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PREFACE TO THE RUSSIAN
EDITION

Geometry has been and remains the Cinderella.of the
curriculum at the Moscow University’'s Mathematics and
Mechanics faculty. Never once during the last fifty
years has the curriculum contained a course on the foun-
dations of geometry or algebraic curves or transformation
groups or even projective geomeiry (if we do not count
the scraps in the firsi-semester courses in an.alytl_c geo-
metry which may only be given under special circum-
stances, and nobody cares when the lecturer curt.alls
them up or even drops them altogether). A student might
well graduate from the faculty—with honours!—w1§h
no idea about Lobachevskian geometry, Caley-Klein
ideas in the foundations of geometry, or the properties of
algebraic curves or Lie groups. )

Some twelve years ago the overflow into the calcu_lus
course of geometric material due to the ever increasing
implementation of geometric methods led to the creation
in the second year of a new course with the ad hoc name
“Smooth manifolds and differential geometry”. This
course was delivered at a rate of a lecture a week and it
was hoped that the course would free .lecturers from
presenting the extraneous geometric material. The course,
however, was not well thought-out, and the parallel
courses in calculus and differential equations were not
coordinated with it. As a result the lecturers on ce}lculus
did not derive any advantage, and ridiculous as it may
seem, integration of the differential forms on manifolds
and Stokes' formula were discussed twice in as 'much
detail but from slightly different points.of view, in the

Leeen aamanweant cnnireed

Preface 11

Delivering the geometry course in the third semester
did not allow the generalizing and unifying role played
by geometric concepts in modern mathematics to be
brought out since to do so it is necessary for the main
analytic courses to have been covered.

These and various more particular considerations led
to the transfer of geometry to the third year (the fifth and
sixth semesters). It has immediately become clear that
this also had disadvantages.

A necessary constituent part of any course in geometry
is the theory of curves and surfaces in three-dimensional
Euclidean space, which is important both in its own
right and as a source of examples and analogues for
Riemannian geometry and the geometry of affine connec-
tions. By the third year, this material is too elementary
(by this time students have already acquired a knack
and a taste for more complicated constructions and con-
cepts) and for it to play its propaedeutic role one cannot
pass too quickly onto Riemannian geometry.

It is clear that this theory must be presented no later
than the third semester (or perhaps earlier, as suggested
by me in the first Russian edition of Semester II of
these Lectures, even in the second semester). Moreover,
a third-year geometry course does not help lecturers
presenting second-year analysis (which I am sure will
soon lead to the abolition of the course in geometry in
the third semester and may be, alas, to its ousting from
the schedule of the curriculum).

The radical solution is, of course, to overhaul the
traditional system of mathematical courses. However,
since there is an acute struggle between the departments
for hours and courses such a review, which will have to
be carried out sooner or later, is at present not possible,
and a temporary solution would be the return of the
geometry course in the third or fourth semester with the
presentation of integration topics clearly distributed
between the courses in calculus and geometry, each passing -
on the baton to the other as it were.

The following distribution of topics is suggested. After
the integral of functions over domains in R™ has been
discussed in calculus, the geometry lecturers cover the
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integration of densities and forms on manifolds. Simul-
taneously the calculus lecturer illustrates the general
theory by particular cases of line and surface integrals of
the first (density) and the second (form) kind. During
this time, the generalized Stokes theorem is discussed
which in the calculus course is immediately rendered
concrete in the form of the Green, Gauss-Ostrogradskii
and Stokes formulas. This duet, in which the general
melody sometimes drifts, sometimes merges, ends in
the apotheosis of vector analysis with elements of
potential theory where the course in calculus changes
freely into the theory of multidimensional improper inte-
grals and the geometiry course into cohomology theory.
All this, of course, requires close coordination between
the lecturers, which is not easy to achieve.

This book has, like its predecessors*, grown out of
lectures given at the mathematics and mechanics faculty
of Moscow University in different years. It is not, how-
ever, arecordingof any particular course, but is instead
a realization of the proposed geometry syllabus for the
third semester. It can, however, certainly be used as the
text for the fifth sémester course.

The textbook is intended as a normal course presented
at two lectures a week. The number of lectures (29) arises
because although the winter semester formally contains
18 weeks, in practice it is impossible to deliver more
than 11 to 15 weeks of lectures. The course can be used,
however, even if the curriculum assigns only one or one
and a half lectures a week (11 to 15 and respectively 16
to 22 lectures).

To be able to estimate the time required for a syllabus,
I have tried to make each lecture in the book correspond
to a two-hour lecture. Repeating material from other
courses and considering examples, in written form,
requires much more time. This accounts for difference
in the volume of the lectures and the unexpectedly
large size of Lectures 3, 11, and 20.

* M. Postnikov. Lectures in Geomeiry: Semester 1. Analytic
Geometry. (Mir Publishers, Moscow, 1981), Semester I1. Linear
Algebra and Differential Geometry. Mir Publishers, Moscow, 1982).
Rafarred to as I and II in what follows.)

Preface 13

The book focusses on smooth manifolds, and general
topological facts and ideas are not separately presented
being interspersed in the text.

In recent years a rather strange view of smooth mani-
folds has become widespread, a view surprisingly shared
by some respected and competent mathematicians. Since
a smooth manifold can be regarded as the result of the
patural attempt to generalize axiomatically the simple
idea of a manifold as a subset of a Euclidean space defined
by a system of functionally independent equations, it is
argued that the generalization does not actually lead to
new objects because of the Whitney embedding theorem
ar}d so manifolds should be defined as subsets of that
kind and that the general concept of a manifold is just
an example of an axiomatic construction which inevitab-
ly arises in following a concept to its conclusion but one
wh.lch it is then better to forget. I cannot share this
opinion because in practice—for example, in mechanics—
manlfolds tend to appear in an abstract form, unembedded
in a Euclidean space, and their forced embedding (with
great arbitrariness!) introduces an additional structure
that is sometimes useful but often having no relevance to
thg crux of the matter. The adherents of the former
opinion appeal to Poincaré, who has shared it. In fact
Poincaré clearly understood the necessity of having
a general concept of manifold and dwelt on pasting to-
get_her the charts of an atlas. Referring to the extremes of
axiomatization is also wrong, since in reality manifolds
were not introduced as the result of “natural attempt to
genera}lize the simple notion of a manifold given by
equations” but as an answer to the need to clearly explic-
ate th'e notion arising in mathematical investigation.
A consistent execution of the same principles would throw
mathematics a hundred years back, since from this point
of view, for example, all linear algebra in its present
form has no right to exist, being based as it is, on the
concept of a vector space which could be said to “have
arisen as a result of a natural attempt to generalize the
simple idea of the space R™. (which is as false as it is
for m‘?nifolds), whereas the isomorphism theorem shows

that “the generalization does not actually lead to new
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objects” (which, though true, does not deprive the con-
cept of a vector space of its value). In this book, therefore,
manifolds are defined in the usual way, on the basis of
an atlas, while subsets of Euclidean spaces only appear as
examples.

The problems in thisbook are mainly quite trivial and
intended exclusively for a reader to test himself. Some
more difficult problems are given in small print. Auxili-
ary material on algebra or calculusis also given in small
print.

The first five lectures are only indirectly related to the
theory of smooth manifolds, mainly being devoted to
elementary differential geometry. The theory of curves
(Frenet formulas) is followed by the first and second quad-
ratic forms of a surface, the Weingarten formulas are
derived, and Gauss’s theorem on the invariance of total
curvature is proved. Everything not directly related to the
Gauss theorem has been omitted (the Meusnier theorem
and the Euler theorem, geodesics, asymptotic curves, lines
of curvature, and the like). When delivering lectures in
the second year this material had sometimes to be post-
poned until the middle of the semester (so as to satisfy the
needs of the course on differential equations, by introduc-
ing the general theory of smooth manifolds as soon as
possible). Although this did remove some repetitions
(for example, it was then unnecessary to define the differ-
ential of a smooth mapping twice, first for surfaces and
then in the general case), it was barely justified metho-
dologically (as it links elementary differential geometry,
which is local in nature, to the theory of manifolds).

The theory of manifolds begins in Lecture 6. The first
ten lectures (from the sixth to the fifteenth) are devoted
to basic geometric notions and theorems of the theory of
manifolds. In the shorter 11-lecture course one may omit
seven of these lectures, reducing the first five lectures to
four and sacrificing Lectures 8, 9, and 10 (which treat in
the main the topological theory of dimension and the
Tychonoff theorems), and Lecture 10 in a 16-lecture
course. The remaining lectures in this group (particularly
those on the Sard and the Whitney theorems) must, in

Preface 15

my opinion, be kept in the course under all circum-
stances.

An 11-lecture course actually stops here. It turns out
to be, however, possible to save, by slightly reducing
and condensing the presentation, about an hour and a half
of lecture time in presenting some of the material in
Lectures 16 and 17. As to the theory of differential forms
(Lectures 18, 19, and 20), it must be put off in the short-

. ened course until the next semester (or left to the calculus

lectures).

In a 16-lecture course it is possible to finish the course
with Lecture 20, which demonstrates various ways .of
computing de Rham cohomology groups using the exam-
ple of a sphere. This means that the “integration” Lectures
24 to 29 are excluded from the course and their material
is thus left to the calculus course.

In Lectures 21 to 23 an attempt is made to expound the
theory of homologies and cohomologies (up to spectral
sequences!) in a form suitable for the compulsory course.
This is made possible by changing the generally accepted
point of view and giving up the treatment of simplicial
homology theory, which is alleged to be geometrically
obvious. I am pleased to note that a similar approach, at
a more advanced level, is accepted in Differential Forms
in Algebraic Topology by R. Bott and L. W. Tu, which
must be read by anyone who wants to become acquainted
with the basic ideas and constructions of the classical
homology theory in a bright and up-to-date presentation.
When time is lacking it is possible to omit the second
half of Lecture 22 and all of Lecture 23.

Finally, the concluding Lectures 24 to 29, which, if
desired, can be partially interchanged with Lectures 21
to 23, deal with integration. Here the presentation is
deliberately incomplete (for example, nothing is said about
additive functions of a set), since these lectures reflect
only part of the general picture, and omit what relates to
calculus. Lecture 28 can be left entirely to the calculus
lecturer. It is also possible to confine oneself to just one
lecture, Lecture 29, which is virtually independent of the
previous four lectures. »



PREFACE TC THE ENGLISH
EDITION

This book is actually Semester 3 of my Lectures in
Geometry. It starts a new subject, however, and is there-
fore independent of the previous two semesters.

