locale B domina un altro anello local Ase A C B e
my =mpnNA.

Teorema 2.15 (Criterio valutativo di separatezza). Sia f: X — S un morfismo tra schemi con
X noeteriano. Allora f é separato se e solo se si é verificata la seguente condizione. Per ogni campo
K e per ogni anello di valutazione R con campo quoziente K siaT = Spec(R), U = Spec(K) e
i: U — T il morfismo indotto dall’inclusione R C K. Dato un morfismodaT aY e un morfismo
daU a X in modo tale che il seguente diagramma sia commutativo

U—X (1)

ool

T—8,
esiste al pitt un morfismoT — X che ritiene commutativo il diagramma.

Osservazione 2.16. Se anche S ¢ Noetheriano e f di tipo finito, basta controllare il criterio per
ogni anello di valutazione discreta R.

Esercizio 2.17. Sia R un anello di valutazione con campo di frazioni K. Sia T = Spec(R) e
U = Spec(K). Dare un morfismo da U a uno schema X é la stessa cosa come dare un puntox € X
e un’inclusione di campi k(x) — K. Dare un morfismo da T in X é equivalente a dare due punti
x,nin X conx € 7 e un inclusione di campi k(n) C K tale che R domina I’anello locale di x inT].

Proof. Supponiamo che f sia separato. Siano h,h': T — X due morfismi come nel teorema.
Allora h e I/ definiscono un morfismo h”: T'— X x g X. Visto che h|y = h|ys h e i’ mandano
il punto generico 71 di 7" nello stesso punto di X e quindi 4" manda il punto generico di 7 nella
diagonale A di X x g X. Visto che A ¢ chiusa, 4" manda anche il punto chiuso p nella diagonale.
Quindi anche h(p) = h/(p). Visto che h e h’ definiscono — per assunzione — anche lo stesso
inclusione di k(h(n)) C K, segue dal esercizio che h = h'.

Viceversa supponiamo che la condizione del criterio é soddisfatta e vogliamo dimostrare che la
diagonale é chiusa. E sufficiente dimostrare: per ogni punto 7 € A e x € 7 abbiamo anche z € A
(si trova una dimostrazione per esempio in Hartshorne Lemma I1.4.5). Sia K = k(n) e O l'anello
locale di x nello sottoschema 7 (con la struttura di schema ridotto). Allora O € un sotoanello locale
di K e quindi esiste un anello di valutazione R di K che domina . Se mettiamo 7' = Spec(R)
otteniamo usando I’esercizio un morfismo 7" — X x ¢ X che manda il punto generico di 7" in7n e
il punto chiuso in x. Composizione con i due proiezioni da due morfismi 7' — X che danno lo
stesso morfismo a S e che coincidono su Spec(K). La condizione quindi da che i due morfismi
coincidono. Quindi 7' — X x g X fatorizza attraverso il morfismo della diagonale X — X xg X
e otteniamo che anche = € A. O

Corollario 2.18. Supponiamo che tutti schemi sono noetheriani:
(1) Inclusioni di sottoschemi sono separate.
(2) La composizione di due morfismi separati € separata.
(3) I morfismi separati sono stabili per cambiamento di base.
(4) Sef: X - Y ef: X' — Y’ sono morfismi separati di schemi su uno stesso schema di base
S, allora il prodotto fibrato

fXSfIIXXSX,—)YXAgY/

e separato.
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(5) Sef: X =Y eqg: Y — Z sono due morfismi di schemi e se g o f e separato, allora anche
f e separato.

(6) Un morfismo f: X — Y e separato se e solo se Y puo essere ricoperto da sottoinsiemi aperti
V; tali che i morfismi f~1(V;) — Vj siano separati, per ogni i.

Proof. Per esempio, (2) si puo verificare cosi: Sia f: X — Y eg: Y — Z morfismi di schemi
separati. Si considera

U—X
¢

i Y

o

T—7
Una mappa T' — X induce una mappa T’ — Y che € unica perche g e separato. Ma anche una

mappa T' — X che commuta con T' — Y & unica perche f € separato, quindi 7" — X € unica e
g o f & separato. g

2.3. Morfismi propri. Uno dei proprieta piu importante di spazzi compatti e che una mappa
continua X — Y con X compatto (e ¥ Hausdroff) manda chiusi in chiusi. Si usa una versione di
questo proprieta un po piu forte per definire I’analogo nel mondo dei schemi:

Definizione 2.19. Un morfismo tra schemi ¢: X — Y si chiama
(1) universalmente chiuso se per ogni morfismo Y’ — Y il cambiamento di base Y’ xy X —
Y’ & chiuso.
(2) proprio se ¢ di tipo finito, separato e universalmente chiuso.

Come prima, un S-schema X si chiama proprio se il morfismo strutturale X — S'lo e.

Esempio 2.20. A,lc non e proprio (su k). Il cambiamento di base dato da A,lf — Spec(k) stesso
da la mappa A} x; Al = A? — Al che non ¢ chiuso: 'immagine di Spec(k[z, y]/(zy — 1))
e A,lc \ {0} non & chiuso (si deve aggiungere il punto ‘a infinito’, che faremmo nella sezione
successiva).

Teorema 2.21 (Criterio valutativo di proprieta). Sia f: X — S un morfismo di tipo finito tra
schemi con X noeteriano. Allora f é separato se e solo se si é verificata la seguente condizione.
Per ogni campo K e per ogni anello di valutazione R con campo quoziente K sia’T = Spec(R),
U = Spec(K) ei: U — T il morfismo indotto dall’inclusione R C K. Dato un morfismo daT a
Y e un morfismo da U a X in modo tale che il seguente diagramma sia commutativo

U—>X (2)

ool

T—5,
esiste un unico morfismol’ — X che ritiene commutativo il diagramma.

Proof. Supponiamo che f sia proprio. Siccome f € anche separato, segue dal criterio valutativo di
separatezza che se un morfismo h: T' — X esiste, allora € unico. Dobbiamo quindi dimostrare
Pesistenza.

La proprieta universale del prodotto fibrato da lo seguente diagramma commutativa:

U—lXxgT—X

SNk

T—8,

Lezione
5.11.
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Sia 7 'immagine in X X g T del punto unico contenuto in U. Allora f’ & chiuso perche f &
universalmente chiuso e quindi anche f/(7) € chiuso e deve essere uguale a T". Quindi abbiamo
p € Tjcon f'(p) = x dove x ¢é il punto chiuso di 7. Quindi otteniamo un morfismo locale di anneli
locali R — O, 5. Il campo di funzioni di 7, k(n), € contenuto in K. Visto che R ¢ massimale tra
annelli locali in K rispetto a la dominanza, segue che R ~ O, 5 e in particolare 12 domina O, 7.
Quindi Esercizio ci da un morfismo 7' — X xg T e composizione con X xgT — X dail
morfismo cercato.

Supponiamo adesso che f soddisfa il criterio e vogliamo vedere che f é proprio. Dall criterio
valutativo di separatezza segue che f & separato. Visto che supponiamo gia che f sia di tipo finito,
rimane dimostrare che f & universalmente chiuso. Quindi sia f': X xg S’ — Se Z C X xg 5
un chiuso e vogliamo vedere che f/(Z) C S’ & chiuso. Usiamo come nella dimostrazione del
criterio valutativo di separatezza che basta dimostrare il seguente: per ogni ' = f'(n) € f'(Z) e
x €1/ anche z € f'(2).

Sia O I'anello locale di z in 77/. Allora il campo di frazioni di O ¢ k(1) che & contenuto in k(7).
Sia R un anello di valutazione in k(') che domina O. In questo modo otteniamo un diagramma

Spec(k(n)) —= Z 3)

b

Spec(R) —— 5',

Composizione con Z — X x5S — X e S’ — S da morfismi Spec(R) — S’ e Spec(k(n)) —
X. 1l criterio ci dice che esiste una mappa Spec(R) — X tale che il diagramma diventa commu-
tativo. Visto che X x g S’ & un prodotto fibrato, otteniamo anche un morfismo h: Spec(R) —
X xg8'. Visto che h(nr) € Z e Z & chiuso, anche h(zr) € Z. Maalloraz = f'(h(zr)) € f'(2).

O

Commento 2.22. Come per il criterio valutativo di separatezza si puo dimostrare che se anche S ¢
noeteriano, allora basta controllare il criterio per anelli di valutazione discreta.

Commento 2.23. Dal criterio segue, che un esempio di una mappa non-finito ma con fibre finite
(quasi finito) come in Osservazione non € possibile per morfismi propri. Infatti, si puo
dimostrare che un morfismo é finito se e solo se é quasi finito e proprio.

Corollario 2.24. Supponiamo che tutti schemi sono noetheriani:

(1) Un’immersione chiusa é un morfismo proprio.

(2) La composizione di due morfismi propri € proprio.

(3) I morfismi propri sono stabili per cambiamento di base.

(4) Sef: X =Y ef': X' = Y’ sono morfismi propri di schemi su uno stesso schema di base
S, allora il prodotto fibrato

fXSfIIXXSX,—)YXAgY/

e proprio.

(5) Sef: X Y eqg: Y — Z sono due morfismi di schemi e se g o f & proprio e g separato,
allora f ¢ proprio.

(6) Un morfismo f: X — Y é proprio se e solo se Y puo essere ricoperto da sottoinsiemi aperti
V; tali che i morfismi f~1(V;) — V; siano propri, per ognii.

Proof. Per esempio, per vedere (3), sia S — S un morfismo e f': X' = X xg 5" — 5" il
cambiamento di base.
Supponiamo che abbiamo
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Sappiamo gia che f’ € separato da Corollario Essere di tipo finito ¢ stabile per cambiamento
di base: si restringe a affini aperti e poi f’ e dato da f’: Spec(A ®p C) — Spec(A) con C
finitamente generato come B-algebra. Si controlla che in questo caso anche A ®p C' e finitamente
generato come A ®p B = A algebra.

