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6 Distribuzioni (funzioni generalizzate)

Di cosa si tratta? Le distribuzioni sono funzionali continui su opportuni
spazi di funzioni. Generalizzano il concetto di funzione, nel senso che qualsiasi
funzione localmente integrabile (in particolare, continua) puo essere identifi-
cata con una distribuzione e che molte operazioni standard sulle funzioni si
estendono alle distribuzioni. Per questo motivo, le distribuzioni sono anche
chiamate funzioni generalizzate. Per alcuni aspetti, le distribuzioni si compor-
tano addirittura meglio delle funzioni. Per esempio, qualsiasi distribuzione puo
essere (parzialmente) derivata tutte le volte che si desidera. Questo rende le
distribuzioni un ambiente molto adatto allo studio delle equazioni alle derivate
parziali.

Nel seguito €2 denota un sottoinsieme aperto di R® con n > 1.

Scriveremo K cc () se K ¢ compatto e K < (.

Ricordiamo che un multi-indice ¢ un vettore a = (aq,...,q,) con a; € {0,1,2,...}. Per una
funzione f = f(z) = f(x1,...,2,) di classe €V (Q) si scrive”

O ol f « , i

f=00f =000 f = P (“a-derivata parziale”),
con |a| = |ag|+...+]|a,| < N. Siscrive anche, per z € R", € Ny multi-indice, z := a{* - - - 28",

8

dove ¢ sottinteso I'abuso di notazione® 2° = 1 per ogni z € R.

6.1 Le funzioni test

Il supporto di una funzione continua f : R™ — C e l'insieme

supp f = fw e R* [ f(2) + 0},

6.1 Esempio. f(z) =sinz = supp f = R\nrZ =R.

6.2 Definizione (Spazio delle funzioni test). Definiamo

2(Q) = {¢p € €°(R") | supp ¢ == Q}.

2(Q) & uno spazio vettoriale (con la solita addizione di funzioni e la solita moltiplicazione di
funzioni per numeri complessi). Infatti,

supp (¢ + ¢) S suppg usupptp,  supp (A\¢) S suppd (A€ C).

"L’ordine di applicazione delle derivate parziali in 0 f non & rilevante, grazie al Teorema di Schwarz, per le
ipotesi f € €V (Q) e |a] < N.
8Cioe, il fattore x; non ¢ presente nel monomio 2% se a; =0, j =1,...,n.
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Si noti anche che 2(Q) = 2(0) < 2(R™) per Q < (.

<1
6.3 Esempio (Mollificatore). p(z) := {exp <|x‘2 1) :x
0 Do

5—n

Con ¢ := f p(x)dz sia p.(z) = Tp(%), e > 0.

= 0<p.€ 2(R") consuppp ={x | |x| <e} e f pe(x) de = 1.
R”

‘ 6.4 Lemma. Sia K cc Q. Esiste p€ 2(Q) con0 < ¢ <1 e =1 inun intorno di K.

DIMOSTRAZIONE. Sia K. := {z € R" | dist(z, K) < &}, xc = xx. la funzione caratteristica e

P () 1= (x2e * pe)(¥) = J Xz (T = y) p(y) dy.

lyl<e
Dai risultati della prima parte (Capitolo 2) = ¢. € €*(R").

pe(y) we K.

= ¢.=1su K, esu e © K.
0 .1 ¢ K ¢ pp ¢ 3

lyl < e = xo:(z —y)p-(y) = {

Basta scegliere € > 0 tale che K3. < Q) e prendere ¢ := ¢.. [ ]

6.5 Definizione. In Z(R") definiamo le norme | - |;, 7 =0,1,2,... da

[9l; ;= max |o7¢(x)].

2eR, |a<j

6.6 Definizione. Una successione (¢)r S P(Q2) si dice convergente a ¢ € P(Q) se

i) AIKccQ Vk: suppop €K,
. . k—+00
i) |or — ¢l ——> 0 per ogni j =0,1,2,. ..

Scriviamo ¢, Lma:N ¢ oppure klim Or = @; si nota che allora anche supp ¢ < K.
—+00

Condizione i) significa che 0%¢y, LinaS:N 0“¢ uniformemente in R™ per tutte «.