The book has two major features that distinguish it
from other textbooks on elementary smooth manifold the-
ory. Firstly, a lot of space is allotted to topological
dimensional theory, the most geometry-oriented branch of
general topology, and an acquaintance with it will
bring joy to lovers of elegant mathematical constructions
which provide deep insights. Secondly, I've ventured, in
this elementary course, to present the basic notions of
the theory of spectral sequences, a tool whose power
and signiﬁcance is becoming increasingly clear in current
studies. This is done without first expounding general
(co)homology theory.

It is hoped that the two topics will appeal to the
interested English reader.

The symbol [J signifies the end of a proof of a theorem.

December 31, 1988 M. Postnikov

Lecture |

Simple lines in the plane - Giving lines by an equation -
Whitney's theorem . Jordan curves - Smooth and regular
curves - Nonparametrized curves . Natural parameter

There are several different approaches to explicate the
idea of a line, which yield different results. In simple
cases, however, all the approaches give virtually the
same result.

Let us first consider lines in the plane. _

A set I' in the plane is said to be a graph if there is
a system of (Euclidean or affine) z-, y-coordinates and
a differentiable (alternatively, continuous) function f:
I— R defined on the (closed, half-open or open) interval
I of the real axis R such that a point with coordinates x
and y isin I' if and only if z € I and y = f (z). Intuitive-
ly, all graphs, are, of course, lines. :

A point p, of a set C in the plane is said to be simple
if there is an open disk U with centre at p, such that the

- intersection U ) C is a graph.

The set C is said to be connected if it cannot be divided
into two sets having the property that each limiting point
of one set does not belong to the other. (This graphically
means that the set consists of one piece.)

The set C in the plane is said to be a simple line if it is
connected and consists of only simple points.

Problem 1. Prove that any graph is connected (and
hence is a simple line).

The various ways of explicating the notion of a line
differ mainly by nonsimple points that are allowed. We
shall avoid discussing these questions once and for ever
by agreeing to consider only simple lines.

2-07317
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A simple line may (or may not) have end points. There
may be at most two of them. A simple line with two end
points (having the shape of a bent closed interval of the
number line) is called closed, and that with one end point
(having the shape of 2 bent half-open interval of the
number line) is called half-open. A simple line without
end points may have the shape of a bent open interval of
the number line or that of a bent circle. In the former
case it is called open, and in the latter case closed. (Thus
the term “closed” as applied to simple lines has two mean-
ings! This historically established ambiguity must be
constantly kept in mind.)

The usual way of giving lines in the plane is to define
them by equations of the form

) F(z, =0

where z, y are coordinates (affine or rectangular) in the
plane, and ¥ is a function of z, y. [The statement that
a set £ is given by equation (1) implies by definition that
a point p of the plane is in &£ if and only if its coordin-
ates z, y satisfy equation (1). When F is treated as a func-
tion in the plane this means that p ¢ % if and only if
F (p) = 0.1

To obtain lines (in the sense of an explicit definition)
it is certainly necessary to impose on F certain conditions.
First of all it is natural to require that F be continuous.
[If discontinuous functions are allowed, then equations
of the form (1) may define an arbitrary set A of points of
the plane; it suffices to take as F the function 1 — 9
where 7 is the so-called characteristic function of A equal
to unity for the points of A and to zero outside A.]

Recall from the course in calculus that a point p of the
plane (or generally of an arbitrary metric—Euclidean in
particular—space) is said to be an interior point of A if
there is &€ > 0 such that the e-neighbourhood of that
point (an open ball—a disk in the plane—of radius & with
centre at p) is entirely in A. A set consisting of only in-
terior points is called open. A set C is said to be closed
if its complement is open or, equivalently, if for any

Lecture 1 19

gi)sx:)ve;ﬁerg-sequence of points p, € C its limit lim p, is

A subset of an affine (real and finite-dimension
A is said to be closed (open) if it is closed (op2:111)) S\I:z?gﬁ
respect to some Euclidean metric on #.

.Problem 2. Show that if a subset of # is closed (open)
with respect to one Euclidean metric on #, then it is
closed (open) with respect to any other as’well.

Remark 1. A closed simple line in the plane is a closed
(and bounded) set (for each of the two meanings of the
term “closed line”). On the contrary, none of the simple
lines—the open one included—is an open set. Moreover
there are open lines (for example, the graph of a tangent),
which are closed sets (necessarily unbounded).

. Remark 2. It can be easily seen that none of the simple
lines has a single interior point. Therefore Cantor suggested
to consider arbitrary closed sets without interior points
as lines 1n.th.e plane. This definition offers some advan-
tages but it is too general for most mathematical theories
(while failing to cover, say, open simple lines).

It is obvious that for every continuous function ¥ on
a metric space Z the set of all points in which F is zero
is (}sllosed. 'I"his means that an equation of the form (1)
;uhzet 4 Z‘Z :Z.ntmuous function F can specify only closed sets of

Problem 3. Show that, conversely, for any closed set C of

X there is a continuous function F on & p
SR such th ’
only if F (p) = 0. [Hint. Consider on & the functiaotnp P

F(p:inf ’ 5
) qecp(p 9, PEX,

a distance from p to C; here p is a metric in 2'.]

A point of a set (1) is said to be ing i
: nonsingul i
point both partial derivatives gy A5 £

oF
-y and ‘l
T ay

of F exist, are continuous, and at 1 i
. . , east one of them is non-
zexr'l?}.l Tl}e otpe.r points of set (1) are called singular points
. e lmpl.lmt—func'tlon theorem known from calculus
states that in the neighbourhood of any nonsingular point
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each set (1) is a graph, i.e. every nonsingular point is
a simple point. (The converse is false. For example, when
F (z, y) = « (z* + y°) the set (1) consists of the points of
the axis of ordinates z = 0 and hence all its points are
simple. At the same time the point (0, 0) is its singular
point.)

It follows that the set of all nonsingular points of every
set (1) is a union of simple lines (joining, in general, at
singular points). If therefore the number of singular points
is not very large, for example, it is finite, then the set of
form (1) corresponds quite well to an intuitive idea of
lines. (And it is quite appropriate to call them so.) If,
however, there are many singular points, then the situa-
tion is quite different. Namely, as was shown by the
American mathematician Whitney, an equation of the
form (1) with an infinitely differentiable function F can
define any closed subset of the plane.

Whitney’s theorem is related to an arbitrary finite-
dimensional point affine space 4. Every function F on
that space can be regarded, on choosing a reference point
0, as a function on the associated vector space 7" and
hence, after choosing in 9" a basis ey, ..., €n,852 fun-
ction on a Euclidean space R". A function F is said to be
smooth function of class C* or C~ - function if, as a func-
tion on R™, it has continuous partial derivatives of all
orders. (It is clear that if this condition is satisfied for one
choice of the frame Oe;, - - - €n; then it is so for any other
choice of it.)

Theorem 1 (Whitney’s theorem). For any closed subset C
of an affine space # there is a C>-function F on # such
that p € C if and only if F (p) =0.

The proof of Theorem 1 rests on the following lemma,
which is of interest:

Lemma 1. There is a C®-monotonic function a: R —
R such that:

1°0<La(t) <<l for any tER,
92° w () = 0 if and only if t1<0.

Lecture 1 2%
Proof. Put
e~ 1/t if t3
@) o (1) =[ it a0,
0 if $¢<L0.

Function (2) is clearly monotonic and ha i
) i ‘ s Properties 1°
and 2°. Moreover, when & 5= 0 this function is g)bviously
mﬁm.tel_y 41ﬁerpnt1able. We therefore must only prove
that it is infinitely differentiable for t = 0 as well.

Graph of a function o

To this end recall that a function f defined in the

neighbourhood of ¢t = 0 is diff . 1
there are limits erentiable at that point if

3) lim LO=1©O . fO—=1©
t10 t ’ ti0 t

(the Teft and right derived numbers of = ;
these limits are equal. inbexs Ghy k¢ =) and £
On the other hand, if f is differentiable in the neigh-

bourhood of ¢ = 0, except possibly f le 1
and if there are limits LA y for the point itself,

4 . ’ . ’
(4) }irglf (8, }l‘rglf (),

then, as it follows directly f
) & y from the Lagrange theorem
on finite increments, limit i
ety its (3) exist and are equal to

Since for all functions f = a(™ the 1 imi

_ L = eft-hand limit

(f)hvw.usly exist and are zero (for when t<< O tshe(bég
unctions are identically zero) it follows that to prove
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Leﬁma 1 it suffices to establish that for any n> 0 the
limit :

lim & (£) = lim (e~ /1)

40 40

exists and is equal to zero. _ :
But it is easy to see that forany n=> 0 there is a formula

i
=i (4),

where p, = pn (I) is a polynomial of degree 2n. [This
formula is true for n = 0; if it is true for some n> 0,

then

(e~ 1D = [e_mp" (%)]’
e[ (4) k(3]
=e Vip,yy (%)’

where pn 41 (T) = T?pa (T) — T?p, (T) is a polynomial
of degree 2n + 2.1
Therefore

lim (e /)™= lim p—"%tl=0,
10 koo €

i be proved. '
w}gtc)?oﬁ,:fytr . ; of any closEl interval la, b] of the aris R
there is a C>-function B: R — R such that o< p (Bt
for all t €R and

1 if t<a,

ﬁ(t)z{ 0 if t=b.
Proof. It suffices to put

o (b—t)
BO=a—ntau—a '

M . tn iln fumntian in T.omma 1. M
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Remark 3. We can construct C* -functions with a more
complicated behaviour in a similar way. For example, for
any numbers ¢ <c<<d<<b the formula

. a(B—|t—C]|)
M)=wBE—Ti—chTa =T A
where
_ d—e¢ _b—a __ b+ta __d+e
A"‘ 2 ) B—' 2 b} C"“ 2 ) D_‘ 2 L

defines a C=-function equal to zero outside [e, b] and
to unity on [e, dl. We shall need such a function in
Lecture 15.

Let 7° be a Euclidean vector space.

Notation. For anyr > 0 we shall denote by B:W (or
simply B,) a ball of radius r of 7" with centre at 0, i.e. the

£
1

0 a d & & t

Graph of a function A

set of all vectors x € 7" for which | x |[<{r. The correspond-
ing open ball (a set of vectors x € 7" for | x | << r) will

~be denoted by B?°.

For 7 = R™ we shall write, as a rule, B* rather
n
than B} .
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In a Euclidean point space 4 a ball of radius r with
centre at p will be denoted by B;’e (p) (and open ball by

B4 (). |
rTlfggze symbols will be constantly used throughout this
course. ' .
0Corollary 2. For any point p, 0f @ Euclidean point sp;zce
A and any v > 0 there is a function f: A — R such that
o<fi<tion A and

1 if and only if p €B. (po)s
f(p)={

0 if and only if p&ﬁz, (po)-
Proof. It suffices to put
f ) =pUxD

= i i the point p counted
where x = p,p is the radius vector of
off from p, g(l)ld p is the function in Corollary 1, construct-
ed for [r, 2rl. O .