Finalmente, usiamo il criterio valutativo di proprieta per vedere che anche f’ ¢ proprio: Perché
f € proprio, esiste una mappa 7" — X tale che il diagramma rimane commutativo. Ma per la
proprieta universale del prodotto fibrato, viene indotto anche una mappa 7' — X'. g

Definizione 2.25. Una varieta (astratto) € uno schema integrale, separato e di tipo finito su un
campo algebraicamente chiuso k. Una varieta completa e una varieta che e anche proprio (su k).

3. SCHEMI E MORFISMI PROIETTIVI

3.1. Proj di un anello graduato. Analogo a Spec di un anello, che generalizza varieta affini, si
puo definire Proj di un anello graduato, che generalizza varieta proiettivi.
Siricorda che un annello graduato S ¢ una A-algebra con

S=s.
v=0
tale che
5,8, CSyppeSo=A.

Qua supponiamo sempre che S sia finitamente generato.
Un elemento f di S si chiama omogeneo di grado v se f € S,. L’elemento 0 ¢ per definizione
omogeneo, ma non ha un grado fissato. Un ideale si chiama omogeneo se € generato da elementi

omogenei. Scriviamo
o0
5. =Ds.
v=1

che € un ideale che chiamiamo I’ideale irrelevante.

Dato un annello graduato S, ProjS € un A-schema. Per adesso supponiamo che S sia generato
in grado 1.

Il suo insieme di punti |ProjS| consiste in ideali primi omogenei p tale che S ¢ p.

Esercizio 3.1. ProjS = () se e solo se tutti gli elementi di Sy sono nilpotenti.
La topologia su |Proj(.S)| ha chiusi della forma
V() =A{p|pe|ProjSlel Cp}

per un ideale omogeneo I di S.
Finalmente, diamo una struttura di schema su |ProjS| specificandola su una base di aperti. Sia
f € S1 un elemento di grado 1 e

U = |ProjS|\ V(f).

Allora U é l'insieme di ideali primi omogenei che non contengono f. Quindi i punti di U possono
essere identificato con I'insieme di primi omogenei nella localizaione S[f~!]. Il punto chiave per
dare una struttura di schema ¢ lo seguente:

Lemma 3.2. Gli ideali primi omogenei di S[f ~] sono in biiezione con (tutti) ideali primi di S[f ~!]o,
il parte di grado 0 di S[f~1].

Proof. Sia D = {p € ProjS | f ¢ P} e consideriamo la mappa
¢: D — Spec(S[f]o)
che manda un ideale primo omogeneo p in S[f '] ap N S[f~!]o. Sia

¥: Spec(S[f o) = D
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la mappa che manda un ideale q a qS[f ~!]. C’¢, ¥(q) ¢ generato da elementi s tale che ﬁ € q per

d = deg(s). Allora ¢ o ¢ = id: 'intersezione degli elementi s € 1)(q) come sopra con S[f~1]o
sono, per definizione, gli elementi di q.
Per vedere che anche v o ¢ = id, sia s € p € D. Allora @ € o(p) e quindi s € YP(p(p)) e

P Cd(p(p))-
Se invece s € ¥ (¢(p)), allora @ € p(p) e quindi esiste s’ € p tale che

s’ _ s
Fiesl) — fdea(s)-
Questo vuole dire che esiste un e € N tale che

fe(slfdeg(s) _ sfdeg(sl)) =0.

Allora s’ € p e quindi anche s fd°&(s)+¢ ¢ p Ma fdeg(s)+¢ & p e quindi s € p perché p & primo.
Insomma, abbiamo anche ¢ (¢(p)) C p. O

Quindi possiamo identificare un aperto U = |[Proj(S)|\ V() con Spec(S[f~!]y) come spazi
topologici. Prendiamo la struttura di schema su U come quella di Spec(S[f~!]o) e chiamiamo
U = (ProjS)y. Per ogni scelta di f; tale che (f1, f2,...) haradicale S, i (ProjS)y, danno un
ricoprimento di ProjS con schemi affini. Per due di quelli aperti abbiamo che (ProjS) ;N (ProjS),
dentro (ProjS) € lo spettro di

In particolare, possiamo incollare (Proj.S) s e (ProjS), lungo questi aperti affini e otteniamo una
struttura di schema su Projs.

Siosserva che otteniamo un’inclusione Sy < Opyojs(ProjS) che induce una mappa Proj(S) —
Spec(Sy) che realizza ProjS come Sy-schema.

Definizione 3.3 (Morfismi proiettivi su schemi affini). Sia B = Spec(A) uno schema affine.
Allora un morfismo di schemi ¢: X — B é proiettivo se X = ProjS per un anello graduato
e finitamente generato da elementi in grado 1, tale che A ~ Sy e ¢ ¢ il morfismo strutturale
ProjS — SpecSp.

Esempio 3.4. Sia S = C[z, y] con la graduazione normale dato dal grado dei polinomi. Allora
St = (2,y) e Proj(S) = P. Ideali massimali di C[z, y, z] hanno la forma (x — ¢1,y — c2) per
¢i € C;se (c1,c2) # (0,0), I'ideale non € omogeneo e altrimenti non é rilevante. Sia f € I con
omogeneo. Allora f(x) = 0 = f(Ax) = 0 per ogni A € C. Quindi per ogni punto x contenuto
in V(I) C A%, V(I) contiene anche la retta in z. Gli unici curve integrali in A2 per cui questa
proprieta e vero, sono le rette che contengono l'origine. Quindi I punti chiusi hanno la forma
(az + by) (che corrispondono al punto [a : b] nei coordinati proiettivi classici di P{.). L'unico
punto non-chiuso ¢ dato da (0). Le mappe della dimostrazione di Lemma [3.2|sono dati cosi: sia
per esempio f = x. Allora

azr + by

plaz +by) = (=) = (a+b7) € Cla,yllz o = C[7]

X

Y(a+ b%) = (ax + by).

L’anello S di ProjS si chiama 'anello delle coordinate omogenee. Diverso da SpecA, S non &
determinata da ProjS:

Esempio 3.5. Sia

@) = é S
v=0

Allora ProjS = ProjS®. Questo perché possiamo identificare affini aperti:
(ProjS) ja = (ProjS¥);.
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Gli elementi in (ProjS) s« sono ideali primi in SpecS|( 971 quindi generato da elementi
ﬁ dove kd = deg(s). Invece gli elementi in (ProjS(¥)); sono ideali primi in SpecS[(f)™"]o
generato da elementi ﬁ dove kd = deg(s) (nella vecchia graduazione). Un isomorfismo € dato
da f — f7.

Ma in generale S (@) o S. Per esempio, per S = k[x,y], S € generato da 2 elementi (z, y) in
grado 1 e S@) da tre elementi (22, zy, y?).

Commento 3.6. Anche se S e S danno lo stesso Proj, in generale Proj(S) dipende dalla scelta
della graduazione. Per esempio, se prendiamo k[x,y, z| dove z,y, z hanno grado a,b,c > 0,
allora oteniamo lo schema che si chiama piano proiettivo pesato P(a, b, c). Si puo realizzare
come quotiente di (k% \ {0})/(k*) dove A(z,vy,2) = (A%, Ay, \°z). In generale P(a,b,c) #
P(a, b, ).

Commento 3.7. Sipuo usare la costruzione di Esempio [3.5|per vedere che se S ¢ un anello graduato
finitamente generato allora esistono d tale che S(® ¢ finitamente generato da elementi di grado 1.
Quindi, il fatto che supponiamo che S sia generato in grado 1 nella costruzione di ProjS non e
una restrizione.

3.2. Spazio proiettivo e sottoschemi chiusi. Sia S = Afzy,...,z,| graduato dal grado dei
polinomi. Sia U; = (Proj9),,. Allora

U; = Spec(S[z; o) = Spec(Afzy, ..., T} ... ah]) ~ A%

dove /. i = - In questo caso si scrive ProjS = P}, lo spazio proiettivo, e si vede che ¢ lo stesso
schema che abblamo ottenuto incollando i A" in Sezione ??. In particolare, la dimensione di P’}
n ovunque.

Sia I un ideale omogeneo di A[zy,...,2,] e U; un aperto come sopra. Allora definiamo

Si verifica che gli ideali I (U;) sugli aperti affini danno un fascio coerente I diideali su IP"; e quindi
un sottoschema chiuso V'(I). Infatti, abbiamo che

V(I) ~ ProjS/I.

Sinota anche che si puo ottenere T(Ul) mettendo z; = 1 sotto I'identificazione Alxy, . .., zp, a:i_l]o ~

Alzg, ..., x}).
Nel altra direzione, dato un sottoschema chiuso X C P’ con fascio coerente di ideali Zy,
possiamo definire I'ideale /(X ') come gli elementi omogenei f di A[x, ..., xz,] tale che per ogni

1 abbiamo che

f|zi=1 € IX(U’L) - A[ZE()? s axl

n} ~ A[:‘UOa s ’1'7“3};1](0)-

Si controlla che se I = I(X) allora Ty = I.

Esempio 3.8. L’ideale omogeneo (zoz1 — 23) C k[zo, 21, 2] da gli ideali (zf, — (24)?), (2} —
(25)?) e (zhx} — 1) nei tre aperti affini dati da zg # 0, 21 # 0 e 22 # 0.

Esempio 3.9. Il complemento di un aperto affine U; &, per definizione, V' (z;). Questo € isomorfo
a

Proj(Alzo, . .., zn)/(x;)) =~ P75
Quindi la decomposizione P = P"~! U A™ che conosciamo dal contesto classico ¢ vale anche su

anelli piu generale (per esempio 7).

