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Proof. After a linear transformation (over K which is algebraically closed),
we can effectively assume that Q(x0, x1, x2, x3) = x0x1−x2x3 (this amounts
to writing the space as a direct sum of two hyperbolic planes). The isomor-
phism of the quadric to P1 × P1 is thus a particular case of Proposition
B-1.6. �

The following two lemmas are special cases of Bézout’s theorem, proven
further down (Theorem B-2.4).

1.13. Lemma. Let C be a curve of degree d (i.e., defined by a homo-
geneous polynomial of degree d) in the projective plane and not containing
the line D of P2. Then C ∩ D is composed of d points (counted with mul-
tiplicity).

Proof. Let F (x0, x1, x2) = 0 be the equation of degree d of C and a0x0 +
a1x1 + a2x2 = 0 that of D. One of the ai is non-zero, so we can take it
to be a0. The equation of points of intersection of C and D is therefore
written x0 = − a1

a0
x1 −

a2
a0

x2 and

F
(
− a1
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x2, x1, x2

)
= 0,

which factors as a
∏

i(αix1 − βix2)mi with
∑

i mi = d. �

1.14. Lemma. If C is a curve of degree d in the projective plane with no
components in common with the conic D of P2, then C ∩D is composed of
2d points (counted with multiplicity).

Proof. If the conic is composed of two lines, this lemma can be deduced from
the previous lemma. We can thus assume that the conic is irreducible. Up
to a linear change of coordinates, we can assume that the conic is written
as x1x0 − x2

2 = 0 and hence that it is parametrized by the map from P1 to
P2 given by (y0, y1) �→ (y2

0 , y2
1 , y0y1). Let F (x0, x1, x2) = 0 be the equation

of C. The equation of the points of intersection of C and D is thus written
P = (y2

0 , y2
1 , y0y1) and

F
(
y2
0 , y2

1 , y0y1

)
= 0,

which factors into a
∏

i(αiy1 − βiy0)mi with
∑

i mi = 2d. �

Notation. We denote by Sn,d the vector space of homogeneous polynomi-
als of degree d in x0, . . . , xn, and if P1, . . . , Pr are points of Pn, we denote
by Sn,d(P1, . . . , Pr) the subspace of Sn,d formed of polynomials which van-
ish at each Pi.

1.15. Definition. A linear system of hypersurfaces S of degree d in Pn

is a vector subspace S of Sn,d.
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The set of hypersurfaces corresponding to the polynomials of S can be
seen as a linear subvariety of dimension dim(S)− 1 in the projective space
corresponding to Sn,d.

1.16. Lemma. We have the following formulas:

dimSn,d =
(

n + d

d

)
and dim Sn,d(P1, . . . , Pr) � dim Sn,d − r.

The lemma is obvious by noticing that vanishing at point P is a linear
condition on the coefficients of a polynomial. The computation of the
exact dimension of Sn,d(P1, . . . , Pr) can however be tricky.

1.17. Examples. We have

dim S2,d =
(d + 2)(d + 1)

2
and dimS2,d(P1, . . . , Pr) � (d + 2)(d + 1)

2
− r

and, in particular, dim S2,2 = 6 and dimS2,2(P1, . . . , Pr) � 6 − r. Thus
there always passes at least one conic through any five given points. We
can specify under which conditions such a conic is unique.

1.18. Lemma. Through any five points P1, . . . , P5 in the projective plane,
there always passes a conic. Furthermore, if no four of the points are
colinear, the conic is unique, i.e., dim S2,2(P1, . . . , P5) = 1.

Proof. We will first treat the case where three of the points, P1, P2, P3,
are colinear. The conic must contain the line L = 0 defined by the three
points. Hence, we have S2,2(P1, . . . , P5) = LS2,1(P4, P5) since P4 and P5

are not on the line L = 0. There is only one line which passes through
P4 and P5, hence dim S2,1(P4, P5) = 1 and dim S2,2(P1, . . . , P5) = 1. We
will now treat the case where no three of the Pi are colinear. Suppose
dim S2,2(P1, . . . , P5) > 1, and let P6 be a point distinct from P4 and P5

on the line L = 0 defined by these two points. We would then have
dim S2,2(P1, . . . , P6) � 1, and a corresponding conic containing P4, P5, P6

must contain the whole line hence be composed of two lines, and then
P1, P2, P3 would be colinear. �

The dimension of S2,3 is 10. Therefore, there is always a cubic passing
through any nine points in the projective plane plane. If 4 of these points
are colinear, the cubic must contain the corresponding line, and if 7 of these
points are on the same conic, the cubic must contain the corresponding
conic.

1.19. Definition. A point P = (x0, . . . , xn) on a hypersurface V = {P ∈

   