On choosing in A# a system of rectangular cqordmates
we call p € # a rational point if all its coordinates are

rational numbers. A ball II°3, (p) \Yill lbe called rational
if its centre p and radius r are rational.

Lemma 2.pEvery open set U A is a union of a count-
able (or finite) number of rational balls, i.e. there arera-

tional pointsqy, - - s qms - - - and rational numbersry, . - -
T, - .. Such that
(%) U= U B, (@)

"Proof. Under the hypothesis, for any point p € U there
is € > 0 such that B, (p) = U. Consider a rational ball

B , where g is a rational point such that p po<
é/rz(%)nd risa gational number such that p (p, 9 <7 <<
¢/2 (the existence of ¢ and r is ensured by the fact that
any real number may be approximated as much as de-
sired by a rational one). Since p (p, q) <, we have p €

B, (¢), and since
oz p<p q +polp 9<2r<e
fam amer mnint 7 € B (a). we have B, (9) = B, (P)= U.
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We thus see that any point p € U is contained in some
rational ball ﬁ, (9) = U. This means that the set U is

a union of rational balls of the form lﬁ, (g9) which are
constructed for all possible points p € U. But the set of

all rational balls of a space 4 is clearly countable. The
number of distinct balls of the form Iﬁr (g) is therefore

at most countable. Denoting them by Iﬁrm(qm) we obtain
expansion (5). [

We are now ready to prove Theorem 1.

Proof of Theorem 1. We may obviously assume without
loss of generality that the affine space # under consider-
ation is FEuclidean and hence the complement U =
ANC of the set C allows a representation of the form (5).
Let f,, be the function in Corollary 2 to Lemma 1 corresp-
onding to ¢, and r,/2. This function (and hence each
of its partial derivatives) is identically zero outside the
compact (closed and bounded) set Br, (g,). For any

k > 0 therefore there is a number ¢& > 0 such that the

absolute value of each partial derivative of order k of f,,

is at most ¢ throughout #. Let

= 0 1
tm = max (1, c;,, €y .« .y Cp)-

Consider a functional series

oc

6) S In

2me, °
m=1
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Since by construction ¢,,>> 1 and f, << 1, this series is
majorized by the numerical convergent series

G P

Consequently, series (6) converges to. some function
" F:A—R. If p€C, then p ¢ Br,, (gm) for every m>1
and hence f,, (p) = 0. Butif p ¢ C (i.e. p € U), then there
ism > 1 such that p € Br,, (gm). Then fn (p) + 0 and
hence F (p) 5= 0. Thus F (p) = 0 if and only if p € C.

On the other hand, since for any m >k each partial
derivative of the m-th term of series (6) of order k obvious-
ly does not exceed the m-th term of series (7), on differen-
tiating (6) k times we obtain a series all terms of which,
except possibly for the first k¥ terms, are also majorized
by terms of series (7) and which is, consequently, uni-
formly convergent. According to the well-known series-
differentiation theorem the sum of series (6) is infinitely
differentiable (and each of its partial derivatives is the
sum of a series made up of the corresponding partial
derivatives of series (6)).

This completes the proof of Theorem 1. (1

Another approach to the concept of a line, usually asso-
ciated with the name of the French mathematician Jor-

an, is based on the concept of aline as a trajectory of
a moving point. Lines in the sense of Jordan will be
called curves.

According to Jordan, by a curve in an n-dimensional
affine space # an arbitrary continuous mapping

8) v:Il— A

is meant, where I is some interval of the number line R
(open, half-open or closed), i.e. efter choosing the reference
point in A4, a continuous vector function

) r=r(t), tel

which asenmes values in the associated vector space 7°.
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In affine coordinates z!, . .. 2" the Jordan curve (8)
is given by continuous numerical functions

10) e B )y o Bt =2 ), tEl.

Equations (9) and (10) are called parametric equations of
curve (8) (a vector and a coordinate one, respectively).

We stress that curves—in contrast to lines! —are not
sets but mappings.

In practice, however, it is convenient to handle curves,
at least from a terminological standpoint, as if they were
sets. For example, for any ¢, € I a point p, = vy (¢,) of £
is called a point of the curve (8) corresponding to the value
of the parameter t,, and it is also said that for ¢ = ¢,
curve (8) passes through p,. When the interval I is closed
(La, bl) points y (a) and y (b) are called the end points
of the curve (8). Curve (8) is also said to join the point
v (a) to the point y (b) and so on and so forth.

When y (a) = y (b) curve (8) may be thought of as
a continuous mapping of a circle. Such curves are called
closed.

When it is required to stress the difference between
a curve and the set of its points, the latter is called the
support of the curve. Thus the support of curve (8) is
nothing but the image y (/) of the interval I under
mapping (8).

In general, the support of a curve may have the shape
very far from the intuitive idea of a line. For example, it
may have interior points or even fill a square, as shown
by the example of a Peano curve.

Curve (8) is said to be simple il it is, first, an injective
mapping I — A4, i.e.y(t) =y (¢3), &, ty €1if and only if
t, = t,, and, second, a reciprocal continuous mapping
(also known as a moneomorphic mapping), i.e. such that
if for a sequence {¢,,} of points of an interval I there is
a point v € I such that lim y (¢,) = v (z), then {t,}
converges (and lim ¢, = 7). A closed curve

(1) v:la, bl > #, v (a) =y (b)

is said to be simple if y ('tl) =y (ty) for t; < i, if and
only if ¢, = a and ¢, = b.



28 Semester 11

A typical example of an injective rather than moneo-
morphic mapping of an open interval into # is the curve

3t 3 _ ¢
=g ¥=pppe i<

(the “cut-off folium of Descartes”).

Problem 4. Prove that for I = [a, b] any injective mapping
I — A is moneomorphic.

The supports of simple curves are called simple arcs.

4

\

0 z
The cut-off folium of Descartes

In general, simple arcs already correspond to an intuit-
ive idea of a line; in any event it follows from the theo-
rem on the topological invariance of dimension (see Lec-
ture 8 below) that they haveno interior points (for n>1).
At the same time their structure is quite complicated.

Example 1. Let z =2 (), y =y (t), 0<1<<1 be
parametric equations of the Peano curve in the plane.
Then the equations

z=z{), y=y@), z=1¢ 0<<i<1

will give in space a simple arc whose projection onto the
z, y plane is a square. Figuratively speaking, this means
that a square area could be completely covered by a roof
which is nevertheless a line rather than a surface!

Recall (from calculus) that a real function given on
(a, b) is said to be a smooth C"-function, wherer is either a
natural number or oo, if it has continuous derivatives of all
orders <r (for r = oo this means by definition that there
are continuous partial derivatives of all orders; see above).
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In accordance with this we shall say that (8) given on
I = (a, b) is a smooth CT-curve if all functions (10) are
C’-functions. Since the derivatives

dzt (t)

o () = o i=1,...,n,
of functions (10) are the coordinates of a vector
12) r(t) = 1imr_(ti’%—_'(i ,

h—0

this condition means that continuous derivatives of all or-
ders <C r for r 5= oo (continuous derivatives of all orders
for r = oo) exist for vector function (9).

In what follows we shall always consider the number r to
be sufficiently large for all differentiations we need to
have meaning, and no reference to the class C™ will be
made as a rule.

When the interval I has end points (i.e. when either
I = [a, b], or I = [a, b) or I = (a, bl, curve (8) is said
to be smooth if it bounds some smooth curve (of the
given class C7) defined on some large interval /'> 1.

Problem 5. Prove that this is equivalent to the fact that
(for r 5= oo) functions (10) have continuous derivatives of
all orders <C r on (a, b) and the corresponding one-sided
derivatives at points ¢ = a and/or t = b.

A closed curve (11) is said to be smooth if in addition
the one-sided derivatives at ¢ = a and ¢ = b coincide.

Vector (12) is called a tangent vector to the smooth curve
(11) at t. Somewhat loosely, it is also called a tangent
vector at a point y (f). (For simple curves this terminology
is quite valid, though.)

In Lecture 15 we prove Sard’s theorem from which it
follows in particular that the support of a smooth curve
has no interior points (and is even the so-called set of
measure zero). Since the projection of a smooth curve is
obviously a smooth curve, it follows that the phenomenon
described in Example 1 is impossible in the class of
smooth curves.

It is interesting that a smooth curve may have breaks.

Example 2. A curve in the plane with equations

13) z=a@,y=a(—1t), —oo<t<+ oo,
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where o is the function in Lemma 1, has a support which
consists of two coordinate half-lines z = 0, y >0 and
2> 0, y = 0 meeting at right angles!

Curve (8) (or (1)) is called regular at i, if r' (&) 5= 0.
A curve regular at all points is called regular.

Notice that curve (13) is not regular at the break point
# — 0. This is not accidental, since it is known from
calculus that the support of a simple curve (8) regular at
t, has at v (t,) a single tangent (r', (t,) serving as the
direction vector).

The two curves
(14) vo I — A, y*: I*—> 4,
where I and I* the intervals of the same type (both are
closed, both are open or both are half-open), are called
equivalent if there is a smooth (C'™) function

(15) o:I*~>1,

with a derivative nonzero everywhere, which maps /* on-
to I and such that y* = yo ¢, i.e. such that

(16) v (%) = v (p (t*)) for any t* € I*.

It is also said that the function ¢ brings about a change
of parameter on the curve 7y.

The equivalence classes of curves are called ronparamei-
rized curves. To stress the difference between curves and
nonparametrized curves the former are sometimes called
paramelrized curves.

A nonparametrized curve is said to be smooth, simple
or regular if it is the equivalence class of a smooth, simple
or regular parametrized curve. Since a curve equivalent
to a smooth, simple or regular curve is obviously also
smooth or respectively simple and regular, this definition
is correct.

If curves (14) are connected by relation (16), where ¢
is in general an arbitrary function, then the supports of
these curves coincide. Equivalent curves therefore have
the same support (which is called the support of the corre-
sponding nonparametrized curve), but the converse is in
general false.

In the class of simple and regular curves, however, the
situation is more satisfactory.
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Proposition 1. If both curves (14) are simple and regular,
then they have the same support if and only if they are
equivalent.

Proof. If curves (14) are simple and have the same sup-
port, then a continuous (why?) mapping ¢ =y~ o y* of I*
onto I is correctly defined. It is only necessary therefore
to prove that the mapping ¢ is smooth and that its
derivative is everywhere nonzero.