Osserviamo che la corrispondenza tra sottoschemi chiusi di P} e ideali omogenei di A[z, . . ., ]
non ¢ biettivo:
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Esempio 3.10. Gliideali (zo) e (3, 7o) danno lo stesso sottoschema di P2 = Projk[z, x1]: Nel
aperto affine Up, abbiamo che (o) e (3, zo21) sono entrambi uguale a tutto 'anello k[x, 21, 75 '].
Invece su U abbiamo che x1 & invertibile quindi (23, zoz1) = (23, 79) = (20). (Si nota che lo
spettro degli ideali non é isomorfo: uno da la rette x = 0, I’altro la stessa rette ma con un punto
non-ridotto al’origine).

Per ristorare una biezione serve lo seguente definizione:

Definizione 3.11. Sia [ und ideale omogeneo in S = A[xy, ..., z,]. Allora
I={seS|3Im,Vi: 2]"s €I}
denota la saturazione di I. L’ideale I si chiama saturato se [ = 1.
Nel esempio precedente, la saturazione di (22, mox1) & (20).

Esercizio 3.12. Siano I e J ideali omogenei di S = Alxo, ..., xy,]. Allora

(1) I ¢é un ideale omogeneo
(2) ProjS/I = ProjS/T
(3) ProjS/I = ProjS/J seesolose I = J.

Esercizio 3.13. Ogni schema proiettivo su A si puo realizzare come sottoschema chiuso di P"}.

Quindi otteniamo: ogni sottoschema chiuso di P’ ¢ proiettivo. E per ogni schema proiettivo X
su A esiste un n tale che si puo realizzare X come un sottoschema chiuso di P"}.

3.3. Morfismi proiettivi e loro proprieta. Usiamo questo oservazione per definire morfismi
proiettivi in generale:

Definizione 3.14. Un morfismo tra schemi X — Y & proiettivo se € la composizione di un
immersione chiuso X — P con il morfismo Py — Y.

Quindi si puo pensare di un morfismo proiettivo X — Y come una famiglia di sottoschemi
chiusi di P* parametrizzatida Y.
Qua PPy si puo definire incollando gli P’} su un ricoprimento con affini Spec(A;) diY o come

y =Pz xzY.
Un’altra differenza tra Spec e Proj sono i sezioni globali del fascio strutturale:

Proposizione 3.15. Sia X uno schema integrale e proiettivo su k un campo algebraicamente chiuso.

Allora Ox (X) = k.

Proof. Sia f € Ox(X) una funzione regolare globalmente definito. Per definizione di morfismi
proiettivi, possiamo vedere X come un sottoschema chiuso di P}’ quindi X = ProjS con S =
klzo, ..., xn]/1. Sia X; = X NU; dove U; C IP}} sono gli apperti affini di prima. La restrizione di
f a X; da un elemento di Ox,(X;) = S[z; ']o. Quindi possiamo scrivere f = % con g; € S

i
Z;

omogeneo di grado V;. Siccome X ¢ integrale, S € un dominio e segue che :L‘;Nl f € Sn, per ogni
i.

Sia N > )" N;. Allora Sy € generato come spazio vettoriale su k& di monomi di grado N e
ogni monomio cosi ha un termine in cui il grado di un z; € almeno N;. Quindi f - Sy C Sy e
anche f1Sy C Sy per ogni ¢ (dove vediamo f € Ox(X) e Sy entrambi nel campo di frazioni
di S). In particolare, 22’ f¢ € S per ogni ¢ > 0 e quindi il sottoanello S[f] del campo di frazioni
di S ¢ contenuto in 2, S: se g € S[f], allora

g = so+fsi+ fisa+ = (@l agN)(so+ fs1+ fisa+ o)
= xaN(xévso—i—fxévsl+f2xévsz+~-)ExaNS.

Visto che x N'S & un S-modulo finitamente generato e S & noeteriano, anche S[f] é finitamente
generato su S e otteniamo che f ¢ integrale su S. Quindi ci sono elementi a; € S tale che

"+ am1 f" 4+ . +ay=0.
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Possiamo sostituire I'equazione con i parti in grado zero. Ma f stesso ha grado 0 e Sy = £, quindi
possiamo suppore che a; € k senza cambiare ’equazione. Segue che f ¢ integrale su k. Ma k e
algebraicamente chiuso e quindi f € k. O

Esercizio 3.16. Siavy: S — T un morfismo di annelli graduati. Sia

U = {p € Proj(T) | ¥(S:) ¢ p}.
AlloraU C ProjS e aperto e 1) induce un morfismo
@: U — Proj(9).

Commento 3.17. 1l morfismo ¢ puod essere un isomorfismo, anche se ) non lo & (simile a come
abbiamo visto che ProjS = ProjT non implica S ~ T).

Esempio 3.18. Sia ¢: k[x,y] — k[z,y, 2] I'inclusione. Allora ¢(S4+) = ¥((x,y)) = (x,y) e
U =P\ {(z,y)} con p: U — P} dato in coordinati omogenei [z : y : 2] — [z : y].

Teorema 3.19. Un morfismo proiettivo ¢: X — Y tra schemi noeteriani e proprio.

Proof. Per definizione di un morfismo proiettivo abbiamo che ¢ fattorizza come X — P}, — Y.
Quindi otteniamo

X —>Pp —>P2

N}
Y —— Spec(Z)

E sufficiente dimostrare che P, — Spec(Z) é proprio usando Corollario in questo caso il
cambio di base ¢ proprio, quindi P{, — Y ¢ proprio; il morfismo X — P} ¢ un immersione
chiuso e quindi proprio; di consequenza anche X — Y come composizione di morfismi propri e
proprio. Dimostrare che P7; — Spec(Z) e proprio lasciamo come esercizio.

0

Commento 3.20. Essere proiettivo e essere proprio sono molto simile ma si puo costruire esempi
di schemi propri che non sono proettivi. Per una varieta astratta X si sa:

(1) Se X e di dimensione 1 e proprio allora é proiettivo.

(2) Se X e di dimensione 2, non-singolare e proprio allora € proiettivo.

(3) Ci sono esempi di X di dimensione 2, singolare e proprio ma non proiettivo.

(4) Ci sono esempi di X di dimensione 3, non-singolare e proprio ma non proiettivo.

3.4. Proj globale. Invece di costruire Proj di un anello graduato S su SpecSy, si puo anche
costruire ProjF di un fascio coerente graduato F su qualsiasi base B.
Un fascio quasicoerente graduato F su B € un fascio quasicoerente di Op-moduli F,, tale che

F=E~r

con F, F,, C Fyqp e Fo = Op. Quindi, dato un aperto affine U = Spec(A) si B, abbiamo che
F(U) & un anello graduato con F (U)o = A.

Mettiamo X7 = ProjF(U), uno schema su U. Se U C V é un inclusione di aperti affini,
abbiamo la mappa di restrizione

v F(V)—= F(U).
La restrizione di 1) allo parte di grado 0 € la mappa di restrizione ¢g: Oy (V) — Oy (U) = Oy (U).
In particolare, 1) manda I'ideale irrelevant nel ideale irrelevante e quindi induce un morfismo
@: XU — XV

che commuta con i morfismi Xy — U, Xy — V e l'inclusione U — V. Quindi possiamo usare i
morfismi di restrizione per incollare i X7 in uno schema globale

X =ProjF — B.

Lezione
6.11.
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Esempio 3.21. Abbiamo visto che P", = ProjA[zo, ..., z,]. Vistoche Az, ..., x,] ~ Sym(A"+!)
possiamo mettere
& = Sym(OF"*),

che da una terza possibilita di definire P’} per uno schema qualsiasi B.

Esempio 3.22. Pit generale, sia £ un fascio coerente su B. Allora definiamo
PE€ = Proj(Sym(&)) — B,
il fibrato proiettivo associato a €.

3.5. Fasci invertibili da moduli graduati. Come per Spec, si pu6 definire anche per Proj fasci
(quasicoerenti) associato a un modulo, che in questo caso deve essere graduato:
Sia B uno schema, e

A=Ay A1 P ...
un fascio di Op algebre graduate. Allora otteniamo come prima P = Proj.A dato dal Proj
globale. Sia M un fascio quasicoerente su B con una struttura di .A modulo graduato; c¢’é con
una decomposizione

M=...OM;,EM;i11...

con mappe

A; @ My = M
che soddisfanno le proprieta di un modulo (distributivita, associativita, identita).

Allora possiamo definire un fascio M su P cosi: Sia U C B un aperto affine. Quindi A(U) e
un anello graduato. Per ogni elemento omogeneo f € A(U) abbiamo un aperto affine
Py, s = (ProjA(U)); = Spec(A(U)[f o) C P.
Allora i Py y danno un ricoprimento di aperti affini di P e M(U) ¢ un A(U) modulo graduato su
ogni U. Sia My ¢ il A(U)[f~!]o-modulo
My = (MU) @ 4wy AU o

Associatio a M,y abbiamo un fascio quasicoerent su Spec(A(U)[f~1]o) e quelli si incollano per
dare un fascio quasicoerente M su P.

Commento 3.23. Ogni fascio quasicoerente su Proj.A é ottenuto in questo modo. Ma due fasci di
moduli M possono dare lo stesso fascio.

Commento 3.24. In caso che B = Spec(k), A e semplicemente una k-algebra graduato e M un
A-modulo graduato.

Esempio 3.25. Se prendiamo M = A, otteniamo il fascio strutturale M = Op. Dato M come
sopra definiamo M (n) come lo stesso fascio di moduli ma con graduazione

M(n); = Mnyi
e con Op(n) lo fascio A(n) associato a A(n).