6.7 Lemma. Sia 3 €N} e ¢ F2d 0 Allora 9Py £225s 596,

DIMOSTRAZIONE. Sia L := || e (¢x) come nella Definizione 6.6. Allora

i) ¢p =0on Q\K = ¢, =0 on Q\K = supp d’¢, < K per ogni k,
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k—+0o0

ii) Haﬂ@v - 66¢HJ’ < H¢k - ¢||j+L —0 per Ogni ]

Quindi 0, L2125 984,

6.2 Distribuzioni

6.8 Definizione. Una mappa T : 2(Q2) — C si dice distribuzione in/su §) se

i) T e lineare.

i) Per ogni successione (¢r)r convergente in Z(Q) vale klim T(¢y) = T(klim gzbk,).
—>—+400

— 400

Definiamo

') ={T: 2(Q) > C|T distribuzioni}.

Si nota che 2'(2) ¢ uno sottospazio dello spazio vettoriale delle mappe lineari 2(§2) — C.

6.9 Teorema (Disuguaglianza di controllo). Sia T : 2(Q) — C lineare. Le seguenti
affermazioni sono equivalenti:

a) Te 2'(Q)
HVKccQ IC=CE)=>0 Ij=jK)eN V2. . ()| < Clgl;

supp o= K *

DIMOSTRAZIONE. b)=>a): ¢, — ¢ in Z(Q2) come in Definizione 6.6.

= [T(¢r) — T()] = |T(dn — 6)| < CK)|r. — ¢l jr) 2 0.

a) = b) : Dato T supponiamo che b) non sia vero per un K cc Q.
= VkeN 309D o |T(¢r)] > Kl ok

supp ¢S K °
Ui = O/ T(0k) = T() = 1e [ihels = plss < 1.
k=j - ..
= [l < el < £ == 0 per ogni j.

= 1, — 0in 2(Q), ma T(Yy) =1+ 0. é

6.10 Definizione. T € 2'(Q) si chiama distribuzione di ordine finito se in b) del Teorema

6.9 si puo scegliere un j simultaneamente per tutti « K cc ). Il j piu piccolo possibile é
detto ordine di T'.

6.11 Esempio (Distribuzioni regolari). Sia f € Ll (), cioé

loc

J |f(z)]dx < +o0 VK ccQ;
K
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(f si dice localmente integrabile in/su ). Definiamo

Ty 2(0) =€ T;(0) = | f@)le) dx}

Tf e una distribuzione di ordine 0 :
TH(6)] < f @) llé()| de = f 1 (@)l|6(x)| do
Q K

zeR™

< max(o(@)|- [ 11@)ldz = Cucléla ¥ 5502

Ty e detta distribuzione regolare, f e la densita di Ty.

6.12 Teorema. Sia f localmente integrabile in 2. Allora
Tr(p) =0 VoeP(Q) < f=0 quasi ovunque in .

In particolare, la densita di una distribuzione regolare é determinata unicamente (quasi
ovunque).

DIMOSTRAZIONE. L’implicazione“<" ¢ immediata. Dimostriamo l'implicazione “=".
Passo I. Sia Q =R" e f € L'(R").
Dai risultati della prima parte (Capitolo 2): f « p. <= f in L!(R").

(f = pe)(x) = Jf(y)Ps(x —y)dy =T¢(p(z —-))=0 Vz

= f=01in L}Y(R") = f = 0 quasi ovunque.

Passo II. Sia K cc Q arbitrario e ¢ € 2(2) con ¢ =1 su K.

Y f e L'(R") (identificando 1 f con la sua estensione a 0 da  a tutto R™)
Typs(d) =Tr(p9) =0 Ve Z(R")

Passo I = f = 0 quasi ovunque in K.

K, :={z e Q|dist(z,R"\Q) = L, |z| < n}

= K,ccQeQ=u,K,

f = 0 quasi ovunque in K, per ogni n = f = 0 quasi ovunque in €2

(si utilizzi che I'unione numerabile di insiemi di misura nulla & un insieme di misura nulla). =

6.13 Esempio (Distribuzione 4, distribuzione di Dirac). Definiamo

0:2(R") — C: ¢~ 3(9) = 9(0).]