Let ¢ be an arbitrary point on /* andlet ¢, = @ (7). In
that case, if p, = y* (27), then p, =y (¢,) and the support
of curves (14) has a single tangent at p,. If r = r (2)
and r = r* (t*) are vector parametric equations of cur-
ves (14), then r’ (f) and r*’ (¢f) will be the direction
vectors of the tangent. Therefore these vectors are collinear.

Since the curve y is regular at t,, we have r’ (¢,) 5= 0.
Therefore if

=L . Y =T, PEd,
and
Tl = gl (1%, s o o il = g™ (1¥), t%E I*,

are the coordinate parametric equations of curves (14),
then it may be assumed without loss of generality that

d 1
d—ft (ts) 7= 0 and therefore, by virtue of r’ (,) and r*’ (¢7)

being collinear, that % (£2) 2 0.

.o dft
But if —df? (to) 5= 0, then by the inverse function theo-

rem known from calculus f! is locally invertible, i.e. there
exists an interval (e, b) on the z-axis which contains
zo = f* (ty), and a function { = h(z) mapping that inter-
val onte some other interval (a, B) of the axis ¢, con-
taining ¢, (and contained in /), such that

h (f* (t)) = t for any point ¢ € («, B).

The smooth function % belongs to the same class C” as the
smooth function f! and its derivative is nonzero at z,.

By construction g* (¢2) = f* (¢,) = z, € (a, b). There-
fore, there is an interval (a*, B*) on ¢*, containing ¢*
and contained in /*, such that g' (i*) € (a, b) for an;g
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point t* € (a*, p*). Consequently, defined ou (a*, B*)
is a function

(17 hogh:t* —h(g(t*)

which assumes values on (a, p). This function belongs to
smooth functions of class C™ and has the property that
its derivative is nonzero at 7.

On the other hand, under the hypothesis

fio (t%) = &' (%)

for any point t* € I* and any i =1, ..., n; in parti-
cular, for t* € (a*, p*) and i = 1. Therefore ¢ (t*) =
(h o g") (t*) for t* € (a*, p*), i.e: function (17) is a re-
striction of the function ¢ to the interval (z*, f*). Hence ¢
belongs to the smoothness function of classC” on (a*, B*)
and its derivative is nonzero at ¢}. Since ¢} is an arbitrary
point on I*, and intervals of the form (a*, p*) cover the
whole of this interval, this proves that ¢ is of class C”
on the entire interval /* and that its derivative is non-
zero everywhere on I*.

This completes the proof of Proposition 1. OO .

Proposition 1 implies that simple regular curves are
uniquely defined up to equivalence by their supports (and
may therefore be identified with them). These supports are
called regular simple arcs. A regular simple curve whose
support is a regular simple arc £ is called a parametriza-
tion of £. As a rule we shall identify regular simple arcs
with their parametrizations (considered up to equiv-
alence). '

Remark 4. Although generalizing Proposition 1 to ar-
bitrary curves by more general changes of the parameter
(for example, with vanishing derivatives) seems natural
at first sight, alas it is one of the many far-fetched prob-
lems that are meaningless. ) v

For n = 2 (in the plane) any graph is obviously a regu-
lar simple curve. Moreover, it can be shown (try to do it!)
that in the plane regular simple arcs are precisely simple
lines. Thus, in relation to simple lines all explicit defi-
nitions of the intuitive idea of a line lead to the same
result.
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Problem 6. Show that in the plane every regular curve (8)
is local_ly fzquivalent to a graph, i. e. for any point #, € 1
there is its neighbourhood (a, )= 7 in R such that
the curve y |q, ) is equivalent to a curve with equa-
tions of the form z = ¢, y = f (f) (and is hence a regular
simple curve).

Problem 7. Give an example which shows that a regular curve,
which is an injective mapping, cannot nevertheless .be a simple,
curve (and may even have a whole interval of nonsimple points)e.

If # is a Euclidean space, then for any smooth curve
(8) on I a function =

tl—>|l"(t) L tel,

is {ieﬁned, 'whic'h is the length of a tangent vector r’ (z).
This function is trivially continuous, and hence when
I = [a, b] there is an integral

b

s=S [r' (2)| dt

a

pf this fpnction over [a, bl. As shown in calculu3, this
1ptegral is equal to the limit of the length of the broken
lines which are a refinement of curve (8), i.e. to the
length of curve (8). '
Now let I be an arbitrary interval d let
Then the formula v a4
i

(18) s@={ 1w @i, tel,

to

fieﬁnes on I a smooth function mapping I onto some other
1nter\_7al J of the s-axis, which contdins the point 0. This '
function is called the arc length. (Notice that it may
assume negative values as well.)

If s.(t) =t — 1, then the parameter ¢ is called natural.
Allowing the inaccuracy generally accepted in calculus
we may thus say that the parameter t is natural if it is an
arc length.

The property of a parameter to be natural is equivalent
to the identity s’ (f) = 1. Since by definition s’ () =
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| ¥ () |, we see therefore that the parameier ¢ on curve 8)
is natural if and only if

|r' () | =1 for all €L

In particular, we see that a curve referred to a natural
parameter is trivially regular.

Conversely, let curve (8) be regular. Then | ' () | >0
for all ¢t € I, and therefore function (18) is monotonic
and an inverse function

¢: J—>1
is defined for it. The curve
' Y. =9vc¢:J > A
is equivalent to the curve y and we have for it
K©) =1 ()2 () =r' () 57 »
where ¢ =@ (s). Since s (t) = |r' (¢) | it follows that
|r;(s) | =1 for all s€J,

i.e. that the parameter s on the curve y, is natural.
We thus see that every regular curve is equivalent to
a curve referred to a natural parameter.

Therefore, since we restrict ourselves to regular (and
in addition, simple) curves, all curves under consideration
may be, without loss of generality, referred to a natural
parameter. It is important to bear in mind that for a re-
gular simple curve the natural parameter is defined up to
a transformation of the form

t =+ t4 1

(i.e. up to a starting point and the direction of the
measurement chosen).

In what follows the natural parameter will, as a rule,
be denoted by s.

Differentiation with respect to s will be denoted by
a point:

d?r (s)

(s)= rrom I

dr (s) r

1.-(3) =— ., ete.
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As we have already seen, the parameter s naturalness is
equivalent to the identity

Ir @) =1 for all s.

In this connection it is good to have in mind the follow-

ing lemma (in which s is, of course, not the natural
parameter):

Lemma 3. Let u = u (s) be a vector-valued smooth .
tion such that |u (s) | = 1 for all s. Then mooth func

(19) u (s) u (s) =0 for ever‘;/ 8.

Pr;)of. The equation |u.(s) | =1 is equivalent to
u (s)? = 1. But it is easy to see that for a scalar (as well as
for a vector) multiplication of vectors the usual product
differentiation formula remains. In particular,

(v?)* = uu + uu = 2uu.

Therefore, if u? = 1, then uu = 0. O

Corollary. For any curve r = r (s) referr.
: ed to th
parameter there is a formula (s) ref e natural

(20) r (s) T ) =0 for every s.



Lecture 2

Curves in the plane - Frenet formulas for a space curve -
Projections of a curve onto the coordinate planes of the can-
onical frame - Frenet formulas for a curve in an n-dimensional
space - The eristence and uniqueness of a curve with given
curvature

Let
) v I~ A

be an arbitrary regular and simple curve in an n-dimension-
al Euclidean space #. As we know from the preceding

lecture, curve (1) without loss of generality may be.

referred to the natural parameters s.
Let r = r (s) be a vector parametric equation of curve

(1) and let
() t(s) =r(s)

be its tangent vector. Since s is the natural parameter,
vector (2) is a unit vector and the vector

t(s) =r (s
is orthogonal to it:

t(s) t(s) =0 for all s.

Definition 1. The length Ii(s) | of a vector t (s) is
denoted by % (s) (or simply k) and called the curvature
of the curve (1) at s (or r (s)).
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For example, for a plane curve
ke =V e + 36,

where z = z (s) and y = y (s) are coordinate parametric
equations of curve (1) in a Euclidean coordinate system
z, Y.

By the curvature of a curve referred to an arbtrary
parameter is meant the curvature of an equivalent curve

referred to the natural parameter. The formula for this

curvature (which can be obtained by simple but rather
cumbersome calculations using nothing but formulas for
differentiation of functions) has, even for plane curves,
quite a complicated form:
| _ZY 'z
[(z")2+@")2PrR |*
Obviously, the number % is the instantaneous velocity
of rotation of a unit vector t. The greater the curvature of

the curve, the greater the velocity. Hence the term

“curvature”.
In an oriented plane the so-called relative curvature k.
equal to the curvature & can be considered when (for k& 5=

0) vectors t and t form a positively oriented basis for
the plane, and to — k& otherwise. We shall need this curva-
ture in Lecture 4.

Example 1. If

$=1‘0—|~Sl, y=yo—l—sm, where lg—{—mz:ﬂ,

i.e. if the curve in question is a straight line, then =0

and y = 0. Therefore £k = 0 for all s, i.e. as was to be
expected, the curvature of a straight line is identically zero.

Since linear functions are the only functions whose sec-
ond derivative is identically zero, the converse is also
true, i.e. a curve whose curvature is identically zero is a
straight line (or its segment). L]

The point ry = r (s,) on a curver = r (s) is said to be
the point of rectification if k (s,) = 0.
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Example 2. Parametric equations of a circle of radius R
in the natural parameter s are, obviously, of the form

s . 'y
:::=Rcos.f, y == Rsin 7
Since
1 s o 1 s
T=—geSE Y= T RFM R
for a circle
k(s) = for all s.

Thus the curvature of a circle is constant and equal to the
inverse of its radius. '

From the general Theorem 1 to be proved below the
converse follows, namely a curve with constant curvature
is a circle (or its arc).

If for some curve k (s,) = 0, then a number R (s,) =
k—(s%)— is defined which is called the radius of curvature of
the curve at the point in question.

A curve r =r (s) is called a generic curve (a curve of
general type) if there are no points of rectification on it,
i.e. if k (s) = O for all s. At each point of such a curve
the unit vector

£ (s)

k()

is defined which is directed along the normal to the curve
(i.e. along the straight line passing through the point of
tangency at right angles to the tangent).

For any s the vectors t (s) and n (s) form an orthonormal
basis which is called Frenet’s moving basis for a given
generic curve.