Esempio 3.26. Sia B = Spec(k), A = A = klz,yle M = M = A(1). Quindi P = P} e
U = Spec(k). Poi abbiamo

]P)(Spec(k:),x) = Spec(k[:v, y] [x_l]o) € IPD(Spec(k’),y) - Spec(k‘[x, y] [y_l]o)

Mspeetrye = (K2, 4] @pjay) Kl y)[z 7)o = {xdeg{f)_l | f € k[z,y], deg(f) # 0}

perché (k[z, y| @p(zy) klz, y][27]) = K[z, yl[z™"] con deg(h @ %) = deg(h) — 1+ deg(g) —n.
Analogo per

MSpec(k),y = (k[xay] O k‘[.’IJ,y] [y_l])o = {ydeg{f)—l ’ f € k[x,y},deg(f) 7£ 0}
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Un elemento zd%(% definisce quindi anche un elemento Mg, cq(x) , se e solo se deg(f) = 1. O
in altre parole, le sezioni globali I'(Op1 (1)) sono k[z, y];. Piu in generale abbiamo

[(Opn(m)) = k[xo, ..., ZTn|m per ognim,n > 1.
Per m > 0, otteniamo in particolare che Opn () & generato da k = (")
dato da z' ... 2" per ogni scelta di m; tale che ), m; = m.

sezioni globali,

Se prendiamo invece Op1(—1) otteniamo sezioni locali zdeg{ 77T € ydeg{ 771 che non si estendono

mai a sezioni globali. Anche qua abbiamo in generale
I['(Opn(m)) = {0} per ognim < 0.

Definizione 3.27. Sia X un Y -schema. Un fascio invertibile P su X si chiama molto ampio se
esiste un immersione i: X — Py tale che P ~ 7*Opx (1). 1l fascio si chiama ampio se P®" &
molto ampio perunn € N.

Qua un morfismo si chiama un immersione se induce un isomorfismo tra X e un sottoschema
aperto di un sottoschema chiuso di Py

Commento 3.28. Uno schema noetheriano X su k é proiettivo se e solo se X e proprio e amette
un fascio molto ampio: se X e proiettivo, allora X e proprio (Teorema [3.19) e per definizione
I'inclusione i: X — [P} da il fascio molto ampio i* Opr (1). Vice versa, se X e proprio su k, anche
X — P} ¢ proprio (Corollario m (5)) e quindi ha immagine chiuso e definisce un immersione
chiuso.

4. DIVISORI E FASCI INVERTIBILI

4.1. Divisoridi Weil. In questa sezione supponiamo che X sia uno schema integrale, noetheriano,
separato che é regolare in codimensione 1 ('ultima proprieta vuole dire che ogni anello locale
Ox ; di dimensione 1 ¢ regolare).

Definizione 4.1. Un divisore primo Y di uno schema X é un sottoschema integrale chiuso di
codimensione 1. Un divisore di Weil € una combinazione lineare D = Z?:l n;Y; di divisori primi
Y; conn; € Z. D si chiama effetivo se n; > 0 per ogni i. Si scrive Div(X) per il gruppo di
divisori di Weil su X.

Una funzione razionale su X ¢ un elemento del campo K = O, x, dove 7 ¢ il punto generico
di X. Per ogni divisore primo D abbiamo il punto generico np di D e perché D ha codimensione
1, Oy, x € un anello di valutazione discreta con valutazione vp con campo di frazioni K (perché
Oyp,x ¢ un dominio locale Noetheriano con ideale massimale principale e non ¢ un campo).
Definiamo I'ordine di zero/poli di una funzione razionale non-zero f € K* lungo D come vp(f).
C’e se vp(f) > 0 diciamo che f ha un zero lungo D di ordine vp(f); e se vp(f) < 0 diciamo
che f ha un polo lungo D di ordine —vp(f).

Esempio 4.2. Se prendiamo come D = Spec(k[z,y]/(z)) C Spec(k[z,y]) = A2, allora np & il
punto dato dal ideale primo (). Quindi O,, x = k[z,y](,). Ogni elemeto in f € K = k(z,y) si
puo scrivere come f = z™g con g & (x) e vp(f) = n. Per esempio, vp(4) = —1,vp(z? —y) =0
evp(zy) = 1.

Sempre con gli assunzioni su X di sopra abbiamo:
Lemma4.3. Sia f € K*. Allora ci sono solo un numero finito di divisori primi D tale chevp(f) # 0.

Proof. Per ogni aperto affine U = Spec(A4) C X abbiamo K = Frac(A). Possibilmente restrin-
gendo a Uy, possiamo scegliere U = Spec(A) C X affine tale che f ¢ regolare, c’¢ f € Ox(U).
Il complemento X \ U é chiuso e quindi un unione finito di componenti irreducibili (X € noethe-
riano). In particolare, esiste solo un numero finito di divisori primi D con D N U = () e quindi
e sufficiente mostrare ’affermazione per U. Visto che f € Ox(U), vp(f) > 0. Poivp(f) >0
se e solo se D é contenuto nello sottoschema chiuso Z di U definito da f - A. Ma visto che X ¢
noetheriano, Z contiene un numero finito di divisori primi. g
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Quindi possiamo definire:

Definizione 4.4. (1) Dato f € K™, il divisore di Weil associato a f e
div(f) = > vn(f)D,
D

il divisore di zeri e poli di f. Un divisore D che ha la forma div per una funzione razionale
f € K* si chiama divisore principale.

(2) Due divisori di Weil D, D’ si chiamano linearmente equivalente e scriviamo D ~ D’ se
D — D’ ¢ principale.

Se f,g € K*, abbiamo che vp(fg) = vp(f) + vp(g) e vp(1) = 0. In altre parole, div
definisce un morfismo di gruppi da K* con la molteplicazione a Div(X) con I’addizione. Quindi
I'immagine, i divisori principali, formano un sottogruppo e si scrive C1(X) per il quoziente.

Esempio 4.5. (1) Per X = Al abbiamo K = k(z). Se prendiamo per esempio f = 22, allora
vp(f) =0per D # 0evy(f) =2, e quindi div(f) = 2(0). Quindi 2(0) ~ 0.
(2) Per X = P} abbiamo anche K = k(z). Se prendiamo un altra volta f = 2, allora
vp(f) = Oper D £ [1:01[0 : 1] e vou)(f) = —2 € vugy(f) = 2, quindi div(f) =
2(0) — 2(c0). Quindi 2(0) ~ 2(c0).

Entrambi si puo generalizzare:

Esempio 4.6. Abbiamo che CI(A™) = 0. Sia D € Div(A") un divisore primo. Allora D =
Spec(k[z1,...,zy]/(f)) per un polinomio f irreducibile e abbiamo div(f) = D. Quindi ogni
divisore primitivo € principale e quindi tutti i divisori di Weil sono principali.

Proposizione 4.7. Sia X = P} lo spazio proiettivo. Per un divisore di Weil D = n;Y; si definisce

deg(D) = Znideg(Yi).
Sia H liperpiano xo = 0. Allora
(1) Per ogni divisore D di grado d abbiamo D ~ dH
(2) Per ogni f € K* abbiamo deg(div(f)) = 0.
(3) La mappa deg: CI(P}}) — Z e un isomorfismo.

Proof. Iniziamo con (2): Sia S = ko, ..., z,] tale che P} = Proj(S). Se g € S &€ omogeneo
di grado n possiamo scrivere g = g7' - ... - g con g; irreducibile. Allora g; definisce un
ipersuperfice Y; di grado deg(g;) e possiamo definire div(g) = ), n;Y; con deg(div(g)) =
> nideg(Y;) = deg(g). Una funzione razionale f € K* ¢ dato da un quotiente { con g,h
omogeneo e deg(g) = deg(h). Visto che div(f) = div(g) — div(h) otteniamo deg(div(f)) = 0.
Per (1), sia D un divisore di grado d. Possiamo scrivere D = D — D3 per divisori effetivi Dy, Do
di grado dy,ds con d; — do = d. Possiamo scrivere D; = div(g;) con g; omogeneo di grado d;:
ogni ipersuperfice irreducibile di P} corrisponde a un ideale principale generato da un elemento
omogeneo. Prendendo prodotti, segue che ogni sottoschema di codimensione 1 e dato come il

luogo di zeri di un singolo polinomio omogeneo. Allora D — hH = div(f) dove f = gf;d e una
0

funzione razionale su P".

(3) segue da (1) e (2) osservando che deg(H) = 1. O

Proposizione 4.8. Sia Z C X un sottoschema chiuso e U = X \ Z. Allora:
(1) 1l morfismo
p: CI(X) — CI(U), Y niYi > ny(YiNU)
e suriettivo.
(2) se codim(Z, X) > 2, allora ¢ € un isomorfismo.
(3) Se Z e irreducibile di codimensione 1 esiste una succesione esatta corta:

Z — Cl(X) — CL(U) — 0.
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Proof. (1) Se Y e un divisore primo su X allora U N'Y" e vuoto o un divisore primo su U. Se
f € K* ¢ una funzione razionale con div(f) = > n;Y;, possiamo vedere f anche come
funzione razionale su U e otteniamo divy(f) = > ni(Y; N U). Quindi ¢ definisce un
morfismo. E suriettivo, perché ogni divisore primo di U é la restrizione della sua chiusura.

(2) Un divisore primo ha codimensione 1, quindi U N Y non pud essere vuoto in questo caso
e @ € anche iniettivo.
(3) LU nucleo di ¢ sono i divisori di Weil con supporto in Z. Se Z & irreducibile di codimensione
1, sono essatamente i moltipli di Z.
O

Esempio 4.9. Sia A = k[, y, z]/(zy — 2%) e X = Spec(A) una superficie conica in A3. Allora
Cl(X) ~ Z/27 ed é generato da una retta generatrice Y, per esempio dato da (y, z). Infatti,
Proposizione [4.8] da

Z— Cl(X)—Cl(X\Y)—o0. (4)

Adesso Y come insieme ¢ il luogo y = 0 su X. Come divisore invece abbiamo div(y) = 2Y:
Ianello locale a Y in X ¢ dato da A, ) =~ k[z, 271, 2] con ideale massimale generato da z. Visto

chey = % y ha un zero di ordine 2 lungo Y.
2

Otteniamo che X \ Y = SpecA, e A, = k[z,y,y !, 2]/(zy — 2%). In A, abbiamo z = e
quindi A, ~ k[y,y ™!, 2]. Segue che Spec(4,) e un sottoschema aperto di A? = Spec(k[y, z])
e quindi CI(X \ Y) = 0. Quindi otteniamo da (4) che Cl(X) e generato da Y e visto che
div(y) = 2-Y abbiamo 2-Y = 0 in CI(X).

