Proof. After a linear transformation (over K which is algebraically closed), we can effectively assume that $Q(x_0, x_1, x_2, x_3) = x_0x_1 - x_2x_3$ (this amounts to writing the space as a direct sum of two hyperbolic planes). The isomorphism of the quadric to $\mathbf{P}^1 \times \mathbf{P}^1$ is thus a particular case of Proposition B-1.6.

The following two lemmas are special cases of Bézout's theorem, proven further down (Theorem B-2.4).

1.13. Lemma. Let C be a curve of degree d (i.e., defined by a homogeneous polynomial of degree d) in the projective plane and not containing the line D of \mathbf{P}^2 . Then $C \cap D$ is composed of d points (counted with multiplicity).

Proof. Let $F(x_0, x_1, x_2) = 0$ be the equation of degree d of C and $a_0x_0 + a_1x_1 + a_2x_2 = 0$ that of D. One of the a_i is non-zero, so we can take it to be a_0 . The equation of points of intersection of C and D is therefore written $x_0 = -\frac{a_1}{a_0}x_1 - \frac{a_2}{a_0}x_2$ and

$$F\left(-\frac{a_1}{a_0}x_1 - \frac{a_2}{a_0}x_2, x_1, x_2\right) = 0,$$

which factors as $a \prod_i (\alpha_i x_1 - \beta_i x_2)^{m_i}$ with $\sum_i m_i = d$.

1.14. Lemma. If C is a curve of degree d in the projective plane with no components in common with the conic D of \mathbf{P}^2 , then $C \cap D$ is composed of 2d points (counted with multiplicity).

Proof. If the conic is composed of two lines, this lemma can be deduced from the previous lemma. We can thus assume that the conic is irreducible. Up to a linear change of coordinates, we can assume that the conic is written as $x_1x_0 - x_2^2 = 0$ and hence that it is parametrized by the map from \mathbf{P}^1 to \mathbf{P}^2 given by $(y_0, y_1) \mapsto (y_0^2, y_1^2, y_0 y_1)$. Let $F(x_0, x_1, x_2) = 0$ be the equation of C. The equation of the points of intersection of C and D is thus written $P = (y_0^2, y_1^2, y_0 y_1)$ and

$$F\left(y_0^2, y_1^2, y_0 y_1\right) = 0,$$

which factors into $a \prod_i (\alpha_i y_1 - \beta_i y_0)^{m_i}$ with $\sum_i m_i = 2d$.

Notation. We denote by $S_{n,d}$ the vector space of homogeneous polynomials of degree d in x_0, \ldots, x_n , and if P_1, \ldots, P_r are points of \mathbf{P}^n , we denote by $S_{n,d}(P_1, \ldots, P_r)$ the subspace of $S_{n,d}$ formed of polynomials which vanish at each P_i .

1.15. Definition. A linear system of hypersurfaces S of degree d in \mathbf{P}^n is a vector subspace S of $S_{n,d}$.

The set of hypersurfaces corresponding to the polynomials of S can be seen as a linear subvariety of dimension $\dim(S) - 1$ in the projective space corresponding to $S_{n,d}$.

1.16. Lemma. We have the following formulas:

dim $S_{n,d} = \binom{n+d}{d}$ and dim $S_{n,d}(P_1, \dots, P_r) \ge \dim S_{n,d} - r.$

The lemma is obvious by noticing that vanishing at point P is a linear condition on the coefficients of a polynomial. The computation of the exact dimension of $S_{n,d}(P_1, \ldots, P_r)$ can however be tricky.

1.17. Examples. We have

dim $S_{2,d} = \frac{(d+2)(d+1)}{2}$ and dim $S_{2,d}(P_1, \ldots, P_r) \ge \frac{(d+2)(d+1)}{2} - r$ and, in particular, dim $S_{2,2} = 6$ and dim $S_{2,2}(P_1, \ldots, P_r) \ge 6 - r$. Thus there always passes at least one conic through any five given points. We can specify under which conditions such a conic is unique.

1.18. Lemma. Through any five points P_1, \ldots, P_5 in the projective plane, there always passes a conic. Furthermore, if no four of the points are colinear, the conic is unique, i.e., dim $S_{2,2}(P_1, \ldots, P_5) = 1$.

Proof. We will first treat the case where three of the points, P_1, P_2, P_3 , are colinear. The conic must contain the line L = 0 defined by the three points. Hence, we have $S_{2,2}(P_1, \ldots, P_5) = LS_{2,1}(P_4, P_5)$ since P_4 and P_5 are not on the line L = 0. There is only one line which passes through P_4 and P_5 , hence dim $S_{2,1}(P_4, P_5) = 1$ and dim $S_{2,2}(P_1, \ldots, P_5) = 1$. We will now treat the case where no three of the P_i are colinear. Suppose dim $S_{2,2}(P_1, \ldots, P_5) > 1$, and let P_6 be a point distinct from P_4 and P_5 on the line L = 0 defined by these two points. We would then have dim $S_{2,2}(P_1, \ldots, P_6) \ge 1$, and a corresponding conic containing P_4, P_5, P_6 must contain the whole line hence be composed of two lines, and then P_1, P_2, P_3 would be colinear.

The dimension of $S_{2,3}$ is 10. Therefore, there is always a cubic passing through any nine points in the projective plane plane. If 4 of these points are colinear, the cubic must contain the corresponding line, and if 7 of these points are on the same conic, the cubic must contain the corresponding conic.

1.19. Definition. A point $P = (x_0, \ldots, x_n)$ on a hypersurface $V = \{P \in$