By definition

n(s)=

t(s) =k (s) n(s).
Let us find a similar formula for n (s). Let

n() =a(@te+pEnE
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be a decomposition of n (s) in terms of the basis t = t (s),

n = n (s). Since tn =0, we have tn +tn =0 (we use
again the fact that for a scalar product of vectors the
formula for product differentiation is valid), and therefore

@ = tn = — tn = — k. On the other hand, according

The Frenet basis for a plane curve

to Lemma 2, Lecture 1, f = nn = 0. This proves that
for any generic curve formulas

_ t=kn

3) :

n= —kt
hold (we omit the hint about the argument s) which de-
scribe the instantaneous rotation of the moving basis.

Formulas (3) are called Frenet's formulas for a plane
curve.

Remark 1. In an oriented plane the Frenet basis can
also be defined for curves with points of rectification, tak-
ing as n (s) a vector forming together with t (s) a posit-
ively oriented basis for the plane. Then in formulas (3)
a relative curvature k., appears instead of the curva-
ture k.

For curves in a three-dimensional space (referred to
rectangular coordinates z, y, z) the formula for curvature
is as follows:
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Curve (1) for n = 3, as for n = 2, is called a generic curve
if k& (s) 5= 0 for all s. For such a curve a unit vector

t
n(s) = kgg

is defined which is called the vector of principal normal
to the curve. ‘

But now we can (assuming the space to be oriented)
introduce a third vector, b (s), which forms together with
t (s) and n (s) a positively oriented orthonormal basis
t(s), n(s), b(s) (i.e. such that b (s) = t(s) X mn(s)).

N

The Frenet basis for a space curve

This vector is called a binormal vector, and the basis
t (s), n (s), b (s) is Frenet’s moving basis for a given generic
curve.

By construction (to simplify the formulas we omit the

argument )
t = kn.
Moreover, since b = t X n, we have
b=tXxn+txn=txn

from which it follows that bt = 0. Since by Lemma 2, in

Lecture 1, bb = 0, this proves that b is collinear with n,
i.e. there is a number » = % (s) such that

b = — xn.

The number % (s) is called the torsion of a given curve at
r (s). It is the rate of turn of a binormal vector.
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On dlﬁerentlatlng nt =0 and nb = 0 we immediately

get nt-——nt~—k and nb = — nb = x. Since, in
addition, mn = 0 (Lemma 2 in Lecture 1), this proves that
n = — kt 4 xb.
Thus, for any generic curve we have
t— kn,
(4) n= —kt+ xb,
b= —xn.

These formulas are called Frenet's formulas for a space
curve.
Example 3. If acurver =r (s) is in a plane II, then the

vectors r (s) and r (s) are parallel to that plane (for this is

A circular heliz

the case for increments r (s + As) —r (s) and r (s +

As) — r (s) of the vectors r (s) and r (s)). Therefore t (s),
n (s) || I and hence b (s) | II. This proves that b (s) =
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const and therefore % (s) = 0 for all s. Conversely, let
% (s) =0 for all sand hence b (s) =b, = const. Then
r(s) by)" =r (s) by = t (s) b, = O for all s and there-
%or(e)r (‘;)) b, = (c())nsot. This means that the curve r = r (s)
isin the plane rb, = const. Thus a curve in space is a
plane curve if and only if its torsion is identwal?y zero.

Example 4. A circular heliz is the path described by
a point moving with constant velocity around a generator
of a right circular cylinder rotating uniformly abqut its
axis. The parametric equations of the circular helix are
of the form

z=uacost, y=asinit, z = bl
Since 2’ = —asint, y = acost, 27 = b we have
S =VEY+ WP+ 6E)P¢=Va+0b
and hence s = ct, where ¢ = } a® + b% Therefore
s .8 . _b_
z=acos—, y=asin—, z=-_s.

But then

s * _b
g=——sin—, y=—cos—, z=—,
oo s s @ ._
T = — = COST’ Y= -——CE-SIII—L_-, Z——O
and hence
k=l/x2+y2+z2_—_ = = const.
Besides,
s a - s b)
t=(——-sm7,7 i
n=(—-cos——,—s1n——,0)
and
b . s b s a)
b=t><n=(751n—c—, ——cos—, — ).
Therefore
b s b . s = b
b=(—c—2—cos—, — sin—, O) = 1
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and consequently
b
= — = const.
c

Thus the curvature and torsion of a circular heliz are
constant.

According to the general Theorem 1 to be proved below,
and conversely, every curve whose curvature and torsion are
constant is a circular heliz (or its arc). :

Remark 2. Note the difference in the treatment of the
concept of a generic curve in the plane and in space. To
achieve unity, for curves in the plane we must consider
relative rather than absolute curvature. Cf. Remark 1.

To investigate the behaviour of an arbitrary space curve
r =r(s) near one of its points we choose the ori-
gin O at that point, take the moving basis t,, n,, b,
at O as the coordinate basis i; j, k and count off the na-
tural parameter s from 0. Then
r©0) =0 1) =t,=1, r(0) =keny = koi,
T(0) = Eony + komp = —k% - koj + ook,

where k,, l.co and %, are the values of the functions k,
%k and % for s = 0. Hence, using the Taylor formula,

r(s) =7 (0) +sr(0) -5 ¥ O+ (0)+...

=@t )it (st )i (R L)k

This means that near O our curve is given by the para-
metric equations

T=84.

_ ko o

=S + ..
k

z °6u°s3—l—

If ko 5= 0, %, 5= 0, then the projection of the curve onto
the plane Oij = Ot,n, (the plane is called the osculating
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plane of a space curve at O) approximately coincides
with the parabola

its projection onto the plane Ojk = On,b, (called the norm-
al plane to a space curve at O) coincides with the semi-
cubical parabola

koun

A 3

z= S
6 9

n by{

Projection onto an osculating Projection onto a normal plane
: ‘plane

(called a rectifying plane of a space curve at O) coincides
with the cubical parabola

kg,
r=s, z= ‘;2"33.

This gives a fairly clear idea of how a space curve is
constructed near any of its points (at which curvature
and torsion are nonzero).

Let us now consider the general case of a Euclidean
space of an arbitrary dimension n> 2.
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A curve r =r (s) (referred to the natural parameter)
in an n-dimensional oriented Euclidean space is called
a generic curve if for any s the
vectors b

9
(n-1)

(5) £'(s), ceuy T ()

are linearly independent.

By applying to vectors (5) the
Gram-Schmidt orthogonalization v Y
process we obtain an ortho-
normal family of vectors t, (s),
vowy thog (8). Let t, (s) be a
vector (uniformly defined) extend-
ing that family to a positively Projection onto a recti-
oriented orthonormal basis fying plane

(6) tl (S)’ 8 oo iy tn-i (S), tn (S)
Definition 2. Basis (6) is called Frenet's moving basis

of a generic curve at a point r (s).
Let

n
ti=2ai,-t,-, i=1,...,n
=t
(we omit the argument s to simplify the formulas). Since
by construction the vector t;, i =1, ..., n — 1, is ex-
) )
pressed linearly in terms of the vectorsr, . . ., r, the vec-
tor t; is expressed: linearly in terms of the vectorsr, . . .,

(i+1)
r . Since the latter vectors can be expressed lin-

early in terms of t;, .. ., tiJ;l, this proves that a;; = 0
provided that j>i -+ 1.

On the other hand, since t;t; = §;;, we have ti.t,- +
titj = O, i.e.

aij + aj; = 0.
Therefore a;; =0 and a;; =0 for j <i — 1.
Thus only the coefficients a;,;4+; = — a;4+;, ; can be

nonzero. Setting

by =g, ky=o043 .., kng=0n_g5
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we therefore see that the following formulas hold

ii = kit25
iz = —kt + kztav

(7) R R
tn—i = - kn—itn—z + kn-itm

ti= —Fkn-sbny-

These formulas are called Frenet's forinulas for a curve in
an n-dimensional space.

The functions k, = k, (s), vy kn_y =kn_y(s) are
called the curvatures of a curve. They are defined only for
a generic curve.

In the formulas

. (i)
(8) ti=ﬂ“r+...’+'ﬁ“ri, i=1,...,'n—i,
resulting from applying the Gram-Schmidt orthogonal-
ization process, the coefficients §;; are positive. Therefore
in the reverse formulas
O]

©) r=qyut; + ...+ yist;
the coefficients y;; = P7i are also positive. Differentiating
formulas (8) we get

% i . .o . (1) (i+1)
ti=Pir+ B+ Bi)r ... B +Bi, i) T HBur

i=1, ..., n—1.

On replacing here (for i << n — 1) the vectors 1.-, T,
(i+1)

r by expressions (9) we must get formulas (7). This
shows that

ki = PuVitri+n =1 .oy m—2.

It follows, in particular, that for any curve of the general
type the curvatures

kis . i oy Ky

are positive. The curvature k,_, (the analogue of torsion),
on the other hand, may have any sign.
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Now we show that any n — 1 functions
(10) ki () >0, ..., kag(s)>0, kni(s)

(given on some interval (a, b) of the axis R) may serve
as curvatures for a curve (regular but generally not
simple) and that these curvatures uniquely (up to con-
gruence) define the curve.

Let for definiteness a << 0 << b.

Theorem 1. Let n — 1 smooth functions (10), all positive
except possibly the last, be given on an arbitrary interval
(a, b). Then for any initial point O € # and for any posit-
ively oriented orthonormal basis iy, . . ., i, there exists one

.and only one generic curve ¥ =r (s), a <<s<<b of the

general type having the following two properties:
1° the given functions (10) are the curvatures of the curve,
2° for s = 0 we have

r0 =0 t, =0 =i, ..., t, (0 =i,.

Proof. We carry out the proof in four stages.

Stage 1. At this stage we use the unique existence
theorem for solutions (UES) of linear ordinary differential
equations. .

Theorem (UES). Let m? smooth functions A;; (s), i, j =
1, ..., m be given on an interval (a, b) and let 2, . . .,
z%) be arbitrary numbers. Then there is one and only one fam-
ily of smooth functions z, (s), . .., T, (s), a <<s<<b,
having the jfollowing two properties:

1° identically in terms of s, a << s << b, the relations

:r:1 =Apz, + ...+ ATy,
s . 5
x.m =Amx+ ...+ ApmT,m
hold,
2° for s = 0 we have
2, 0) =20, ..., 2 (0) = 2. DO
We shall apply this theorem to relations (7) which for

the given functions k,, . . ., k, _; are equations of the form
(11) form ~= n®coordinate vectors ¢,, . . ., tj. Thus, ac-
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cording to the UES theorem, there isone and only one
family of vector-valued functions t; (s), o th (8),
a <s<<b, on (a, b) such that

1° for any s relations (7) are satisfied,

2° for s = 0 equations

(12) t, 0) =iy, .

hold.
Stage 2. We consider scalar products ¢t;t;, i, j=1, . . .,
n. According to relations (7), for these products we have

(t:t)° = ii'ij < tiii
=(—kiati kit t;
b (—kjogtiy - Eitie)

. (0) == in

(we assume that ¢, = 0 and t, 4, = 0), i.e. the equations

(13) (t:t))" = —k;y (t;iaty) + E; (t;14t5)
—kj (6it) + kj (6t4)

which may be regarded as equations of the form (11) for

m = w functions t;t;. By the UES theorem there-

fore there is one and only one set of these functions having
the property that for s = 0 they are equal to 8;; = i;i;
(i.e. to zero if i = j and to unity if i = j).