Rimane vedere che Y non é principale, che si puo dimostrare che in questo caso (X essendo
normale) € equivalente a (y, z), 'ideale che definisce Y, e principale. Sia m = (z,y, z) I'ideale
massimale del vertice di X. Allora m/m? ¢ di dimensione 3 come spazio vettoriale su k generato
dai immagini di z,y e z. Se Y fosse principale, allora 'immagine di (y, z) in m/m? avrebbe
dimensione 0 o 1. Ma in questo caso lo contiene 'immagine di y e 2z, quindi ha dimensione 2 e
(y, z) non ¢ principale.

Esempio 4.10. Per un altro esempio, si puo calcolare che
CI(P' xP"Y=7Z x Z,

dove ogni divisore D é 'insieme di zeri di un polinomio bi-omogeneo f e I'invariante che descrive
Op1yp1 (D) € il bigrado di f.

4.2. Divisori di Cartier. Adesso vogliamo introdurre una nozione di divisore che non ha bisogna
dei restrizioni su X che erano necessario per i divisori di Weil (noetheriano, separato, integrale e
regolare in codimensione 1).

Iniziamo con una generalizzazione del concetto del campo di funzioni: Sia X uno schema. Per
U = Spec(A) C X aperto affine sia S C A I'insiemme di elementi che non sono divisori di 0
e sia K (U) la localizazione di A in S. Piu generale, per un aperto U C X qualsiasi, sia S(U)
I'insiemme di elementi di Ox (U) che non sono divisori di zero in ogni anello locale O, con
x € U. Allora gli anelli S(U)~*Ox (U) formano un pre-fascio e chiamiamo il fascio associato
IC il fascio delle anelli totali delle frazioni (sheaf of total quotient rings). Chiamiamo K* e O* il
fascio di elementi invertibili di IC e Ox.

Definizione 4.11. Sia X uno schema. Un divisore di Cartier & una sezione globale del fascio

K* /0.

Piu esplicitamente, un divisore di Cartier ¢ dato da un ricoprimento aperto X = J,U; e
per ogni U; un elemento f; € X*(U;) (= una funzione razionale) tale che per ogni ¢, j abbiamo
% € O*(U; N Uj) ( = una funzione regolare senza zeri).

J

Definizione 4.12. Un divisore di Cartier si chiama principale se & nel immagine della mappa

K*(X) — K /O*(X).
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Due divisori di Cartier si chiamano linearmente equivalente se la loro differenza e un divisore
principale.

In generale le nozione di divisori Cartier e Weil non coincidono (come abbiamo visto, il divisore
di Weil in Esempio [4.9|non e principale vicino 0). Ma se supponiamo che X ha le proprieta per
cui ha senso di parlare di divisori di Weil e di piu che tutti i anelli locali Ox ; sono domini a
fattorizzazione unica (in cui caso X si chiama localmente fattoriale), le due nozioni coincidono:

Proposizione 4.13. Sia X integrale, separato, noetheriano, regolare in codimensione 1 e localmente
fattoriale. Allora, il gruppo di divisori di Weil e isomorfo al gruppo di divisori di Cartier. Tramite
questa identificazione, i divisori di Weil principali corrispondono ai divisori di Cartier principali.

Commento 4.14. Infatti, regolare in codimensione 1 segue dalle altre assunzioni.

Commento 4.15. Visto che un anello locale regolare € un dominio a fattorizzazione unica, schemi
regolari sono localmente fattoriali. Quindi una varieta regolare soddisfa le assunzioni della
proposizione.

Proof. Visto che X ¢ integrale, K corrisponde al fascio costante K(U) = K, dove K ¢ il campo di
funzioni K = Ox .

Dato un divisore di Cartier {(Uj;, f;)} definiamo un divisore di Weil come segue. Per ogni
divisore primo D prendiamo il coefficiente np come vp(f;) per un U; con D N U; # 0. Se
abbiamo un altro j con U; N D # (), allora f;/ f; & invertibile su U; NUj e quindi vp(f;/fj) =0e
vp(fi) =vp(fifi/fi) = vp(f;) +0.Quindi ), npD e ben definito. Perché X & noetheriano,
segue che la somma é finita e quindi otteniamo un divisore di Weil associato al divisore di Cartier.

Viceversa, sia D un divisore die Weil su X e x € X un punto. Allora D definisce un di-
visore di Weil D, su Spec(Ox ;). Ma Ox , € un dominio a fattorizzazione unica e quindi
Cl(Spec(Ox ) = 0 (Esercizio). Quindi D, = div(f;) dove f, € K. Quindi la restrizione di D
e div(f;) coincidono su Spec(Ox ;) quindi sono diversi solo rispetto a divisori primi D che non
passano per . C’e¢ un numero finito di tali D che hanno un coefficiente non-zero in D o div(f;)
e quindi ¢’é un aperto U, su cui D e div(f;) coincidono. Variando x i U,, danno un ricoprimento
di X e assieme coni f, un divisore di Cartier. O

4.3. Fasci invertibili e sistemi lineari.

Definizione 4.16. Un fascio F di Ox moduli su uno schema X si chiama localmente libero se
esiste un ricoprimento di X con aperti U tale che F|y ~ O X@T. In questo caso, r si chiama il
rango del fascio localmente libero. Se F € localmente libero di rango 1, si chiama invertibile.

Commento 4.17. 11 nome ‘invertibile’ viene dal fatto che se F ¢ invertibile esiste 7! tale che
F ® F~! ~ Ox (Esercizio). Quindi i fasci invertibili formano un gruppo tramite il prodotto
tensoriale con elemento neutrale Oy, che si chiama il gruppo di Picard Pic(X).

Esempio 4.18. I fasci Op(n) definito in Esempio sono invertibili con
Op(n)~! = Op(—n)
e piu generale
Op(n) ® Op(m) ~ Op(n + m).

Sia D un divisore di Cartier dato da {(Uj;, f;)} su uno schema X. Definiamo il sottofascio di
IC associato a D, L(D), come il sotto-O xy-modulo generato da f;l su U;. Questo € ben definito,
perché f;/f; € invertibile su U; N U; e quindi fl-_1 e fj_1 generanno lo stesso Ox-modulo su
U; N Uj.
Esempio 4.19. Il divisore D = 1 [1 : 0] su P! & dato da {(U,,y/z = v/), (Uy,1)}. Quindi
Op1 (D) ha sezioni Fdeé(f) . % — 7xdeg({;)—ly

con y da un isomorfismo con Op:1 (1) (cf. Esempio [3.26).

su Uy e sezioni in Oy, (U,) su Uy. Molteplicazione
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Proposizione 4.20. Sia X uno schema. Allora.

(1) Per ogni divisore di Cartier D, L(D) é un fascio invertibile. La mappa D — L(D) da una
biiezione tra divisori di Cartier e sottofasci invertibili di KC.

(2) E(Dl — D2) ~ ﬁ(Dl) & ,C(Dg)il.

(3) Dy ~ Dy se e solo se L(D1) ~ L(D3).

Proof. (1) Visto che f; € K*(U;), la mappa Oy, — L(D)|y,, 1+ f; ' & un isomorfismo e
quindi £(D) ¢ invertibile. Il divisore di Cartier D puo essere ricostruito da £(D) C K
prendendo come f; su U; Uinverso di un generatore locale che da per ogni sottofascio
invertibile di K un divisore di Cartier.

(2) Se D, e localmente dato da f; e Dy da g;, allora D1 — D5 € localmente dato da fi_1 Ji
e quindi £(D; — Dy) = L(D1) - £(D3)~! come sottofascio di K. Come fascio astratto
questo & isomorfo a £(D1) ® L£(D3)~ L.

(3) Usando 2), ¢ sufficiente dimostrare che D = D; — D5 € principale se e solo se £L(D) ~ Ox.
Se D é principale, D é definito da f € K*(X). Allora £L(D) & globalmente generato da
f el f~!daunisomorfismo Ox ~ L(D). Viceversa, dato un tale isomorfismo,
I'immagine di 1 da un elemento di X*(X') che definisce D.

O

Corollario 4.21. Su ogni schema X, D — L(D) da un morfismo iniettivo tra il gruppo CaCl(X)
di divisori di Cartier modulo equivalenza lineare in Pic(X).

Commento 4.22. In generale, la mappa CaCl(X) — Pic(X) non é suriettivo, perché € possibile
che esistono fasci invertibili che non si puo realizzare come sottofaschi di X*. Ma per esempio se
X e integrale, la mappa ¢ suriettiva.

Esempio 4.23. Pic(P}) ~ Z dove 1 — Opr (1): Abbiamo visto che C1(P}) ~ Z generato dalla
classe di un iperpiano. Visto che P}’ ¢ integrale ¢ localmente fattoriale abbiamo

Cl(P}) ~ CaCl(P}) ~ Pic(Py).
Tramitte queste identificazioni, I'iperpiano corrisponde a Opy (1) (cf. Esempio per n=1).

Una raggione per cui fasci invertibili sono utili € che si puo usargli per descrivere morfismi in
P,
Definizione 4.24. Un fascio F su X si chiama globalmente generato se ci sono sezioni globali
{si}s in I'(X, F) tale che per ogni x € X la spiga F, ¢ generato dagli immagini delle s; in Ox ;.