6.2 Distribuzioni 47

Allora 6 € 2'(R™) di ordine 0 :

0(0) = 0(0)] < max|o(z)] = [dlo ¥V de 2(R").

zeR™

Analogamente, la distribuzione 0 centrata in xo € R™ é

5950 : ‘@(Rn) - Cv 5960 ((b) = ¢($0)

0 non é una distribuzione regolare:
Supponiamo 6 = Ty. Sia p e Z(R"™) come nell’Esempio 6.3.
= ou(x) = plka) € D(RY) e

1= 63(0) = 6(6x) = Ty(dy) = f F (@) du(x) dz 2272 0,

B1(0)
grazie al Teorema della convergenza dominata. é

1
loc

6.14 Esempio (Valor principale di 1/x). x +— 1/x non appartiene a L
definisce una distribuzione regolare su R. Comunque

(R), quindi non

T(¢) = lim ) 1 e R),

0T JR\[ee] T

1 1
definisce T € P'(R), detta valor principale di 1/x. Si scrive anche pv-— o vp—. Infatti:
x x

Taylor = ¢(x) = ¢(0) + xry(x) con ry € € (R). Allora

T(¢) = (@) dx 4+ lim 9lw) dx

R\[-11] T 0N [ee]

- | u@o@) o+ | o) de = Tige) + S(0)

perché 8 |
J[MN&E] @ dz = 6(0)( Jl édx + J édw) o,
e dove
SIS
u = {(1)/93 | :i Sl e Lh®)
Inoltre,

1
@)l = || () d < maxlo @) <ol Vo o)

Quindi T =T, + S é una distribuzione di ordine 1.
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6.15 Definizione. Una successione (T},)r, < 2'(Q) si dice convergente a T € 9'(Q) se

Ti(¢) =25 T(g) Y oe ().

6.16 Esempio. Con il mollificatore di Esempio 6.3 vale Ty, , LiiNF ¥
,(0) = 50 = | | ()o@ do = 00)] =| [ puuta) (9(a) - 6(0)) ]
k—
< max [¢(z) — ¢mn—iﬂ
zeR"”
z[<1/k

6.3 Prodotto di distribuzioni e funzioni di classe ¥~

Siano f € L,.(Q) e a € €°(Q). Allora Ty e T, sono distribuzioni regulari e

7.(0) = | a@)(@yote) de = Ty(a0)

Si osserva che nell’espressione a destra possiamo sostituire 7y con una distribuzione generale
T'. Cio suggerisce la definizione successiva.

6.17 Teorema (e Definizione). Siano a € €*(Q) e T € 2'(Q2). Allora

(@T)(¢) =T(ag),  ¢e2(Q),

definisce una distribuzione aT € P'(2).

6.4 Derivazione di distribuzioni

Sia f € €'(R). Allora Ty, Ty sono distribuzioni regolari. E naturale definire la prima derivata
di Tf come Tp. Per un qualsiasi ¢ € Z(R) vale

) = f_*: f(x)p(x) de = f(z)p(x) ::+: B fj: @) (@) de = —Ty ().

N———.

Mentre T (¢) ha senso solo se f ¢ differenziabile, I’espressione —T’(¢') ha senso per una qualsiasi
funzione f e, di piu, possiamo sostituire T} con una qualsiasi distribuzione T'. Questo ci porta

a definire 7" € Z(R) con T'(¢) = —T(¢').

6.18 Teorema (e definizione). Sia T € Z'(R) e k € N. Allora

T®(¢) := (-1)*T(¢*)  V¢e 2(R)
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definisce una distribuzione T*) = Ui‘;—kkT € 2'(R) (la k-esima derivata di T).

DIMOSTRAZIONE. Ovviamente T®) : 2(R) — C lineare.
Sia ¢y 525 4.
Lemma 6.7 = ¢\ 2%, k)
{—+
= (-)MT(&7) =5 (~D)HT(6). .
Se f € €*(R), allora (T})*®) = Tju, ciot si ottiene la derivata usuale. Se f e una funzione non

necessariamente derivabile, (T})® si dice k-esima derivata debole oppure k-esima derivata nel
senso delle distribuzioni di f. In generale, la derivata debole non ¢ una di-stribuzione regolare.