On the other hand, a direct verification shows that the
functions t;t;identically equal to §;; satisfy equations (13).
(Indeed, when i = j — 1, j + 1 all the terms of the sum
— ki85 Kibita, 5 — kju8i, j1 + k0;,54, are ze-
ro and when i = j — 1, j 4+ 1 the sum has only two terms
‘which are nonzero but cancel in pairs.) Hence, for all s
there are, by virtue of the UES theorem, equations
t;t; =6;5,i,j=1,..., n,implying that for any s, a <<
<8< b, the vectors t;, . ..., t, form an orthonormal
basis.

Since for s = 0 that basis coincides with a positively
oriented basis i, . . ., i,, the basis t;, . . ., t, is posit-
ively oriented for any s, a << s << b, too.

ey
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Stage 3. We compose consecutive derivatives for the
vector t;

. .o (n-=-1)
(14) tl? tlv tla s vy t]_

and apply the Gram-Schmidt orthogonalization process to
them. Since t; is a unit vector, we need not do anything
in the first step of the process. Since by Lemma 2 in

Lecture 1 51 is orthogonal to t;, in the second step we must
only normalize it. However, since we have proved t, to
be a unit vector and under the hypothesis &, > 0, accord-
ing to the first of the relations (7) | t; | = k;. In the
second step therefore we obtain the vector

_ &

t2 _— kl .
In the third step we should consider the vector

ty = (kity)" = Feyby—+ Feyty = — K%, + Kty - oyt

subtract from it the linear combination of vectors t, and t,
so as to obtain a vector orthogonal to those vectors and
then normalize the vector. But since according to what
has been proved the vectors t,, t,, t; form an orthonormal
family and under the hypothesis k,k, > 0, the procedure
will obviously yield the vector t,.

It is clear that this reasoning is of a general character
so that at each step of the orthogonalization process we
obtain the corresponding vector t;, i =1, ..., n — 1.
This proves that the family of vectors ty, t,, . . ., t,_; is
uniquely characterized as an orthonormal family of vec-
tors obtained from family (14) by applying Gram-Schmidt
orthogonalization.

Stage 4. Let

(15) r(s)=S ti(s)ds, a<<s<b.
0

Then T 0 =0 and r (s) = t; (s), i.e. for s = O the curve

r =r(s), a <<s<<b passes through the point O and for
any s the vector t; (s) is tangent to it. But for every curve

£—-0737
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the first n — 1 vectors of the moving basis are vectors ob-
tained from the first n — 1 derivatives of the tangent
vector by the Gram-Schmidt orthogonalization process.
According to the foregoing therefore those vectors coin-
cide with t;, . . ., th . o -

As to the last vector of the moving basis, it is uniquely
characterized as a unit vector which together with the
first n — 1 vectors forms a positively oriented basis. Since
the basis t;, . . ., t,, as we have seen, is positively orient-
ed, the vector t, should be the required vector.

Thus, we have proved that for any s the vectors ¢, (s), ...,
t, (s) form the moving basis of the curver=r (s). Since
for these vectors the Frenet formulas (7) are .vahd, the
functions k; (s), i=1, .. ., n—1 appearing in the for-
mulas must be the curvatures of r = r (s).

This completes the proof of the existence of a curve
r = r (s) having Properties 1° and 2°.

The uniqueness of the curve follows from the fact-that
according to the UES theorem, the moving basis t, (s), s
t, (s)is uniquely defined by equations (7) and _the }mual
conditions (12) and the radius vector r (s) is uniquely

defined (by formula (15)) by the relation r (s) = t, (8
and the initial condition r (0) = 0. O

Lecture 3

Elementary surfaces and their parametrizations - Examples
of surfaces - Tangent plane and tangent subspace - Smooth
mappings of surfaces and their differentials - Diffeomor-
phisms of surfaces - The first quadratic form of a surface - Iso-
metries - Beliram?i’s firstdifferential parameter - Examples of
computation of first quadratic forms - Developable surfaces

An intuitive idea of a surface is explicated by analogy
with that of a line, but the explication is more difficult
that that for a line. We shall restrict our discussion to the
analogue of an idea  of an open simple regular arc (though
considering more general surfaces when discussing parti-
cular examples).

To introduce this analogue we begin with an arbitrary
continuous mapping of the form

(1) v: U— 4,

where # is some Euclidean (or only affine) space of dimen-
sion n>>3 and Uis a convex (i.e. containing every
straight segment whose ends are in the set) open subset
of a Euclidean plane R? (a two-dimensional analogue of
the interval I = (a, b)). Once the reference point O has
been chosen in #, mapping (1) is given by a continu-
ous vector function

(2) r=r (u” U)7 (u’ v) eU
which assumes values in the associated vector space 7°

and when, in addition, a basis e, . . ., e, is chosen in 7,
(1) is given by n continuous numerical functions .

3) 2=z, v),... 2"=z"@, ),
4
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the coordinates in the basis e;, ..., e, of the vector
r (u, v).

Mapping (or map) (1) issaid to be a C™-mapping, where
rissome natural number or a symbol oo, if every functi-
on (3) or equivalently vector function (2) has continuous
partial derivatives of all orders < r (recall that when r =oo
this implies the existence of partial derivatives of all
orders). In what follows we shall assume the number r to
be once and for ever fixed and sufficiently large. [In this
lecture any number r > 1 will suit, but in, say, Lecture 5
we shall have to require that r> 3.1

In particular, forthe smooth mapping (1) partial
derivatives

or (u, v) ar (u, v)
(4) Tw=—g» To=—%5,
of the vector function (2) are defined. Smooth mapping (1)
is said to be regular if at every point (u, v) € U partial
derivatives (4) are linearly independent.

Definition 1. Mapping (1) is said to-be a parametriza-
tion if it is:

1° smooth,

2° regular, and

3° moneomorphic (injective and has the property that
if a sequence of points y (Un, Us), (Un, vn) € U, of #con-
verges to a point of the form ¥y (a, b), where (a, b) € U,
then the sequence of points (u,, v,) € U also converges
(to the point (a, b), by virtue of continuity).

Problem 1. Prove that if mapping (1) is smooth and regular,
then for any point (z4, ve) € U there is its neighbourhood V< U
on which this mapping is moneomorphic (is a parametrization).

Definition 2. A subset 2" of a space # is said to be an
elementary surface if there is a parametrization y: U— #
(called in this case a parametrization of the surface X°)
such that y (U) = 2. It is also said that 2" is the support
of a parametrization y.

Elementary surfaces are the two-dimensional analogues
of simple regular arcs (and parametrizations are the ana-
logues of simple regular curves).

Remark 1. In another terminological scheme, which we
shall also use now and again, sometimes without stating
this explicitly, parametrizations (1) themselves are called
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the elementary surfaces. For lines we have avoided such
homonyms by distinguishing between curves and lines.
Unfortunately, there is no such pair of generally accept-
ed terms for the two-dimensional case.

Since, as a rule, we consider only elementary surfaces
in what follows we shall call elementary surfaces simply
surfaces.

Since the parametrization y: U-— # of an arbitrary
elementary surface 2" is an injective mapping, for any
point p € 2 there are unique numbers u and v having the
property that (u, v) € U and y (u, v) = p. These numbers
are called the coordinates of p in thegiven parametrization.
Traditionally additional terms are used for these coordin-
ates, they are called curvilinear or local, although no other
coordinates on the surface are usually considered, and
therefore these terms are not necessary.

Speaking loosely, numbers u and v are often called the
coordinates on a surface (1); this is a manifestation of
a general tendency to confuse in usage surfaces and their
parametrizations.

Every curve in U with parametric equations

6) u=u(), v=v({), tel,
is mapped by parametrization (1) of a surface 7' to a curve
(6) r=r @), v(), tel,

of a space 4. Curve (6) is said to lie on & and equations (5)
to be its parametric equations in coordinates u and v.
In particular, curves u = const and v = const (which
are the images of coordinate lines in U) are called the
coordinate lines on the surface & and their totality is the
coordinate network.
For any open subsets U, U* —R2 every mapping

(7) ¢: U= U

is given by a pair of functions

8 u=u(u* v*), v=nuov@u* v*, u* v*)ecU*
having the property that for any point (u*, v*) € U* the

point (u, v) = (u (u*, v¥), v (u*, v*)) isin U. Mapping (7)
is said to be a C"-mapping, whereris a natural number or
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a symbol oo, if for r 5= oo functions (8) have continuous
partial derivatives of all orders << . Smooth mapping (7)
is said to be a diffeomorphism if it is bijective and the
inverse mapping ,
(8) o l: U~ U*
is also smooth.

Two parametrizations

)] v: U—> A and  y*: U*—> #

are said to be equivalent if there is a diffeomorphism (7)
such that
(10) TFP=v00¢

Since giving a parametrization of a surface 2 is equi-
valent to giving curvilinear coordinates on .Z°, diffeomor-
phism (7) is also said to perform a change of coordinates
on 2 (or to specify a transition from coordinates u, v to
coordinates u*, v*).

Problem 2. Prove that relation (10) is an equivalence
in the general algebraic sense (is reflexive, symmetric and
transitive) and hence we should speak about classes of
equivalent parametrizations.

Itis clear that equivalent parametrizations have the same
support. Conversely, we can easily show that parametriza-
tions (9) having the same support are equivalent. This means
that elementary surfaces are bijectively associated with
equivalence classes of their parametrizations and there-
fore can be identified with them.

Problem 3. Prove the last statement. (Notice that for this

to be true all the three conditions 1° to 3° of Definition 1 are essen-
tial. Cf. the proof of Proposition 1 of Lecture 1.)

In Lecture 15 we prove the general proposition of which
this statement (as well as Proposition 1 of Lecture 1) is
a special case.

Examples of surfaces.

For clarity we restrict ourselves to surfaces in a three-
dimensional Euclidean space. The coordinates z, y, z
will be assumed to be rectangular.