Proposizione 4.25. Sia A un anello e X uno schema su A.
(1) Siap: X — P un A-morfismo. Allora ¢*Opr (1) é un fascio invertibile generato da sezioni
globali s; = p*x;,i=0,...,n.
(2) Viceversa, se L é un fascio invertibile su X e sq, . . ., Sy, sezioni globali che generano L, allora
esiste un unico A-morfismo ¢: X — P tale che L ~ ¢*Opr (1) e s; = p*z;.
Proof. (1) Sappiamo gia che Opr, (1) & invertibile e che i x; definiscono sezioni globali. Visto
che non c’¢ un punto in cui i z; vaniscono, Opr, (1) € globalmente generato dai x;. Quindi

le stesse proprieta sono anche vero per il pull back ¢*Opr (1) e p* ;.
(2) Viceversa, sia £ globalmente generato da sezioni globali sg, . . ., s,,. Per ogni ¢ sia

Xi={zx € X | (si)s €mzLy}.

Allora X e aperto e siccome i s; generanno £, 1 X; danno un ricoprimento di X . Definiamo

un morfismo ¢;: X; — U, dove U; ~ Spec(A[x], ..., x}]) ¢ I'aperto affine standard con
x; = % ; € dato dal morfismo su anelli
Al ... 2] — OXi(Xi),I;' > S;/58i.

Incollando i ¢; da il morfismo ¢: X — P’} che cerchiamo.
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Esempio 4.26. Se prendiamo £ = Op1(3) abbiamo una base delle sezioni globali dato da

z3, 2%y, xy?, >, La mappa che corrisponde a questi sezioni € P! — P3, [z :y] — [x3 2Py

xy? : %] (twisted cubic). Se prendiamo invece solo 23, y3 otteniamo la mappa P! — P!, [z :

yl e 2%y,

Commento 4.27. Se L non é generato dai s, . . ., Sy, allora nonostante definiscono un morfismo
U — P dove U C X ¢ l'aperto (possibilmente vuoto) su cui i s; generanno £ (= i punti di X
dove almeno una dei s; non vanisce).

Commento 4.28. Un fascio molto ampio quindi in particolare ¢ generato da sezioni globali. 1
viceversa non e sempre vero, perché il morfismo in Proposizione non € necessariamente un
immersione (come la mappa P! — P! nel esempio precedente).

Proposizione 4.29. Sia k algebraicamente chiuso, X uno schema proiettivo suk e p: X — P! un
morfismo che corrisponde a L e s, . .., s, € I'(X, L) come sopra. SiaV C I'(X, L) il sottospazio
generato dai s;. Allora ¢ é un’immersione chiusa se e solo se

(1) elementi diV separano punti: per ogni due punti distinti chiusip,q € X esistes € V tale
ches € m,L, mas & myL, o viceversa; e

(2) elementi di V' separanno vettori tangenti: per ogni punto chiusop € X, l'insieme {s € V|
sp € MLy} generam,L,/m2L,, come spazio vettoriale su k

Proof. Saltato, cf. Hartshorne Proposition I1.7.3. g

Definizione 4.30. Un divisore di Cartier D dato da {(U;, f;)}; si chiama effetivo se f; € Ox (U;).
11 sottoschema chiuso Y associato a D é il sottoschema che corrisponde al fascio di ideali Zy
localmente generato dai f;. In questo caso abbiamo che Zy ~ £(—D).

Sia £ un fascio invertibile e s € I'( X, £) una sezione globale non-zero. Definiamo un divisore
di Cartier effetivo ()¢ associato a s come segue. Sia U un aperto di X su cui £ ¢ triviale e sia
¢: Ly — Oy una trivializazione. Allora ¢(s) € Oy (U). Variando U, la collezione {(U, ¢(s))}
definisce un divisore di Cartier effetivo.
Esempio 4.31. Sia D = 1 [1 : 0] come in Esempio Sezioni di £(D) sono @ L=
xdTé)*ly su U e Oy, (Uy) su Uy. Quindi una trivilalizzazione ¢ dato da moltiplicazione con ¥
su Uy e 1 su Uy. Una sezione globale ¢ per esempio dato da s = % che ha divisore associato [1 : 0]
(che non e diverso dal divisore principale associato a % visto come funzione razionale).

Proposizione 4.32. Sia X una varieta non-singolare proiettiva su un campo algebraicamente
chiuso k. Sia D un divisore su X e L ~ L(D). Allora:

(1) per ogni sezione globale non-zero s € I'(X, L) abbiamo (s)g ~ D
(2) ogni divisore effetivo che é linearmente equivalente a D ¢é (s)g peruns € T'(X, L) e
(3) due sezioni s, s’ € T'(X, L) danno lo stesso divisore se e solo se s = \s' per un \ € k*.

Proof. (1) Visto che £ ~ L(D), possiamo vedere L come sottofascio di K. Siccome X €& una
varieta e quindi integrale, K ¢ il fascio costante, dato da K. Quindi possiamo vedere s
come un elemento di K, una funzione razionale su X.

Se D ¢ dato da {(Uj, fi)}s, allora £ & localmente generato da f; ' e otteniamo un
isomorfismo locale L|y, — Oy, dato da molteplicazione con f;. Quindi D' = (s)g €
localmente definito da f;f e D' = D + div(f).

(2) Viceversa, se D' ¢ effetivo con D' = D + div(f) allora il ordine di poli di f lungo un
divisore Y e minore o uguale a quello delli f; che localmente definiscono D. Quindi
possiamo vedere f come una sezione globale di £(D).

(3) Se (s)o = (&) allora s e s’ corrispondono a funzioni razionali f, f/ € K tale che
div% = 0. Quindi % € O%(X). Ma visto che X e proiettivo e k algebraicamente chiuso,

segue % € k* usando Proposizionew
O
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Definizione 4.33. Un sistema lineare completo | D| su una varieta proiettiva nonsingolare e
I'insieme di tutti divisori effetivi D' ~ D.

Dalla proposizione precedente segue che |D| ~ PI'(X, £(D)). Piu general, un sistema lineare
0 & un sottospazio lineare di | D|. La dimensione di un sistema lineare ¢é la sua dimensione come
spazio lineare proiettivo.

Definizione 4.34. Un punto p € X si chiama punto di base di un sistema lineare 0 se p e
contenuto nel supporto di ogni divisore D € D.

Commento 4.35. p € X ¢ punto di base se e solo se per ogni s € V abbiamo che s, € m,L,,. In
particolare 0 € senza punti di base se e solo se L ¢ generato dai sezioni in V.

Commento 4.36. Possiamo riformulare Proposizione in questo linguaggio: Sia p: X — P"
un morfismo che corrisponde al sistema lineare senza punti di base 0. Allora ¢ € un imersione
chiusa se e solo se

(1) 0 separa punti: per ogni p,q € X esiste D € 0 con p € supp(D) ma q & supp(D).

(2) 0 separa vettori tangenti: per ognip € X et € TpX = (m,/m2)* esiste D € 0 tale
che P € supp(D) mat ¢ T,(D) (dove per 'ultima affermazione vediamo D come un
sottoschema chiuso, localmente principale).

Esempio 4.37. Il morfismo ¢: P! — P3 dato da Op:1(3) e 22, 22y, 292, y* di esempio da un
immersione chiusa. Il sistema lineare in questo caso sono i luoghi di zeri di polinomi omogenei
di grado 3 quindi tutti i divisori di grado 3 su P!. Questi divisori si pud anche vedere come i
intersezioni di ¢(P!) con iperpiani in P3.

Il morfismo ¢: P! — P! dato dalle sezioni 23, 3> non ¢ un immersione chiusa. Per [0 : 1] e
[1 : 0] non separa vettori tangenti, mentre per ogni altro punto ci sono 3 punti nella fibra di ¢ e
quindi in questo caso ( non separa punti.

5. PANORAMICA SU ARGUMENTI SCELTI

5.1. Coomologia. ...

5.2. Fascio canonico e geometria birazionale. Sia A un anello (commutativo con 1), B una
A-algebra e M un B-modulo.

Definizione 5.1. Una A-derivazione di B in M € un morfismo d: B — M tale che:
(1) d e additivo,
(2) d(bb') =b'db+ bdb', e
(3) da =0perognia € A

Definizione 5.2. Il modulo di forme differenziali di B su A ¢ un B-modulo {2, 4 assieme con una
A-derivazione d: B — (g, 4 che soddisfa lo seguente proprieta universale: per ogni B-modulo
M e A-derivazione d': B — M esiste un unico morfismo di B-moduli f: Qp /A4 — M tale che
d = fod.

Non e difficile vedere che il modulo di forme differenziali sempre esiste ed & unico.

Proposizione 5.3. Sia B una A-algebra, f: B ®4 B — B il morfismo datoda f(b® ') = bl e

I = ker(f). Allora (I/1?, d) ¢é il modulo di forme differenziali, doved: B — I/I% b+ 1@b—b®1.

Definizione 5.4. Sia f: X — Y un morfismo di schemie A: X — X xy X la diagonale. Allora

A(X) e localmente chiuso (= un chiuso di un aperto U). Sia Z il fascio di ideali di A(X) in U.

Allora definiamo il fascio Qx/y = A*(Z/Z?) delle differenziali relative di X suY'.

Lezione
20.11.
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Commento 5.5. Se X = SpecB,Y = SpecA sono affini, allora A(X) ¢ il fascio definito come
nucleo del morfismo B ®4 B — B,b® b’ + bb'. Quindi Z/Z? ¢ il fascio associato a I /12 di
Proposizione 5.3/e {2 x/y =~ O B/A- Una definizione alternativa di {2x/y € definirlo su aperti affini
in questo modo, e poi incollare i pezzi affini. In particolare, {1x /y € quasicoerente (e coerente se
f € di tipo finito e Y noeteriano).

Teorema 5.6. Sia X una varieta su k. Allora X e non-singolare se e solo se ()x/;, e localmente
libero di rango n = dim(X).

Definizione 5.7. Sia X una varieta non-singolare. Allora definiamo il fascio tangenziale di X
come

Tx = Homoy (x/x, Ox)

(che & localmente libero di rango n = dim(X)). Definiamo lo fascio canonico di X come

wx = /\QX/k;-

Il fascio canonico € un fascio invertibile. Se X é proiettivo, definiamo il genere geometrico di X
come
pg = dim(I'(X, wx)).