6.19 Teorema. Sia f una funzione di forma

f@):{ﬁg TN ge @), hed(—o,m)

(come f ¢ definita in xo non importa). Allora

X > X

(Ty) = Ty + (9(xo) — M(@0))6s,  f'(x) = {gl(z)

R(z) :z<mz

Si nota che g(xg) — h(xg) = f(zo+) — f(xo—) & laltezza del salto di f in x.

DIMOSTRAZIONE. Per ogni ¢ € Z(R)

0o

(ﬂﬂm=nwﬁ=f

—0Q0

M@&@wa 9(2)¢(z) de

zo

z=x0 _}_J‘m0 h'(x)¢p(z) dz — g(z)d(x)

T=—00 0

. Zj:o + f+°0 g (z)¢(x) dx
= (g(ou) ~ a)olan) + | F1@0()dr = (oan) = o)) (6) + Ty(0),
Questo finisce la dimostrazione. [ ]

Il teorema precedente si generalizza a funzioni con piu di un salto:

1—22 —1l<z<1
v . . Derivare T}:

6.20 Esempio. Sia f(z) =|2*—1| =
2 —1 )z >1

Prima derivata: (Ty) = T}, f'(z) =

—2r —l<z<l
20z >1
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-2 —l<xz<l
2 |zl >1
Terza derivata: (Ty)" = (Tpn)' + 467 — 40" = 46, — 40_1 + 48] + 40",

Seconda derivata: (T)" = (Tp)" = T + 461 + 40_4, f(x) = {

Un operatore a coefficienti costanti di secondo ordine

P=a— +b—+c (a,b,ce C)

si puo pensar come operatore lineare nell’ambito delle distribuzioni:

P:7'(R)— Z'(R), PT =al"+bI"+cT|

Le soluzioni dell’equazione omogenea a1” + 01" + ¢T" = 0 sono le ben note soluzioni classiche
y € €*°(R), cioe le distribuzioni regolari T}, con ay”+by'+cy = 0 (non ci sono soluzioni aggiuntive
in 2'(R) — per le equazioni a derivate parziali invece alle soluzioni classiche si aggiungono nuovo
soluzioni distribuzionali). Dimostriamo questo fatto per equazioni di primo ordine:

Teorema. Siano [ = (o, 8), f€ €(I) e T € P'(I) con T' + bT = Ty. Allora 3y € €*(I)
tale che y'(z) + by(z) = f(z)in [ e T =T,

B
DIMOSTRAZIONE. Passo I. Sia 7" = 0. Sia S = Ty € Z'(I), cioe S(¢) = J o(z) de.
e P(I)e S) =0 implica T(¢) = 0:
U(z) = Jx¢(t) dt e Z(I) e quindi T'(¢) = T (V') = =T"(¥) = 0.

Scegliamo un ¢ € Z(I) con S(¢g) = 1.
S(¢ = S(9)do) = S(¢) — S(¢)S(d0) =0 V¥ d € D(I)

0= T(6— S(@)do) = T(6) — S@)T(o) Ve 2(I)
B8
= T(¢) = f T(éo)d(x)dr Y be D(1)

«

= T =T, con c=T(¢y).

Passo II. Esercizio 6.2 = (e"T) = be" T + " T" = " (T" + bT) = T} = T,buy.

Sia g € €1(I) con ¢’ = e f.

= (T~ Ty) = Toay — Ty =0

Passol=3ceC: T -T,=T.=T= e*be(ngC) = Teva(g+c)

Basta scegliere y(z) = e7%*(g(x) + ¢). [

Si dice equazione impulsiva un’equazione non-omogenea del tipo

(aT" +bT"' + T =S, SeZ'(R),
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con S una distribuzione non regolare. Tutte le soluzioni sono della forma T" = T}, + f, dove y ¢
la generica soluzione dell’omogenea, e T' ¢ una soluzione particolare di PT = S.