Example 1. The equations

(11) z=Rcosu, y=Rsinu, z=v
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give a right circular cylinder in a three-dimensional Euc-
lidean space. This is not an elementary surface in the sense
of Definition 2, since for — oo << u << + oo each point
of the cylinder is covered an infinite (countable) number
of times by the points of the plane R2. To obtain an elem-
entary surface the cylinder should be cut through along
its element, i.e. in (11) the parameter u should satisfy
the inequalities 0 << u << 2m. The entire cylinder, how-
ever, is covered by two such cut cylinders.

A circular cylinder

A surface of revolution

The coordinate network on cylinder (11) consists of
vertical straight lines u = const and horizontal circles
v = const.

Example 2. Let z = z (v), z = z (v) be a simple regular
curve in the plane Ozz not intersecting the Oz-axis. The
surface with parametrization

(12) z=z@Wcosu, y==z@)sinu, z=1z(®)
is called a surface of revolution and the curve z = z ),

z = z (v) is its profile. Graphically, surface (12) is obtain-
ed by rotating its profile about the Oz-axis.
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The regularity of parametrization (12), i.e. linear
independence of vectors

r, = (— z (v) sin u, z (v) cos u, 0),

r, = (z' (v)cosu, z' (v)sin u, z’ (v)
is ensured by the regularity of the profile (i.e. by the
copdition z’ (v)* 4 2z’ (v)? = 1) and by the fact that the
profile doés not intersect the Oz-rotation axis (i.e. by

“z (V) %= 0).
The coordinate network on surface (12) consists of plane
curves which are rotations of the profile about the Oz-axis

A sphere

(they are called meridians) and circles perpendicular to
them (parallels). To make surface (12) elementary, it
should be cut through along a meridian.

A cylinder is a surface of revolution whose profile is
a straight line z = R, z = v.

A sphere

2= Rcosvcosu, y=Rcosvsinu, z= Rsinv

of radius R with centre at O is a surface of revolution of
a circle with profile z = R cos v, z = R sin v. The coor-
dinates u and v on thesphere are the well-known “geo-
graphical coordinates”, longitude and latitude, and the co-
ordinate curves are geographical meridians and parallels.

Strictly speaking, the profile of a sphere is only its
semicircle — m << v << 4+ xt (which excludes the poles).
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To obtain an elementary surface it is necessary to exclude
one meridian (the “line of change of dates”).

Example 3. A surface r = r (u, v) is said to be a ruled
surface if

(13) r (e, v) = p (W) + va (),

where p (1) and a (u) are vector-valued functions having
the property (ensuring regularity) that the vectors

A ruled surface

p'(w) + va’ (u) and a (u) are linearly independent for all u.
and v under consideration (so that, in particular, a (u) 5%
0 for all u). A straight line with a direction vector a (u,),
which passes through the point with radius vector p (u,)
is a coordinate curve u = u, = const. Thus, graphically,
aruled surface is generated by various positions of a
moving straight line. Cf. Definition 1, Lecture 1.23.

It is clear that we may assume without loss of gener-
ality the vector a () to be a unit vector:

la () | =1 for all u.

If o' (w) =0 for all u, i.e. p (u) = const, then, after
translation of the origin, we obtain instead of (13) an
equation of the form

(14) . r=uva (u.
It is a cone whose directrix is a regular space curve r =

a (u). [In (14) it must be assumed that v > Qorv << 0
(for v = 0 is a singular point of the cone which divides
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it into two nappes). But if the generators of the cone
intersect its directrix at several points, additional con-
straints have to be introduced on v.]

Ifa’ (u) = O for all u, i.e. a (u) = const, then surface
(14) is a cylinder with directrix p = p (u) (generally
a space one).

il§

A cylinder

If the vector p’ is not identically zero, then, going over
if necessary to a smaller domain in R2?, we may assume
that p’ (u) =0 for all u. Then p = p (u) is a regular
curve in space and we may assume that u is the natural
parameter (arc length) on that curve. Cone (14) may also
be specified by an equation of form (13) with p’ (u) 5= 0.
To do this it is sufficient to put p () = a (v) in (13)
(f a’ (w) %= 0).
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If a (u) is a tangent vector t (u) of a curve p = p (u),
then surface (13) is called a surface of tangents. A surface
of principal normals and a surface of binormals are defined
similarly.

Notice that for a surface of tangents all points of the
curve p = p (u) are singular points of the surface at which
the regularity condition fails. (They form the so-called
edge of regression of the surface of tangents.)

A tangent plane

Again let 2 be an arbitrary (elementary) surface in an
n-dimensional affine space # with parametrization r =
r (u, v) and let p, be an arbitrary point of 2" and r, =
r (u,y, vo) be its radius vector. By the regularity condi-
tion the values

or or
ty, =5, (Ups Vo)s  To,=—7-(Ups Vo)

of partial derivatives of the vector function r = r (u, v)
at the point (uo, v,) are linearly independent, i.e. the
bivector r,,/\ r,, is nonzero. A two-dimensional plane,
which has a direction bivector r, A r,, and passes
through the point p, is therefore defined in 4. The vector
parametric equation of that plane has the form

(15) r= l'0 + aruo + brvo,

where a and b are parameters.

Definition 3. Plane (15) is called the tangent plane of
a surface 2 (or to a surface ') at p,. The corresponding
subspace of the associated vector space 7" (consisting
of vectors of the form ar,, 4 br,) is called a tangent
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subspace and is denoted by T, Z and its vectors are
tangent vectors of & at p,. To stress its two-dimensional
character, the tangent subspace is often called a tangent
plane.

This terminology is justified by the fact that for any
curve (5) on Z passing (say, for ¢ = t,) through p, its
tangent vector

(16) ' (t) = u’ (to)ru, + V" (o) Ty,

is in T,,Z, and conversely any vector ar, + br, in
Tp,Z can be represented in form (16) (it suffices to con-
sider a curve with parametric equations u = u, + ai,
v = v, + bt, t €I, where [ is an interval of a ¢-axis such
that (u, + at, vy + bt) € U for any t € I). Tangent vectors
of a surface are thus vectors tangent to the curves on that
surface.

Relation (10) which defines a change of coordinates on Z°
can be written in radius vectors as a formula

r* (u*1 U*) =r(u (u*v v¥), v (LL*, v¥))

differentiation of which gives the relations

(17)

Ty* ———Wl'u—i—m Ty

It follows from relations (17) that the vectors ri+ and ry»
are linearly equivalent to r, and r, and hence generate
the same subspace. This proves that for any point p € &
the vector space TpZ is defined correctly (is independent
of the choice of parametrization r = r (¥, v)). When
changing the parametrization in T,Z only the basis
r,, r, is changed, by formulas (17).

The vectors of space T,Z are usually denoted by dr
and their coordinates (in the basis r,, r,) by du and dv
(these coordinates being written to the right of the vec-
tors r, and r,). Thus, in the notation

(18) dr = rydu + rydv
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for any vector dr of T2 . It follows directly from (17)
that the coordinates du, dv are connected with du*, dv*
in the basis r*., rf. by the relations
_0u g% Y *
du = ou* du* + ov* dv*,

ov % v *
s WW* 5w v

(19)
dv =

£

which formally coincide with the formulas for differen-
tials known from calculus (which is the basic argument
for notation (18)).

Now let us consider together with the surface 2
its parametrization vy: U— # given by the vector
function r =r (u, v), (4, v) € U, another elementary

surface & with parametrization y: U-— # given by the
vector function r = r (u, 1;), (Il, v) EU.
Since y and vy are injective mappings, every mapping f:

Z — & uniquely defines the mapping f: U— U which
sastisfies the relation

(20) foy=vef

and uniquely defines the mapping f. Graphically rela-
tion (20) means that in the diagram

@) | } Tls
U0

going from the bottom left-hand corner to the top right-
hand corner along with the two possible paths leads to
the same result. [Such diagrams are called commutative.]

The mapping f is said to represent a mapping f in para-
metrizations y and \; and the functions
(22) U=u (u, v), v =" (w, v), (u,v)€U

which specify f are said to give f in coordinates u, v and
* %
u*, vk,
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A mapping fis said to be smooth if so is ¥ ie. if so are
functions (22). This definition is correct (if f is smooth

for one choice of parametrizations y and %, then it will be
so for any other).

We associate every smooth mapping f: £ — 2 and
any point p € & with a linear mapping

(23) T,2—~T,%, p=1()

of tangent spaces carrying vector (18) of the space TpZ
into the vector

dr =1, du + r.dv
u v
of the space T % , where in full accord with the differ-

ential calculus formulas

A ou ou
du-—‘_—m— du+ 0 dU,
(24) i N
& av av
dv = o du + = dv.
Mapping (23) is defined for the given parametrizations

v, \; of surfaces 2, 2 and therefore the question arises as
to whether it is correct, i.e. independent of the choice
of these parametrizations.

Suppose, for example, we have replaced the paramet-
rization y by another parametrization y*: U*— #£of Z.
By definition y* = y o ¢, where ¢: U*— U is some
diffeomorphism given by the functions

u == (U™, %), v v (u®; vY).

For the corresponding bases r,, r, and ry«, r,« of T,Z
formulas (17) hold and for the corresponding coordinates
du, dv and du*, dv* of the tangent vectors formulas (19)

do. In coordinates u*, v¥, and ZL, v the mapping f is
obviously specified by the functions
u* (u*, v*) = u (u (u*, v*), v(u*, v¥),
o ¥, v¥) =0 (u ¥, %), v @, oY)
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and hence the vector-dr of T,Z, which has coordinates
du*, dv* in the basis ry«, r,, will carry mapping (23)

constructed using the parametrizations y*, VA into the
a L)
vector dr* of T.%Z which has coordinates
o

A Ou* u*

%
du* = 5% du* + 5% dv¥,
. 90* av*

* * 3 90 gk
dv g "+ dv

in the basis ;A, r.. On the other hand, on substituting in
u v

formulas (24) for the coordinates du, dv of vector dr
expressions (19) for the coordinates du, dv in' terms of
du*, dv* and taking into account the fact that according
to the rules for differentiating composite functions
known from calculus the equations

ou  du & du v qur du  du i du v ou*
du  Qu* dv  du* ~ du* ’ du Ov* dv  Av* v 7
v ou i w v ov* W ou a o v _ ov*
du du* dv  du* du* ’ du dv* v Gv* T dv*

hold, we immediately see that du = du* and dp = dl;*,

i.e. that dr — dr*. This shows that dr is independent of
the choice of parametrization y. Similarly it can be shown
(do it!) that the vector is also independent of the choice

of parametrization y. Consequently, mapping (23) is
defined correctly.

Definition 4. Mapping (23) is called the differential of
a mapping f at a point p (or the principal linear part of f)
and is denoted by (df)p (or Typf).

