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of doing this. One can use only techniques of algebra; this proof is long and arduous.

Or one can develop the theory of analytic functions of a complex variable to the point

where it becomes a trivial corollary of Liouville’s theorem. Or one can prove it as a

relatively easy corollary of our computation of the fundamental group of the circle;

this we do now.

Theorem 56.1 (The fundamental theorem of algebra). A polynomial equation

xn + an−1xn−1 + · · · + a1x + a0 = 0

of degree n > 0 with real or complex coefficients has at least one (real or complex)

root.

Proof. Step 1. Consider the map f : S1 → S1 given by f (z) = zn , where z is a

complex number. We show that the induced homomorphism f∗ of fundamental groups

is injective.

Let p0 : I → S1 be the standard loop in S1,

p0(s) = e2π is = (cos 2πs, sin 2πs).

Its image under f∗ is the loop

f (p0(s)) = (e2π is)n = (cos 2πns, sin 2πns).

This loop lifts to the path s → ns in the covering space R. Therefore, the loop f ◦ p0

corresponds to the integer n under the standard isomorphism of π1(S1, b0) with the

integers, whereas p0 corresponds to the number 1. Thus f∗ is “multiplication by n” in

the fundamental group of S1, so that in particular, f∗ is injective.

Step 2. We show that if g : S1 → R
2 − 0 is the map g(z) = zn , then g is not

nulhomotopic.

The map g equals the map f of Step 1 followed by the inclusion map j : S1 →

R
2 − 0. Now f∗ is injective, and j∗ is injective because S1 is a retract of R

2 − 0.

Therefore, g∗ = j∗ ◦ f∗ is injective. Thus g cannot be nulhomotopic.

Step 3. Now we prove a special case of the theorem. Given a polynomial equation

xn + an−1xn−1 + · · · + a1x + a0 = 0,

we assume that

|an−1| + · · · + |a1| + |a0| < 1

and show that the equation has a root lying in the unit ball B2.

Assume it has no such root. Then we can define a map k : B2 → R
2 − 0 by the

equation

k(z) = zn + an−1zn−1 + · · · + a1z + a0.
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Let h be the restriction of k to S1. Because h extends to a map of the unit ball into

R
2 − 0, the map h is nulhomotopic.

On the other hand, we shall define a homotopy F between h and the map g of

Step 2; since g is not nulhomotopic, we have a contradiction. We define F : S1 × I →

R
2 − 0 by the equation

F(z, t) = zn + t (an−1zn−1 + · · · + a0).

See Figure 56.1; F(z, t) never equals 0 because

|F(z, t)| ≥ |zn| − |t (an−1zn−1 + · · · + a0)|

≥ 1 − t (|an−1zn−1| + · · · + |a0|)

= 1 − t (|an−1| + · · · + |a0|) > 0.
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Figure 56.1

Step 4. Now we prove the general case. Given a polynomial equation

xn + an−1xn−1 + · · · + a1x + a0 = 0,

let us choose a real number c > 0 and substitute x = cy. We obtain the equation

(cy)n + an−1(cy)n−1 + · · · + a1(cy) + a0 = 0

or

yn +
an−1

c
yn−1 + · · · +

a1

cn−1
y +

a0

cn
= 0.

If this equation has the root y = y0, then the original equation has the root x0 = cy0.

So we need merely choose c large enough that
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to reduce the theorem to the special case considered in Step 3. �
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