6.21 Definizione. Ogni soluzione dell’equazione PT = ¢§ é detta soluzione fondamentale
per 'operatore P.

6.22 Teorema. Sia P come sopra con a = 0. Sia xg € R e y la soluzione classica
dell’equazione Py = 0 con y(zo) = 0 e ¢/ (xo) = 1/a. Se

@) = {O X< X

y(x) x> x

allora PTy = 6g,. In cazo xo = 0 si ottiene una soluzione fondamentale per P.

DIMOSTRAZIONE. Si applica il Teorema 6.19 due volte:

Tf =Ty +(0—0)5 =Ty, dove f'(z) = {0 =t
y'(z) x>
n ! ! 1 " 0 rx <0
(Tf) = (Tf/) = Tf// + (y ({L‘Q) — 0)5 = Tf// + 555507 dove f ({L‘) = " .
y'(x) x>0

= a(Tf)” + b(Tf)’ + CTf = Taf”+bf’+cf + CL%(SQCO.

0 T < T

—0= PT; =4, -
ay” + by (x) + cy(x) x> x / 0

(af" +bf" +cf)(x) = {

6.23 Esempio. Cerchiamo una soluzione fondamentale di Py = y" —y' —2y. Allora a = b =1,
c=—2exg= 0. Polinomio caratteristico:

pN) =X =-A-2=A+1)(A-2).

Quindi
y' =y =2y =0 < y(z) = Ae " + Be**, A,BeC.

Determinare A e B :

0) =0 A+B=0
y(0) =0 = A+ ’ }<=>A=1/3,B=1/3.

y(0)=1 < ~A+2B=1

0 <0

Risulta la soluzione fondamentale Ty con f(x) = { = 2n) 0
e —e) x>



52 6.5 Distribuzioni ed equazioni a derivate parziali

6.24 Esempio. Cerchiamo una soluzione di Py = y" — 4y’ + 4y = 63. Allora a = 1, b = —4,
c=4 exqg= 2. Polinomio caratteristico:

p(A) =A% =4 +4=(\—2)%

Quindi
y' — 4y + 4y =0 < y(r) = Ae** + Bre**, A,BeC.

Determinare A e B :

yY(2) =0 < Ae* +2Be* = 0, B B
f 4 A — A= 21 B=¢"
y'(2) =1 < 2Ae" +5Be* =1
0 <2
Risulta la soluzione y = Ty con f(x) =
v /(@) {(m —2)e2@2) x> 2

6.5 Distribuzioni ed equazioni a derivate parziali

Sia T € 2'(R™) e a multi-indice. Analogamente alla Definizione 6.18,

°T(9) = (1) T(0°¢)  Vée IR)]

m
definisce la distribuzione 0*T € 2'(R"). Quindi un operatore differenziale P = >} a,0%, con
la]=0
ao € €*(R"), |a| < m, definisce un’applicazione lineare

P:92'R")— 2'(R"): T+ PT = i a, (0°T).

la|=0

Consideriamo adesso degli operatori a coefficienti costanti, cioe tutti gli a, sono numeri comp-
lessi, |a] < m.

6.25 Esempio. Conm =2 e a, = risulta

0 :altriment:

{1 ca€e {2eq,...,2¢e,}

n

P = 0% 02 =02 +.. 02 = A
k=1

il cosidetto operatore di Laplace oppure Laplaciano.

k=1

6.26 Definizione. Le soluzioni dell’equazione PT = § sono dette soluzioni fondamental
per ['operatore P.
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Se fe Ll (R") e ¢ € Z(R"), allora

loc

(f*9)(z) = N fe(r —y)dy = Ty(o(x —-)), weR™

Questa relazione ci porta alla seguente definizione della convoluzione:

6.27 Teorema (e Definizione). Siano T € Z'(R™) e ¢p € Z(R™).

(T+9)@) =T($z—"), zeR",
definisce una funzione T« ¢ € €°(R"™). Per ogni a vale 0*(T * ) = (0°T)»¢p = T = (0“¢).

DIMOSTRAZIONE. Sia u(z) = (T * ¢)(x).
Continuita: Sia zy € R" fissato.
u(wo + h) — u(we) = T(¢(wog + h —-) — ¢(xo — -)) per ogni h € R™.

