Corso di Studi in Matematica

GEOMETRIA 2

Prova scritta del 14 gennaio 2018

Esercizio 1. (6 punti) Sia $X = \mathbb{R}$ e consideriamo la seguente famiglia \mathcal{T} di sottoinsiemi di X

 $A \in \mathcal{T} \iff A = \emptyset$ oppure $X \setminus A$ è compatto nella topologia euclidea

- (a) Dimostrare che \mathcal{T} è una topologia su X.
- (b) Dimostrare che (X, \mathcal{T}) è separabile.
- (c) (X, \mathcal{T}) è di Hausdorff?
- (d) Dimostrare che (X, \mathcal{T}) è compatto.

Esercizio 2. (7 punti) Consideriamo il piano proiettivo reale $\mathbb{P}^2(\mathbb{R})$ con la topologia usuale, e sia A una retta proiettiva in $\mathbb{P}^2(\mathbb{R})$. Sia X lo spazio topologico quoziente

$$X = \mathbb{P}^2(\mathbb{R})/A$$
,

ovvero X è il quoziente del piano proiettivo rispetto alla relazione d'equivalenza $p \sim q$ sse p = q o $p, q \in A$. Calcolare il gruppo fondamentale di X. (Suggerimento: considerare il modello piano di $\mathbb{P}^2(\mathbb{R})$.)

Esercizio 3. (5 punti) Sia S la superficie compatta che si ottiene identificando i lati di un poligono secondo la sequenza

$$W = a c e b^{-1} d^{-1} a^{-1} c^{-1} e^{-1} b d$$

Determinare la classe di omeomorfismo di S nella classificazione delle superfici e calcolare la sua caratteristica di Eulero.

Esercizio 4. (7 punti) Consideriamo le seguenti matrici:

$$A = \begin{bmatrix} 2 & k+1 & 0 \\ 0 & 1-k & 0 \\ k-1 & 0 & k \end{bmatrix}, \qquad B = \begin{bmatrix} 1-k & 0 & 0 \\ 0 & k & k-2 \\ k+1 & 0 & 2 \end{bmatrix}$$

dove k è un parametro reale.

- (a) Determinare per quali valori di k le matrici A e B sono simili.
- (b) Per k=2, determinare una base che mette A in forma di Jordan.

Esercizio 5. (7 punti) Nel piano proiettivo $\mathbb{P}^2(\mathbb{C})$ consideriamo i punti $P_1=[0:1:0]$ e $P_2=[0:0:1]$ e le rette $r_1:x_0-x_2=0$ e $r_2:2x_0-x_1=0$. Si mostri che l'insieme

$$\mathcal{F} = \{ \text{coniche } C \text{ tangenti a } r_i \text{ in } P_i, i = 1, 2 \}$$

è un sistema lineare, e se ne calcoli la dimensione.