Visto che {2x/y ¢ definito usando solo X, p, € una invariante di X e non cambia tramitte
isomorfismi. Meno chiaro é:

Teorema 5.8. Siano X e X' varieta proiettive, non singolari, birazionalmente equivalente (c’¢ esiste
©: U — U’ isomorfismo con U,U" C X, X' aperti densi). Allora py(X) = py(X').

Proof. SiaV C X laperto denso piu grande su cui ¢ € definito. Abbiamo (in generale) un morfismo
©*Qxr /. — Qyyg. Quelli sono fasci localmente liberi dello stesso rango, quindi otteniamo un
morfismo indotto sul prodotto esterno, p*wy’ — wy, che induce una mappa su sezioni globali
o*: T(X', o*wx/) = T'(V,wy). Visto che U ~ U’ tramitte ¢ abbiamo che wy |y ~ wx/|ys. Una
sezione globale non-zero di un fascio invertibile non puo essere zero su un denso aperto. Quindi
otteniamo che ¢*: T'(X’, p*wx/) — I'(V,wy ) € iniettivo.

Adesso confrontiamo I'(V, wy ) e I'( X, wx ). Inanzitutto, osserviamo che X'\ V ha codimensione
almeno 2 in X: se p € X ha codimensione 1, allora Ox j ¢ un anello di valutazione discreta.
Abbiamo gia una mappa dal punto generico di X in X’ e quindi anche del punto generico di
Spec(Ox p); ma X' e proiettivo e quindi proprio su k e il criterio valutativo di proprietezza ci dice
che esiste un’unica mappa Spec(Ox ;) — X' che estende la mappa sul punto generico. Questa
mappa estende a un aperto che contiene P e quindi P € V perché abbiamo scelto V' massimale.

Per finire vogliamo dimostrare che la mappa di restrizione I'( X, wyx) — I'(V, wy ) € biietivo.
Basta dimostrare che per ogni aperto affine U C X con wx |y ~ Oy abbiamo che I'(U, Oy ) —
I'(UNV,Opnv) é biiettivo. In generale, la mappa € iniettiva perche una sezione globale non-zero
di un fascio invertibile non puo essere zero su un denso aperto. Per vedere che é suriettivo
usiamo che X € non-singolare e X \ V ha codimensione almeno 2: sia f € (U NV, Opny) e
U = Spec(A). Siccome X \ V ha codimensione almeno 2, f € A, per ogni p C A ideale primo
di altezza 1. Ma X non singolare implica che A € integralmente chiuso (X & normale) e in questo

caso abbiamo
A= (1 4
ht(p)=1

dove l'intersezione € preso su tutti ideali primi di altezza 1. 0
Si dice che p, € un’invariante birazionale di X.
Esempio 5.9. Per X = A} il fascio canonico {2x ;, ¢ libero di rango n, generato dai dz1, . .., dzy.

Esempio 5.10. Sia X = P} e U, I'aperto affine standard con z; # 0. Siano (u1,--- ,u,) e
(w1, -+ ,w,) coordinati su Uy e Uy. Quindi uj = w% eu; = 1% 1l fascio canonico su Uy e U; €
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generato da duj A- - - Adu, e dwy A- - - Adw,, rispettivamente. Inserendo i funzioni di transizione,

; —dL — =1 C_ dwi . Zw; 1 Jap: indi
otteniamo du; = dw1 =02 dwy e du; = dw1 = dwy + ™ dw;. Quindi

-1
dul/\‘--/\dur:ﬁdwl/\---/\dwr.
wy

C’é, duy A - - - A du, non ha zeri o poli su Uy ma un polo di ordine  + 1 lungo il divisore xg = 0.
Concludiamo che wx ~ Opr(—r — 1). Visto che I'(P", Opr(—r — 1)) = 0 abbiamo che p, = 0.
Per un A-modulo B e un ideale I C B abbiamo una sequenza esatta
I/IQ —)6 QA/B Xp C — QC/A —0
dove C' = B/I e 6(b) = db® 1. Sul livello di fasci questo ci da per ogni sottoschema chiuso Z di
X con fascio di ideali Z:
I/Iz — QX/k: R0z — QZ/k —0
Teorema 5.11. Sia X una varieta nonsingolare su k e Z C X un chiuso irreducibile definito da un
fascio di ideali I. Allora Z ¢é nonsingolare se e solo se
(1) Qz/y, € localmente libero, e
(2) la seguenza di sopra é esatto anche a sinistra:

0 Z/I* = Qx/, ® Oz = Qg — 0

Corollario 5.12. (formula di aggiunzione) Sia X una varieta nonsingolare e Z C X chiuso
nonsingolare di codimensione r. Allorawz ~ wx ® \" Ny x. Ser = 1 possiamo vedere Z come
divisore e sia L il fascio associato a Z. In questo caso wz ~ wx @ L ® Oy.

Definizione 5.13. Sia Z C X chiuso e nonsingolare con X una varieta nonsingolare su k. Allora
T/7? si chiama il fascio conormale e il duale

NZ/X = Homox (I/I2, Oz)
si chiama il fascio normale di Z in X. Nz, x € localmente libero di rango codim(Z, X).

Esempio 5.14. Sia Z una ipersuperfice nonsingolare di grado d in X = P?. Allora wy =~
wx & Ox(Z) ® Oz = Ox(—T — 1) ® O(d) ROz = Oz(d —r— 1).
(1) r=2,d=1: Z ¢ unarettain P2 e wy = Oz(-2).
(2) r =2,d = 2: Z ¢ una conica in P? e wy = Oz(—1). Infatti, ¢ 'immagine di P! tramite
Op1(2).
(3) » = 2,d = 3: abbiamo wy ~ Oy. In particolare p, = 1 e una cubica liscia non e
birazionale a P! (si dice: non & razionale).

(4) r =2,d > 4: in questi casid — r — 1 > 0 e quindi anche qua p, > 0 e Z non é razionale.

Si puo dimostrare che p, = W.

G)yr=3,d=1:Z~Pewy=0z(-3).
(6) r=3,d=2: wy = Oz(—2) ein questo caso Z ~ P! x P!. Abbiamo che Z é razionale e
quindi p; = 0 (ma Z non ¢ isomorfo a IP2, solo birazionalmente equivalente).
(7) r=3,d = 3: wz ~ Oz(—1) e anche in questo caso Z é razionale.
(8) r=3,d =4: wz ~ Oz e quindi Z non e razionale. Infatti & una superfice K3.
(9) r=3,d> 5wz ~0Oz(d—4) cond—4 > 0. In questo caso il fascio canonico € molto
ampio, e varieta con questa proprieta si chiamano di tipo generale.
(10) r = 4,d = 3,4: wz in questo caso & Oz(—1) 0 Oz(—2) e quindi p, = 0. E un risultato
molto importante delli anni *70 che Z in generale non e razionale in questo caso.
(11) r =5,d = 3: wz ~ Oz(—3) e quindi p; = 0. Una dimostrazione che in generale Z non
e razionale in questo caso € stato annunciato questo anno.

Lezione
1.12.
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5.3. Piatezza e famiglie di varieta.

Definizione 5.15. Sia X C P} un sottoschema chiuso. Allora la funzione di Hilbert e definita
come
Fx:N—= N,m— dimI'(X,Ox(m))

Si osserva che la funzione di Hilbert non € un’invariante di X come schema astratto, ma del
modello proiettivo X — P}.

Teorema 5.16. La funzione F'x coincide con un polinomio Px per m >> 0.

Il polinomio Px si chiama polinomio di Hilbert.
Se T e il fascio di ideali che definisce X, abbiamo una sequenza corta esatta

0—Z(m)— Opn(m) — Ox(m) — 0
che da una sequenza lunga in coomologia
0 — H°PEZ(m)) — H(P},Opn(m)) — HY(X, Ox(m))
—  H'(P,Z(m)) — H' (P}, Opa(m)) = 0

Quindi Fx (m) = h°(PF, Opn(m)) — hO(P2, Z(m)) + h' (P}, Opn (m)).

Un modo per dimostrare il teorema é dimostrare che ' (P}, Z(m)) = 0 per m >> 0 e
che RO(P, Opn(m)) — h°(PY,Z(m)) & un polinomio. Quindi Py (m) = h%(P}, Opn(m)) —
hO(P%, Z(m)), o in altre parole, la dimensione dello spazio delle ipersuperfici di grado m, meno

la dimensione dello spazio di quelli che vaniscono su X.

Proposizione 5.17. La dimensione n di X e uguale al grado di Px. Il grado di X é uguale a n!
volte il coefficiente principale di Px. Cioe,

PX (m) o deg(X) mdim(X)

= dm(X)] + termini di ordine piu piccolo
im(X)!

Definizione 5.18. Il genere aritmetico di X C PP} e

Pa = (=1)"(Px(0) — 1).

Commento 5.19. Se X é proiettivo, in generale p,(X) # py(X) anche se X e regolare. Ma per
curve regolari abbiamo p,(X) = p,(X).

Esempio 5.20. Se X = P}, allora Fix(m) = Px(m) = ("!") = (m+n)(m+2!_l)"'(m+l). Quindi,
Pa(P}) = 0 e per esempio Fpi(m) = m + 1.

Esempio 5.21. Siano py,p2,p3 € IP’% tre punti e X la loro unione. Calcoliamo prima Px(m):
hO(PZ, Op2(m)) = (227") e h9(P%,Z(m)) = (QEm) — 3. Quindi Py (m) = 3. Se m > 2 abbiamo
Px(m) = Fx(m) = 3 perche si puo trovare per ogni scelta di due dei tre punti una conica che
vanisce sui due punti ma non sul terzo. Per m = 1 invece abbiamo F'x (1) = 3 se i punti non sono
collineari (in questo caso h"(P%,Z(1)) = 0) e Fx(1) = 2 se i punti sono collineari (in questo caso
hO(P%,Z(1)) = 1 e si pu‘o controllare che H°(P2, Opn (1)) — H°(X, Ox (1)) é suriettivo).