1
Taylor = r,(y) := ¢(xo + h—y) — d(xo—y) = h - J Vo(xg+th —y)dt
0
Ovviamente rj, € €*(R") per ogni h. Verificheremo:

i) 3K cc R v{;j“iﬁ: suppr, € K,

.. h—0 . . .
ii) 0“r, — 0 uniformemente in R" per ogni o € Nj.

Per i) si nota che 3 N > 0 tale che supp ¢ = By(0) e

r(y) £F0=30<t<1: Voé(ro+th—y)$0

= xo+th —yesupp o
=dzesuppop: y=x9+th—=z
= |y — x| < |z| + |th < N +1
=y € Bny1(20)

= suppr, € K := Byi1(xp).

Per ii) si nota: [0,r,(y)| < [h] m%x|vaa¢(z)| < const - |h|.

zeR™

D), ii) = r, 22% 0 in 2(R")

= u(zo + h) — u(xg) = T(r) 2=50

Derivabilita parziale: Si procede in modo simile, scrivendo

u(xo + 7ej) — u(zo)

— (T'%0;0)(w0) = T(r-)

TT(y) — Cb(IL‘() + 7€ — y) - ¢($0 - y) . (aj(b)(xo — y) = Tf (1 - t)(a?(b)(IO + lre; — y) dt.

T 0
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Risulta 7, == 0 in 2(R") e quindi T(r;) 7=> 0, ciod
Oju(xo) = (T + 0;¢)(w0) = T((0;¢) (w0 —-))
= —T(0;l¢(wo — )]) = (O;T)((wo — ) = ((3;T) * ¢)(x0)-
Come sopra: d;u ¢ continua.

L’iterazione di questo procedimento dimostra I’enunciato. [ ]

6.28 Esempio. Vale = ¢ = ¢ perché
(0 0)(x) =0(dp(x —-)) = ¢(x = 0) = ¢(x),  xeR"

Se T' & una soluzione fondamentale dell’operatore differenziale a coefficienti costanti P e u :=
T = ¢, si trova

Pu=(PT)+¢=06%d=0

(la prima identita vale perché P ha coefficienti costanti). Quindi 7" * ¢ fornisce una soluzione
dell’equazione a derivate parziali Pu = ¢.

6.29 Teorema (Malgrange-Ehrenpreis). Ogni operatore differenziale P 0 a coefficienti
costanti ha una soluzione fondamentale.

6.30 Teorema. Il Laplaciano A in R? ha soluzione fondamentale Ty con f(z) =

1
= In |z|. Quindi una soluzione di Au = ¢ é
T

@) = T+ )@ = | )o@ —v)dy= 3= | o) inle—yldy

DIMOSTRAZIONE. Ricordiamo la formula di Gauss-Green nel piano:

f diVFdxzj F - nds, (6.1)
U U

dove U = R? appropriato, F = (F{,Fy) campo vettoriale in due variabli di classe ¢! in un
intorno di U e n : 0U — R? il versore normale esterno ad U.

Formule di Green: Siano u, v funzioni di classe 4 in un intorno di U.

r

(1) J Au = Dyuds (dove Dyu = Vu - n derivata in direzione n),
U ou

r

(2) j (uAv + Vu - Vo) = f uDyv ds,
U ou

r

(uAv — vAu) = J (uDpv — vDyu) ds.

U oUu
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Per la (1), applicare (6.1) a F = Vu; per la (2), applicare (6.1) a F = uVv. Sia (2') ottenuta
dallo scambio di u e v nella (2). La differenza membro a membro (2) — (2') prova la (3).

Sia ¢ € Z(R?). Si ha quindi IR >0: suppp < U :={z | |z| < R}.

- = n(a) = —xfe x| =¢
U.i=fo | <|o| < R) <>—{I/R -
(AT))(6) = T5(a0) = | f2)A0(a)do = lim | () 0(a) d, dato che f & L (R2)

Perché 27V f(x) = x/|z]* e Af = 0 in R*\{0} (Esercizio!), dalla (3) segue

. f(@)Ag(x) dv = J [f(2)Ag(z) — ¢(x)Af(x)] da

€

- | U@Duo@) = o) Das (@) ds

1
=5 |x‘:€[¢(a:) —IneVo(x) - x| ds.

