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7 La trasformata di Fourier

Di cosa si tratta? La trasformata di Fourier ¢ una trasformata integrale
che trova numerose applicazioni nella fisica, nell’ingegneria e nella matema-
tica. In particolare, ¢ di importanza fondamentale nell’analisi di equazione a
derivate parziali e nella teoria dei segnali. Discutiamo la trasformata di Fourier
nell’ambito delle funzioni di classe L' e L2

La trasformata di Fourier f di f € L'(R™) ¢ la funzione f:R™ - C definita da

o) - en [ e cer -

dove 2€ = - & = 16 + ... + 2,&,. Osserviamo che |e ¢ = 1, quindi la funzione integranda
appartiene a L'(R™) per ogni &.

7.1 La trasformata di Fourier in L'(R")

7.1 Lemma. Sia f € L'(R™). Allora:

) Fe CRY A L=RY ¢ Flurmn < @) ™|l
In particolare: f — f: LY(R™) — L®(R") ¢ lineare e limitato.

~

i) f(§) —— =, (Lemma di Riemann-Lebesgue)

DIMOSTRAZIONE. i) Basta osservare che
™ f(2)| < |f(z)l e L'(R)  VEeR™

La continuita segue dal teorema della convergenza dominata.

ii) Impiegheremo il Lemma seguente.

Lemma. g € CP(R") = (1 + [£]V)g(€) € L*(R™) per ogni N € N.
In particolare: g € LP(R™) per ogni p € [1, +0].

DIMOSTRAZIONE. Sia prima n = 1. Integrazione per parti =

+o0
901 <| [ (ame)gtaran] = | [ e ) ] < 14
—00

= (L+ Mg < Cy = lglpr + g% ]Lr e
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+o© R + 1
J;OO |g(§)|p df < C]{[ J_w de < 4o se N > 1/p.

Nel caso n > 1 si procede similmente, utilizzando®

PN =G+ AN = ) aant®

|| =2N
con opportune costanti a,n €
€79 < 079l

Inoltre, (1 + [¢]*V)~" e L'(Rg) se N > n/2p. [
Sia dato € > 0.
Dai risultati della prima parte (Capitolo 2) = 3 ge CP(R") : | f — g| <&/2
i) = [f(&) -3 <e/2 VEeR”
Lemma=3R>0 V[ >R: |[9(¢|< 1+\§\ <eg/2
= 1FOI<IF©O -3©1+19©) << Vi[> R .

7.2 Lemma. Sia f(z) = e 12 Allora f = f.

DiMOSTRAZIONE. Consideriamo il caso n = 1. f e soluzione del problema di Cauchy
y(z) = —zy(z),  y(0)=1

Anche f & una soluzione:

P L[ gy

- ”“"5 —ix T =1
- JE ), i@ =i |
1 [

i [ (e o= ff e f (@) dz = ~€f (€),

f(O) = \/—2? J_ 67:”2/2 dx = \/%\/% = 1.

Unicita della soluzione = f = f.

*”ng () dx

A~

Il caso n > 1 segue facilmente (cfr. Esercizio 7.3). n

9Pil1 precisamente, si pud dimostrare, procedendo per induzione su N € Ny,

N!
($1+...+$n)N= Z Jajo" z=(r1,...,2,) € R",

lee|=NN

. . (o9} .
dove si definisce a! = (aq!) -+ (ap!) e 2% = 27" ---afm, con 7’ =1sea; =0,j=1,...,n.
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7.3 Teorema (Formula di inversione). Sia f € L'(R") tale che f € L'(R"). Allora
f(z) = (QW)_”/QJ c”’ff(f) d¢  quasi ovunque in R".

DIMOSTRAZIONE. Il secondo membro della formula definisce la funzione v : R® — C.
Siano g, h € L'(R"). Esercizio 7.5.b) e 7.4.b) = Per x € R™ arbitrario,

[ s@h@ed - [ @rar©ne e[ ae-omeds~ [ oty (o
Poniamo adesso G(z) 1= (21) "2e "2 ¢ G.(z) := e "G (%), e > 0.
= |Gelp = 1, |G(e)| = = G(0) = (2m) ™ e

Ge(€) = Ge(—¢) = £ "G(=¢/e) ¥ e "G(=¢/2)
= =" (2m) 2 J G ) da " (2m) 2 J Ve G (ey) dy = G()(—€).
Quindi
(G N)@) = | GOS89 de= | GO —de™ | Gleo)f(e)erde

Seguono:

(1) (Ge* f)(z) =5 u(zx) VzeR” (G(0) = (27r)~™? e convergenza dominata),

(2) Go+ f =% fin LY(R™).

La (2) sarebbe un risultato della prima parte del corso (Teorema 2 in Capitolo 2) se G, fosse un
mollificatore. G ha tutte le proprieta di un mollificatore, salvo il fatto che supp G. non e con-
tenuto nella palla di raggio ¢ centrato nell’origine. Comunque, utlizzando il forte decadimento
di z — exp(—|z|*/2), si pud dimostrare che la (2) vale lo stesso (riportiamo la dimostrazione in

seguito, ma la escludiamo dallo programma d’esame).