Esempio 5.22. Se C' € P? ¢ una curva di grado d, abbiamo che 7 ~ Op2(—d). In particolare,
HY(P2,Z(m)) = 0. Quindi

Fx(m) = Py(m) = <m;—2>_<m+22—d>:(m—|—2)(m+1)—(n;—i—Q—d)(m—i—l—d)
_ W:dm_(d—l)f—”ﬂ,

Adesso vogliamo definire un concetto che ci permette di definire ‘famiglie continue’ di schemi.
La condizione che si usa normalmente e quella di preservare il polinomio di Hilbert delle fibre, e
si chiama famiglie piatte.
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Definizione 5.23. Sia A un anello e M un A-modulo. M si chiama piatto (su A) se il funtore
N — M ®4 N e esatto, dove il dominio del funtore sono A-moduli.

In generale, - ® 4 N é esatto di destra (preserva suriettivita) ma non di sinistra.

Esempio 5.24. Se prendiamo 0 — Z — Z, x — 2x, la mappa indotta Z ® Z /27 — 7 & 7./ 27
non e iniettiva.

Commento 5.25. Un A-modulo N é piatto se e solosea ® N — A ® N = N e iniettivo per
ogni ideale finitamente generato a C A. Se adesso A ¢ un dominio di ideali principali, allora un
A-modulo N é piatto se e solo se € senza torsione (An € N con an = 0). Infatti, sia a = (¢)
principale e consideriamo a ® N — N. Questo ¢ iniettivo per ogni a finitamente generato se e
solo se N non ha torsione.

Definizione 5.26. Sia f: X — Y un morfismo di schemi e F un Ox-modulo. Diciamo che
JF ¢ piatto su Y vicino un punto x € X se F, ¢ piatto come Oy,,-modulo tramitte la mappa
f#: Oyy — Ox, dove y = f(z). Diciamo che F & piatto su Y se lo & vicino ogni punto di X.
Diciamo che X e piatto suY se Ox lo e.

Proposizione 5.27. Sia f: X — Y un morfismo di schemi con X ridotto e Y integrale e nonsingo-
lare di dimensione 1. Allora f é piatto se e solo se mappa il punto generico di ogni componente di X
nel punto genericodi Y .

Proof. I punti generici « di X sono i punti per cui m,, € un primo associato a (0) in Ox ,; 0 in
altre parole, per cui m, contiene solo divisori di zero.

Supponiamo prima che f € piatto. Sia z € X un punto in X tale che f(z) = y € un punto
chiuso. Allora Oy, ¢ un anello di valutazione discreta. Sia t € m,, \mg Allora t non e un divisore
di 0 in Oy,. Visto che f ¢ piatto, anche f #t € Ox 4 non & un divisore di 0. Quindi  non & un
punto generico di X.

Viceversa, supponiamo che f manda ogni punto generico di X nel punto generico di Y.
Dobbiamo mostrare che per ogni z € X cony = f(x), Ox, ¢ piatto su Oy,,. Se y ¢ il punto
generico, Oy, ¢ un campo e tutti moduli sono piatti su un campo. Quindi supponiamo che y ¢
chiuso e Oy, un anello di valutazione discreta. Usando Commento dobbiamo dimostrare
che Ox , e senza torsione. Se Ox , contiene torsione, dobbiamo avere che f #t & un divisor di
zero dove t € my, \ m?/. Segue che f#t & contenuto in un ideale primo p associato a (0) in Ox .
Adesso p da un punto generico di X con imagine y, che da una contradizione. g

Teorema 5.28. Sia 1" uno schema integrale noeteriano e X C IP7. un sottoschema chiuso. per ogni
t € T sia P, il polinomio di Hilbert della fibra X; di X sut, visto come un sottoschema chiuso di
]P”];(t). Allora X — T é piatto se e solo se P, non dipende da t.

Commento 5.29. In particolare, in una famiglia piatta di varieta proiettivi come nel teorema, la
dimensione delle fibre, il genere aritmetico e il grado sono costanti.

Commento 5.30. D’altra parte essere ridotto o irreducibile non & preservato: Sia xy — tz% una
famiglia di schemi proiettivi in P2 con Y = Spec(k([t]). Allora per ¢ # 0 abbiamo che la fibra X;
e irreducibile. Ma X e dato da xy = 0 che e reducibile. Usando Proposizione si vede che
la famiglia ¢ piatta su Y. Analogamente, per la famiglia z(z — t) in P, che ¢ piatta ed in cui la
fibra generale ¢ ridotto mentre la fibra su 0 non é ridotto.

Anche la funzione di Hilbert non é costante, come si puo vedere per esempio nella famiglia
V((y,z)N(y—1,2) N (y + 1,2 +t)) in P% dove i tre punti sono colineari per t = 0 e non lo
sono per t # 0.

Fissando un polinomio di Hilbert P possiamo guardare all’insieme
Hp, ={X C P}, | X chiuso con Px = P}.

E un teorema importante, che Hp, stesso ¢ uno schema, chiamato lo schema di Hilbert. E
caratterizzato dalla seguente proprieta: dare una famiglia piatta X' C 7, su uno schema 7" su k
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tale che le fibre hanno polinomio di Hilbert P ¢ la stessa cosa come dare un morfismo 7" — Hp,
(si dice che Hp, rappresenta il funtore che associa a uno schema 7" le famiglie piatte su 7" di
sottovarieta proiettive di P} con polinomio di Hilbert fissato). Questo ¢ un esempio di un ‘spazio
di moduli’.

Tramite il criterio valutativo, la sequente proposizione dice che Hp, ¢ proprio:

Proposizione 5.31 (Esistenza di limiti piatti). Sia Y uno schema regolare di dimensione1,p € Y
un punto chiuso, e X° C Pry\p un sottoinsieme chiuso, piatto su'Y \ p. Allora esiste un unico

sottoinsieme chiuso X C [Py, tale che X é piattosuY e X° = th;\ .
P

Proof. Si puo prendere come X la chiusura di X° in Py.. Segue da Proposizione che e
piatto. U

Esempio 5.32. Sia P =[0:0: 0: 1] € P} e consideriamo la proiezione da P, pp: P} \ {0} —
P2 [x:y:z:w]— [z:y:2]. Adesso sia C una curva in P} che non contiene P e per ogni
t € k* sia 0y l'automorfismo di P} datoda [z : y: z 1 w] > [z :y: 2 : tw] e Cy = 04(C). Allora
si vede (per esempio usando Proposizione che i C; formano una famiglia piatta su A,lg \ {0}.
Quindi Proposizione ci dice che esiste un unico limite Cy. Come insieme € chiaro che Cj
deve essere uguale a p(C).

Per calcolare il limite scegliamo un esempio concreto per C' che ¢ dato in coordinati affini
dalla parametrizazzione Spec(k[s]) — A3,z = s* — 1,y = s> — s,z = s (una twisted cubic) e
consideriamo la proiezione su Az con coordinati « e y. L’immagine della proiezione e la curva
Cj in Ai con equazione y?> = z%(z — 1) (una cubica nodale). Ma questo non puo essere il limite
piatto (come schema), perche il polinomio di Hilbert di C' e

Po(m) =deg(C)m+1—p,(C) =3m +1
mentre il polinomio di Hilbert di C{, &
(d—1)(d-2)
2
Quindi calcoliamo il limite piatto: per ¢ # 0, la curva C; ¢ dato da: . = s> — 1,y = 3 — 5,2 = ts.

Vogliamo trovare l'ideale I tale che C ~ Spec(k[z,y, z,t]/I) dove C ¢ la estensione della famiglia
C come in Proposizione Eliminiamo prima s e otteniamo

tPx4+1)—22=0eyt? + 22— 2> =0

Poy(m) = deg(Ch)ym — +1=3m.

3

Per avere una famiglia piatta, dobbiamo avere che ¢ non € un divisore di 0 in k[x, y, z,t]) /I (cf.
la dimostrazione di Proposizione . Sostituendo t?(z + 1) = 22 in yt3 + 2t — 2% = 0 da
t2(yt + z — (x + 1)2) = t?(yt — x2) e quindi aggiungiamo yt — zz come generatore di I e
togliamo yt® + 2t?> — 23. Ma allora abbiamo ancora che

c(tP(x+1) = 22) = at?(x + 1) — ytz = t(te(z + 1) — y2)
e aggiungiamo tx(x 4+ 1) — yz a I. Rimane che

Bt + 1) - y2) = t22(@ + 1) — P = 1(2>(@ + 1) — 3P)
e aggiungiamo z%(z + 1) — y? a I. Mettiamo

I={(z+1) -2yt —az,te(z + 1) —yz, 22 (x + 1) — y?)
e si verifica che ¢ non € un divisore di 0 in k[z, y, 2,t]/I. Mettendo ¢ = 0 otteniamo
Iy = (2%, xz,yz, 2%(x + 1) — y?)

Iideale di Cy in k[x, ¥, 2]. Quindi Cy ha supporto 2%(z + 1) — > = 0 in A2 (dato da z = 0)
che coincide con ¢(C') come atteso. Ad ogni punto p con 2 # 0 o y # 0 abbiamo che z & nel
immagine di /j nella localizazione Ox , e segue che Cj é ridotto a p; ma per p = (0, 0, 0) abbiamo
che z non ¢ nella localizzazione del ideale, e quindi da un elemento non-zero con z? = 0 e p non
é ridotto. Quindi, il limite piatto della famiglia ¢ la cubica nodale con un ‘punto immerso’ vicino
la noda (in particolare, non € un sottoschema di Ai) E finiamo dove abbiamo iniziato motivando
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Pintroduzione degli schemi: anche parlando solo di varieta classiche servono schemi per avere

una teoria che si comporta bene in famiglie.

Lezione
4.12.
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