Si ha:

orz | etedds =000 < - | Joe) - 6(0)] ds < maxo(a) - 9(0) = 0

2me || =e h 2me x| =¢ = |z|=¢ ’

1 1

‘Q—ML_;MW(@ wds < 5 EELCCIEE
1 e—0
= felnel fm_g V()| ds <25 0]V 6(0)] = 0.

Ne segue (ATy)(¢) = ¢(0) = §(¢), come affermato. [

6.6 Il supporto delle distribuzioni

Siano S, T € 2'(2) e U < Q aperto. Si dice

(S=TinU:< S(¢)=T(¢) Yoe2(U).

6.31 Lemma. Sia T € 2'(Q) e Qp := vl U, cioe
() aperto,
T=0 in U

[QT ={reQ|3IU < Q intorno aperto di x t.c. T =0 in U}]

Allora T = 0 in Qp. Quindi Qp & il pit grande sottoinsieme aperto di ) dove T = 0.

DIMOSTRAZIONE. Sia ¢ € 2(Qr) e K := supp ¢.
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K compatto = 3U;,...,Unv: T=0mmU;, KcUu...uUy

Esistono K; cc Uj tale che K < K; u...u Ky:
zeK=de>0 d1<j<N: mng
K compatto = Una famiglia finita di questi B.(z;) fornisce un ricoprimento di K.
K;

Lemma 6.4 = 3¢, € 2(U;): 0<; <1, ¢; =1 in un intorno di Kj.
¢1:= oY1, G = (L —th1) - (L —thp1) per k=2,..., N

= or€ D(Uk) e ¢ — é:1 O =od(1 =) - ... (1 —1y) (induzione!)

:= unione finita di B.(z;) del ricoprimento contenuti in U;.

(=N=6— S dr=0=T(6) = 3 T(é) = 0. "

k=1 k=1

6.32 Definizione. Sia T € 2'(Q). Il supporto di T ¢ linsieme supp T := Q\ Q7.

6.33 Esempio. suppo = {0} :
pe Z(R"\{0}) = ¢(0) =0 = 0(¢) =0 = =0 su R"\{0} = R"\{0} < Qs
d non é zero su tutto R™ = Q5 = R"\{0} = suppd = R"\Qs = {0}.

6.34 Esempio. Sia Ty € 2'(Q) una distribuzione regolare. Allora Q\supp Ty ¢ il piu grande
sottoinsieme aperto di § su quale f = 0 quasi ovunque.

6.7 Distribuzioni a supporto compatto (complemento)

SiaT e 2'(Q) con K :=suppT cc . Se ) € () & una qualsiasi funzione test con ¢ =1 in
un intorno aperto di K,

T(¢) =TWo)+T((1 =)o) =T(vd) Ve ()

visto che (1 —¢)p e Z(QN\suppT’) e T =0 in Q\supp 7. Osserviamo che 'espressione a destra
ha senso non solo per ¢ € Z(2) ma per un qualsiasi ¢ € €*(Q)! Si puo definire su €*(Q2)
una metrica tale che una successione (¢r)r < €°(2) converge a ¢ € €*(2) se e solo se

0% x LmaiN 0“¢ uniformemente su ogni K cc () per ogni multi-indice «. Vale poi il seguente:

6.35 Teorema. Sia T € 2'(Q) a supporto compatto in €. Allora esiste un’unica mappa
lineare e continua T : €*(2) — C tale che

a) T(¢) = T(¢) per tutti ¢ € D(Q),

b) T(¢) = 0 per tutti ¢ € €°(Q) con ¢ =0 in un intorno aperto di supp T
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Si identifica T con la sua estensione e scrive ancora 1" al posto di 7.

6.36 Definizione. Con &'()) si denota lo sottospazio di 2'(Q2) delle distribuzioni a
supporto compatto in 2.

Se T e &'(R") ha senso definire T * ¢ con ¢ € €*(R™) tramite

(T+¢)(x) =T(p(x ), weR™

Si puo dimostrare che 7'« ¢ € €*(R™).

