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Now we prove the uniform continuity theorem of calculus. In the process, we
are led to introduce a new notion that will prove to be surprisingly useful, that of a
Lebesgue number for an open covering of a metric space. First, a preliminary notion:

Definition. Let (X, d) be a metric space; let A be a nonempty subset of X. For each
x € X, we define the distance from x to A by the equation

d(x, A) = infld(x,a) | a € A}.

It is easy to show that for fixed A, the function d(x, A) is a continuous function
of x: Given x, y € X, one has the inequalities

d(x,A) =d(x,a) =d(x,y) +d(y,a),
for each a € A. It follows that
d(x,A) —d(x,y) =infd(y,a) =d(y, A),
so that
d(x, A) —d(y, A) =d(x,y).

The same inequality holds with x and y interchanged; continuity of the function
d(x, A) follows.

Now we introduce the notion of Lebesgue number. Recall that the diameter of a
bounded subset A of a metric space (X, d) is the number

sup{d(ai, az) | ai, az € A}.

Lemma 27.5 (The Lebesgue number lemma). Let A be an open covering of the
metric space (X, d). If X is compact, there is a § > 0 such that for each subset of X
having diameter less than &, there exists an element of /A containing it.

The number § is called a Lebesgue number for the covering A.

Proof. Let A be an open covering of X. If X itself is an element of A, then any
positive number is a Lebesgue number for 4. So assume X is not an element of 4.

Choose a finite subcollection {Ay, ..., A,} of A that covers X. For each i, set
Ci = X — A;, and define f : X — R by letting f(x) be the average of the numbers
d(x, C;). That is,

1 n
fx) = ;;d(x, C).

We show that f(x) > Oforall x. Given x € X, choose i sothatx € A;. Then choose €
so the e-neighborhood of x lies in A;. Then d(x, C;) > €, so that f(x) > €/n.
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Since f is continuous, it has a minimum value §; we show that § is our required
Lebesgue number. Let B be a subset of X of diameter less than §. Choose a point xg
of B; then B lies in the §-neighborhood of xg. Now

8 5 f(xo) S d(x07 Cm)7

where d(xg, Cp,) is the largest of the numbers d(xo, C;). Then the §-neighborhood
of x¢ is contained in the element A,, = X — C,, of the covering 4. [ |

Definition. A function f from the metric space (X, dx) to the metric space (Y, dy)
is said to be uniformly continuous if given € > 0, there is a § > 0 such that for every
pair of points xg, x1 of X,

dx (x0, x1) < 6 = dy(f(x0), f(x1)) <e€.

Theorem 27.6 (Uniform continuity theorem). Let f : X — Y be a continuous
map of the compact metric space (X, dx) to the metric space (Y,dy). Then f is
uniformly continuous.

Proof. Given € > 0, take the open covering of Y by balls B(y, €/2) of radius €/2.
Let + be the open covering of X by the inverse images of these balls under f. Choose §
to be a Lebesgue number for the covering ». Then if x; and x, are two points of X
such that dx (x1, x2) < &, the two-point set {x1, x»} has diameter less than &, so that
its image { f (x1), f(x2)} lies in some ball B(y, €/2). Then dy (f(x1), f(x2)) < €, as
desired. |

Finally, we prove that the real numbers are uncountable. The interesting thing
about this proof is that it involves no algebra at all—no decimal or binary expansions
of real numbers or the like—just the order properties of R.

Definition. If X is a space, a point x of X is said to be an isolated point of X if the
one-point set {x} is open in X.

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has no isolated
points, then X is uncountable.

Proof. Step 1. We show first that given any nonempty open set U of X and any
point x of X, there exists a nonempty open set V contained in U such that x ¢ V.

Choose a point y of U different from x; this is possible if x is in U because x is not
an isolated point of X and it is possible if x is not in U simply because U is nonempty.
Now choose disjoint open sets W1 and W, about x and y, respectively. Then the set
V = W, N U is the desired open set; it is contained in U, it is nonempty because it
contains y, and its closure does not contain x. See Figure 27.3.

Step 2. We show that given f : Zy — X, the function f is not surjective. It
follows that X is uncountable.