(2)=3e,—>0: G =*f LEAL:N f puntualmente quasi ovunque in R".

(1) = f = u quasi ovunque in R".

Lemma Vale la (2) nelle dimostrazione del Teorema 7.3.

DIMOSTRAZIONE. Lemma 6.4 =3¢ Z(R"): 0<¢ <1, ¢(x)=1 V|z| <1
pr(x) == ¢(/k)G(2), pre(r) =€ "pr(x/e)

= Pk € CKOOO(Rn% 0<pr < G, Hpk - C¥”L1 Ao, 0,

k
e = ol = lprellr <1, 0 == 1,
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per ogni k, {prc/ck}e=0 ¢ una famiglia di mollificatori
(dai risultati della prima parte (Capitolo 2)).

Siano f € L'(R") e § > 0 arbitrario.
|Ge = f = fllor < I(Ge = pre) = fllor + llpre = f = cuflior + lenf = fllor

k—+0o0

[(Ge = pre) * flor < [Ge = prel il flor =G = prl 2l f e —— 0,

lewf = flir = (1= ) [ flz =0

=3IN=N©) Ve>0: |(Ge—pne)=* fler+ enf— fllo <6/2.

Dai risultati della prima parte del corso (Capitolo 2):

lowe s £ —enfln = enllEpye s £ =l =5 0.

Concludiamo quindi: 3¢9 =€9(0) >0 Vee (0,50): |pnesf—cenfli <0/2.

=Vd>0 Jeg>0 Vee(0,8): |[G.=f— flp <. [

7.4 Corollario. Siano f,ge€ L'(R") e f: g. Allora f = g quasi ovunque.

DIMOSTRAZIONE. h:=f—g=he L'(R") eh=f—§=0e L'(R").

Teorema 7.3 = h = 0 quasi ovunque. ]

La trasformata di Fourier inversa di f € L'(R") ¢ la funzione f: R"™ — C con

{ﬂx) —on " [ = fm,  eem

(7.2)
Il Teorema 7.3 implica che
f fe L'(R") = f= (f)vz f quasi ovunque.
Analogamente
/s fe L'R") = f = (f)Az f quasi ovunque.
In particolare (cfr. il Lemma nella dimostrazione 7.1),
feCPRY) = f=f=f suR" (7.3)

7.2 La trasformata di Fourier in L*(R")

7.5 Lemma (Parseval-Plancherel formula). Siano f,g € L*(R™) n L*(R").
Allora f € L*(R™), | flz2 = [ flz2. e (f,9)r2 = (£, 9)r2-
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=

DIMOSTRAZIONE. Passo I. Siano f, g € C°(R"). Esercizio 7.5.b) e g = § =
D= | Fm@ e = [ 1@ € de ™ [ re5@ = (F.9)n

Passo II. Sia xj 1= X{wern|j«j<k; (funzione caratteristica).
~ {)(116]04>J‘”111[,1e[,2

(Xef) * p- € CP(R™) e (xif) * p- == xpf in L' e L*
= 3 (fx) = CF(R") : flck_)ﬁnmeleL2
Passo I = [ fi — fuliz = | fi— fellz2
= (/) successione di Cauchy in L?

=3Fel?: [7% Finl?
(nota: una sottosuccessione di (fy) converge a F' puntualmente quasi ovunque)
~ A R

(cioe f converge a f uniformemente in R™, quindi anche puntualmente)

i 7 k N k
= f=Fel?e|flr=|Flp < | fule "2 fule =2 1 f

Passo III. Sia (fi) come prima e (gx) < C°(R™) con g 20, gin LY e L2

(f Q)L2 rore (fk,gk)m ol (fk,gk)m It (f 9)L2 u

7.6 Teorema (di Plancherel). Esiste un'unica F € £ (L*(R")) con le sequente proprieta:

a) F ¢invertibile, F =" (cioe¢, coincide con la trasformata di Fourier (7.1)) e # 1
(cioé, coincide con la trasformata di Fourier inversa (7.2)) in L'(R") n L*(R™).

b) F ¢é un operatore unitario, cioe

(Ff, 3’\9)L2(Rn) = (f, 9)L2(Rn) Vfge LQ(Rn)-

DIMOSTRAZIONE. fe L2 = 3 (fi)c L' A L*: f, 2252 fin L2

(per esempio, fr = fxx con xy la funzione caratteristica di {r € R™ | |z| < k}).
Esistenza. Sia f € L? e (f;) come detto.

Lemma 7.5 = (f;,) successione di Cauchy in L2.

