Corso di Laurea in Matematica – Geometria 2 Foglio di esercizi n. 5 – a.a. 2018-19

Da consegnare: martedì 13 novembre

Esercizio 1. (Esercizio 5.11. del Manetti) Sia X uno spazio topologico di Hausdorff, $K \subseteq X$ un sottoinsieme compatto e X/K la contrazione di K ad un punto. Dimostrare che X/K è di Hausdorff.

Esercizio 2. (Esercizio 5.18. del Manetti) Pensando \mathbb{RP}^1 come il quoziente $(\mathbb{R}^2 - \{0\})/\mathbb{R}^*$, indichiamo con $[x_0, x_1] \in \mathbb{RP}^1$ la classe di equivalenza del vettore non nullo $(x_0, x_1) \in \mathbb{R}^2 - \{0\}$. Quindi $[x_0, x_1]$ significa un vettore non nullo determinato a meno di proporzionalità.

Dimostrare che la funzione $\varphi: \mathbb{RP}^1 \to S^1$ data da

$$[x_0, x_1] \mapsto \left(\frac{x_0^2 - x_1^2}{x_0^2 + x_1^2}, \frac{2x_0x_1}{x_0^2 + x_1^2}\right)$$

è un omeomorfismo.

Esercizio 3. (Manetti, Esercizio 6.7) Sia $a : \mathbb{N} \to \mathbb{R}$ una funzione biunivoca (qualunque!) fra i numeri naturali e i numeri razionali, cioè:

- 1. $a_n \in \mathbb{Q}, \forall n \in \mathbb{N}$
- 2. a è iniettiva e l'immagine $a(\mathbb{N}) = \mathbb{Q}$.

Pensando alla funzione a come ad una successione a valori reali, determinare i punti di accumulazione.

Suggerimento (di Manetti): ogni aperto non vuoto di $\mathbb R$ contiene infiniti numeri razionali.

Esercizio 4. (esercizio 1 dallo scritto di luglio 2018) Consideriamo l'insieme $X = [0, 2) \subset \mathbb{R}$ e la famiglia di sottoinsiemi di X:

$$\mathcal{T} = \{ [0, a) \mid 0 \le a \le 2 \}.$$

N.B. per a = 0, $[0, 0) = \emptyset$.

- (a) Dimostrare che \mathcal{T} è una topologia su X.
- (b) Dare un esempio di intersezione (arbitraria) di elementi di \mathcal{T} che non appartenga a \mathcal{T} .
- (c) Dimostrare che la chiusura di A=[1,3/2] è [1,2) e che l'interno di A è l'insieme vuoto.
- (d) Dire se (X, \mathcal{T}) è di Hausdorff.
- (e) Dire se (X, \mathcal{T}) è separabile.