Istituzioni di Geometria, a.a. 18/19, esercizi di geometria algebrica

Esercizio 1. Siano L_1 e L_2 due sottospazi lineari di \mathbb{A}^n tali che $L_1 \cap L_2 = \{p\}$. Siano $X_1 \subseteq L_1$ e $X_2 \subseteq L_2$ due insiemi algebrici contenenti p. Infine siano $f_1 \in k[X_1]$ e $f_2 \in k[X_2]$ due funzioni tali che $f_1(p) = f_2(p)$. Mostrare che esiste $f \in k[X_1 \cup X_2]$ tale che $f_{|X_i} = f_i$.

Esercizio 2. Sia X una varietà affine irriducibile e sia $\varphi \in k(X)$ una funzione razionale data da $\varphi = f/g$ con $f, g \in k[X], g \neq 0$. Sia $p \in X$ tale che g(p) = 0 e $f(p) \neq 0$. Mostrare che φ non è regolare in p.

Esercizio 3. Sia $X \subset \mathbb{A}^2$ la curva di equazione $y^2 = x^2 + x^3$ e sia $f \colon \mathbb{A}^1 \to X$ la mappa definita da $f(t) = (t^2 - 1, t(t^2 - 1))$. Mostrare che l'omomorfismo f^* mappa k[X] isomorficamente nel sottoanello di k[t] formato dai polinomi g(t) tali che g(1) = g(-1). (Supponiamo k di caratteristica zero.)