6.37 Lemma. Sia T € &'(R") e p € Z(R"). Allora T « ¢ € Z(R™).

DIMOSTRAZIONE. Esiste r > 0 tale che supp ¢ < B,.(0).

= supp ¢(z — -) © B,(x).

supp7 compatto =3I M >0 V ﬁg% : B.(z) nsuppT = .

= supp ¢p(z —-) < R™\supp T' V¥ 7Ly, = (T + ¢)(z) = 0 per tutti z con |z| = M. n

6.38 Teorema. Siano S,T € Z'(R™) e almeno una dei due abbia supporto compatto.
Allora esiste un’unica distribuzione R € 2'(R™) tale che

Regp=8+(T+¢) YV ¢e 2(R").

Scriviamo R =S +T. Vale R=T = S.

E facile vedere che 0+ 7= T« 0 = T per ogni T € Z'(R™).

La convoluzione di distribuzioni induce mappe bilineari (e continue)
7'R") = &'(R") - 2'(R"), &' (R") = 2'(R") - Z2'(R"), &'(R") =& (R") - &'(RY).
La covoluzione ¢ commutativa e
(T} =« T3) « T3 =Ty » (Ty + T5)

se almeno due delle distribuzioni 7; hanno supporto compatto (associativita). Inoltre,

(0°(S+T) = (0°8)« T = S+ (8°T), aeNy.|

6.39 Teorema. Sia P £ 0 un operatore differenziale a coefficienti costanti e sia E una
sua soluzione fondamentale. Allora T := E =S con S € &'(R™) ¢ soluzione dell’equazione

PT =S5.
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6.8 Esercizi

Esercizio 6.1. f(z) = In|z| appartiene a L} (R). Dimostrare che (Ty)' = pv-=.
Esercizio 6.2. Siano a € €°(R) e T € Z'(R). Definiamo aT : Z'(R) — C tramite

(@T)(¢) =T(agp), ¢ Z(R).
a) Dimostrare che oT € Z'(R).
b) Dimostrare che (aT) =ad' T +aT'.
Esercizio 6.3. Sia P = b% +cconb 0. SiaxgeR ey la soluzione dell’equazione by’ +cy = 0

con y(xg) = 1/b e f(x) := {

0 T <
°. Dimostrare che PT 't = Ogq-
y(x) x> x

Esercizio 6.4. Risolvere le sequenti equazioni impulsive:

a) T"+T =6 by T"-T =6 c) T'N—2T"+2T =6
d T'+T —2T =6 e) T'—=T=6+6 f) T"+T=06+06
g) T"—T =0 h T'+T =4 i) T+ 9T =¢

Esercizio 6.5. Sia (T})r = 2'(Q) tale che Ty 2225 T € 9'(Q) e o un multiindice. Dimostrare
che 0%T, Limas:NPLY
Esercizio 6.6. Siano S,T € 2'() e a € C. Dimostrare che
(S+T)(0):=5)+T(9),  (aT)(¢):=aT(9), € P(),
definiscono distribuzioni S +T e oT in 2'(Q). Ovvero, P'(2) é uno spazio vettoriale.

Esercizio 6.7. Sia v una curva regolare in R™. Supponiamo che v abbia una parametrizzazione
r tale che v~ (K) & compatto per ogni K cc R™. Dimostrare che

0= | o@)ds,  geP®),
definisce una distribuzione 6, € Z'(R").
Esercizio 6.8. Sia u: R? —» R definita da

1 sex; >0,
ulwrw) = 0 sex;<0
1 .

Determinare 01T, e 05T,

Esercizio 6.9. Trovare una mappa lineare T — T : Z'(R) — Z'(R) tale che Ty = T per ogni
distribuzione regolare Ty (qui f ¢ il complesso coniugato della funzione f).

Esercizio 6.10. Sia g(z) = ¢ e R, = (0, +0). Trovare un’applicazione lineare
T—Tog: 2(Ry) > 2'(R)

tale che Ty o g = Tyoq per ogni distribuzione regolare Ty € 7' (Ry).

Suggerimento: Scrivere Ty.q4(¢) nella forma Ty(A(¢p)) con un’operatore opportuno A.