Definiamo .# f := lim fk in L2

k—+00

Z & ben definita. Sia (h;) € L' n L? una qualsiasi altra successione tale che hy, LESEiN fin
L?, analoga a (f}). Troviamo

k—+400

| f = Pllie < | Zf = Jeluz + 1o = halee 277 |F = filloe + [ fr = bl =25 0.
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Esercizi

Nota bene: per f € L' n L? si puo scegliere f}, :== f = Ff = f
Continuita e iniettivita. |7 f|2 <=2 | filrz "2 ™0 | full e 2252 | £ 12
= ngfH[p = ||fHL2 = ﬁ iniettiva (& Hyug(l;) = 1.
Suriettivita. Siano g € L2 e (i) © CP(R") con g, ~—25 g in L2
Lemma nella dimostrazione del Lemma 7.1 e (7.3) =
~ ~ I k— .
fo=gk=Gr(=) e L' nL*e fy = g = g in L?
Lemma 7.5 = | fi, — folz2 = /i — fellz2 = lgx — gl
= (fy) successione di Cauchy in L2 = 3 fe L2: f, 2250 fin L2

= tg[f = hmk—>+oo fk = hmk—>+oo gk = g

Inversa. Teorema 0.1 = .7 ' € Z(L?).
Siano 9 el'nl?e(q) Cw(R”) con gp ~=*% g in L2,
Ge=0r eGe L' N L* = TG =G = g
= o= = hy, dove hy 1= grx(—-) € CP(R™)
he 22525 hin L2 dove h = g(— ) e L' A L2 =
Fg & gy == Fh 5 Fho=h = (g(~) "= 7.
Formula. Siano (f), (gx) € CP(R") con fr — f e g, — g in L.
(Z1,79) <= (T fo Far) = (P i) ™7 (i g) 2 (£.9).

La scelta di f = x&f nella dimostrazione dell’esistenza di .# f implica il seguente:

7.7 Corollario. Se f € L*(R") allora F f = limj_, oo fr in L*(R"), dove

fulE) = (2m)"2 j VG

Nota. E di uso comune I'abuso di notazione fper la trasformata di Fourier, indipendentemente
dal contesto funzionale (o distribuzionale) adottato, tenendo presenti, ovviamente, i diversi
significati di tale simbolo nella definizione data dalla (7.1) per f € L'(R") e dall’estensione

fornita dal Teorema 7.6 per f € L?(R™) (cfr. anche la Sezione 8.2.3).

7.3 Esercizi

Esercizio 7.1. a) Sia f € L'(R) con f(z) = v/2me 19l Verificare che f(€) = : _352
b) Sia f € L(R) con f(z) = {\/% o < ! . Verificare che f(g) _ oSiné
0 . altrimenti 13
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Esercizio 7.2. Dimostrare che, se c < (2m)~2, la stima ||f||Lf ®) < c|flriw) € falsa, fornendo

un controesempio. Dunque, HfHLT(R) (2m)~ 1/2||f||L1 (r) € ottimale.
Esercizio 7.3. Sia f € L'(R") con f(z) = e 1*°/2. Dimostrare che (&) = e 1€/,
Suggerimento: Usare € = 216 + ... + 2,6, € f(x) = G(z1) - ... - G(x,) con G(t) = e V12

Esercizio 7.4. Siano u € L*(R"), y € R™, A una matrice n x n reale invertibile e ‘A la sua
trasposta. Dimostrare:

a) Sev(z) = u(z —y) = (t,u)(z) allora 5(€) = e WEu(E).
b) Sev(x) = e*Vu(z) allora 5(§) = u(§ —y) = (7,)(€).
¢) Sev(z) = u(A'x) allora B(€) = | det AT ('Af).

d) Se v(z) = u(z) allora B(€) = a(—¢€).

Ricordando che w e radiale se u(x) = @(|z|) con ¢ funzione definita su [0,+o0), o, equi-
valentemente, u(x) = u(Ax) per ogni matrice ortogonale A, dimostrare che

e) Se u é radiale allora U ¢ radiale.

Esercizio 7.5. Siano f,g € L'(R"). Dimostrare:
a) Feg= (2m)"2f§.  (Suggerimento: Si ricordi che e~ = ¢~ ia-¥E—vE )

) | F©9(©ds= | F(©3(0) de.

Esercizio 7.6. Sia f € C°(R"™). Dimostrare:

e~

0, F(€) = i€ f(6), 8, f(6) = —iz;f(€).

Nota: Iterando queste formule si trova quindi
f©) = f©),  T©) = () f©),

per ogni multi-indice o

+0o0 df +0o0 SiH2£
Esercizio 7.7. a) Calcolare J —>— b)) Calcolare J
) L@ L e

Suggerimento: Usare ['Esercizio 7.1 e il Teorema di Plancherel.

de.

Esercizio 7.8. Calcolare la trasformata di Fourier della funzione

ula) = {|:c|a, se lo] <1,

0, se |z| > 1,

dove a > —3, 1 € R3, cosi che u e L*(R3).