Problem 4. An arbitrary curve () on Z is carried by f
into a curve

@5) wu=u@@®, v@), v=v@®),v), tel
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on Z. Let for ¢ = t, the curve (5) pass through p, of 2"
Show that the differential (df)p, of f carries the tangent
vector to the curve (5) at p, into the tangent vector to the
curve (25) at f (po). ‘

A mapping f: Z'— Z is called a diffeomorphism if so is
the mapping 7. (This definition is correct.) Functions (22)
which specify a diffeomorphism have, as is known from
calculus, the property that their Jacobian

ou  ou
ou av
o ov
ou av

is nonzero. This means (see formulas (24)) that the differ-
ential (df) p of the diffeomorphism f at every point p € &' is

an isomorphism of a vector space T, onio T;f&'.

For U = U, the formulas u = u, v = v obviously de-
fine a diffeomorphism. This diffeomorphism is a mapping
which preserves the coordinates of vectors in another system
of coordinates. .

It is interesting to note that for any diffeomorphism

2 T— & and any parametrization y: U—> A of X there

is a parametrization y*: U — # of Z such that in y and y*
the diffeomorphism f is a mapping which preserves the

coordinates of vectors in another system of coordinates.

Indeed, let %’3 U— # be an arbitrary parametrization
of % and let the mapping f be represented by the diffeo-
morphism f: U— U in y and 7. Consider a composite
mapping y* = \;o . Since f is a diffeomorphism, this
mapping is a parametrization of Z equivalent to §

Since foy =y of = y*oid, where id is the identity
mapping, in y and y* the deffeomorphism f is represented
by id and hence preserves the cpordinates of vectors in
another system of coordinates. [
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As we shall see later, this property of diffeomorphisms
often significantly facilitates their study. -

Now we shall assume a space # containing a given sur-
face 4 to be Euclidean. Then a Euclidean structure
arises in every tangent subspace TpZ, the square of the
length of an arbitrary vector (18) of that subspace being
expressed as follows:

(26) dr? = F du? + 2F du dv 4+ G dv?,
where

E '—_—1‘12“ F=rurvi G-—’:l'?

are metric coefficients of the basis r,, r,.

Definition 5. A quadratic form (26) of variables du
and dv is called the first quadratic form of a surface Z'. It
is usually denoted by I or I (dr). Thus by definition

I = dr?.

Note that the coefficients £, F, and G of the first quadra-
tic form depend on p € Z and in the coordinates u and v
are the smooth functions

E =E (u, v),v F:Fb(u, v), G=G(u,v

of u and v.

Remark 2. The expression E du? -+ 2F du dv + G dv?
is usually understood as a quadratic form. From the mod-
ern point of view it should be treated as a quadratic
functional on a space T,Z whose value on vector (18)
is E du® + 2F du dv + G dv’.

The length | r’ () | of the tangent vector r’ (¢) of curve
(6) on & can be expressed in view of (16) as follows:

I @)=V @@=V @)r,+v @)r,)?
= VEu @2 +2F u'() V" (1) + GV'(1)?,
where, of course, £, F, and G areregarded as functionsof #:
E=E@(@,v@E), F=F@u@),v@),
G=G(u (@), v()

5—0737
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For the length s of curve (6) this yields the formula
b
(27) -s=S'VEwuy+2Fwanan+quym

which can be rewritten in the following handy mnemonic
form:

s=\ VE@wToFavarean,
L .

where L designates curve (6).
The formula

(28) ds? = E du® + 2F du dv - G dv?

is of a still more conventional form (in shorter notation
ds? = I (dr) or ds* = dr? which means that the first quad-
ratic form I specifies the square ds® of the element of length.

"[It should be remembered that both the formulation
and formula (28) are conventional in character, they
serve only as shortened expressions of formula (27).]

By the general rules of linear algebra, for the angle 6 be-
tween two tangent vectors

dr =r,du +r,dv and ©6r =r,6u 4 rdv
we have

cose—_d'ls"__
T ldr| |6r)|”
i.e.
(29) cosb= E du du+F (du bv+-6u dv)+ G dv v

V E du?+-2F du dv+G dv® V E.8u? -+ 2F 6u dv+-G dv?

which can be arbitrarily written in the following mne-
monic form:
1d, 8
Vi@ VI®E
The angle between two tangent vectors
v’ (t) = u' (L) ry, + V' (fo)r,, and
ry (bo) = Uy (9)r1u, + 5 (f0) i,

cos 0=
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at p, is called the angle between two curves

r=r@(@), v() and r, =1, (u; (2), v;(2)
on ¥, which for ¢ = ¢, pass through the same point p,.
We have

r’ (2o) T} (2o)

o = T T

where
AOTAO . o
= Eou’ (1) u (1) + Fo (u' (2) V5 (B) + 1y (£0) V' (o))
+ GV’ (2y) v; (£)s
7" (to) | = V Eo" (26 + 2Fou’ (1) v (t) +G” (20)?,
[ry (Z)] = VEou; (1) + 2F gui (2,) v; (£y) + Gy (%)?

and

Ey = E (uo, vo) = E (u (to), v (),

Fo =F (ug, vo) = F (u (to), v (t)),

Go = G (ug, Vo) = G (u (), v ()
aie the values of the coeffcients of the first quadratic form
at p,.

In particular, for the cosine of the angle between two
coordinate lines u = const and v = const, we get

cos 0= —_F——_—.

VEVG'

from which it follows that the coordinate lines u = const
and v = const are orthogonal if and only if F = 0.

Thus we can compute the lengths of curves on a surface and
the angles between them knowing only the first quadratic
form of that surface, i.e. the Euclidean structures on all
tangent planes.

Known in calculus is the concept of area of an arbit-
rary part D of a surface 2 as the limit of areas that
approximate that part of polyhedral surfaces. This limit
(if any) is expressed by the integral

SDS VT (r,, r,)dudv,
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where
I, r,T, E F
St _ — __F2
P(r,: )= rre, 12 |"|F G EG—F

is the Gram determinant or Gramian of vectors r, and r,.
An intuitive idea of this formula is that the area of an
infinitesimal curvilinear parallelogram of a coordinate
network with vertex at a point (¢, v) and sides du and dv
is approximately equal to that of a parallelogram in

—
’
/I,{;/l {’IIIA
=z

u+du

a tangent plane with sides r,du and r,dv (see the figure).
On the other hand, it is easy to prove (see Lemma 1 of
Lecture I1.26) that this area is equal to }/T (ry, r,)du dv.
In calculus it is said that an element of a surface area
is equal to V EG — F? du dv.

Thus the first quadratic form allows us to compute
areas on 7.

For brevity a linear isomorphism of Euclidean vector
spaces is called an isometry. By definition (see Defini-
tion 7 of Lecture I1.14) the linear isomorphism ¢: 7°— 77,
is an isometry if

(30) Xy = @X- @y

for any vectors x, y € 7°. For condition (30) to hold it
suffices that x =y, i.e. a linear mapping ¢: 7" — 7",
having the property that

31) x? = (¢x)? for any vector x € V"

is an isometry. (To prove this it suffices to apply rela-
tion (31) to the vector x + y.)
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In coordinates the mapping ¢ is written by the following
linear formulas
yi = a;:x"

and the scalar squares x?, x € 7°,'and y?, y € 774, by the
quadratic forms

x? = gijxixjf y: = hiy'y’.
For this notation equation (31) implies that substituting
expressions y' = ajz’/ in the form h;y'y’ yields g;x'z?,

‘i.e. that there are

8ij = hkza’;aa}-
In particular, for Euclidean two-dimensional spaces
T, 2, T.& and the differential (df),: T,Z — T;).%A',
P
p = f (p), of the diffeomorphism f: 2 — 2 the fact

" that conditions (31) hold at all points p € & implies

that substltutmg in the first quadratic form E du? —I—
2F du dv + G dv* of .% expressmns (24) for du and dv

(and in its coefficients E F G, expressions (22) for u and v)
yields the first quadratlc form E du® + 2F du dv +
G dv? of &', which is identical in u and v to

E (u, v)

k9 (L) p2R G, )R 2 4G D (4 )
F (u, v)

au 6u A 8u 611 6u, 0v
=E(u, v) 5= S+ F (u, ) e
du av u ov v au

G i 5
(32)
G (u, v)

=Ew v (5 VP ok, 0 S B8, b ()
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Thus for a diffeomorphism f: & — & linear mappings
@)p: To¥>To &, p=10)
are isomelries ‘for all points p € X' if and only if equa-

tions (32) hold identically in u and v.

For the diffeomorphism f: Z"— z preserving the coor-
dinates of vectors in another system of coordinates this
condition implies that in the coordinates under consid-

eration the first quadratic forms of & and & coincjde (or
to be exact, they differ only in the notation of variables).

Definition 6. A diffeomorphism f: 2" — & is said to be

an isometric mapping of a surface 2 onto 2 (or simply
an isometry) if for any curve

(33) u=u({), v=v(), a<t<h,
on Z its image
pn=u(t), v=0(t), a<t<b
for &, where w (£) = u (u (£), v () and v (£) = v (u (8),
v (1)), has the same length, i.e. if
b

S VE@®w QFL2F @) w v )+ C @)V (1) dt

a
b

= V Bty w (ty2+2F (@) ()0 () -G (£) ' (1)2dt,

a

where g
E@®=E@@®, v@®), FQ@=F(u®,v®),
G(t) =G (u (), v()
and similarly
EW)=E@@® vy, F@ =F@®, v,
¢ @) =G @@, v).
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Surfaces for which there is at.least one isometric mapping
X' — & are called isometric.

Proposition 1. A diffeomorphism f: & — 4 is an isomet-
ry if and only if for any point p € L so is its differential

@)y ToZ T, 2, p=1(p).

Proof. According to the above remarks we may assume
without loss of generality that the diffeomorphism f acts
as a function defined by equating coordinates. Then for

any curve (33) on .2 its image on 2° under the diffeo-
morphism f has the same parametric equations. (33) and
the statement that the differential (df), of f is an isometry
at every point p € 2 will mean that the first quadratic

forms of 2 and 2 differ only in the notation of variables.
Formulas (27) will therefore be identical for both curves
and hence the lengths of these curves will be identical.
Consequently, the diffeomorphism f will be an isometry.

Conversely, let a diffeomorphism f: 2" — z preserving
the coordinates of vectors in another system of coordi-

- nates be an isometry. This means that for any smooth

functions u=u (t), v=v (t), a<< t<< b with the prop-
erty that (u (¢), v (), € U, a<< t<< b, we have
b

S VE®w @01 2F () u ()0 ()G () v ()2dt

a

b — . — -
e S VE@uw ()2 42F (tyu’ (1) v’ (8) +6 (1) v’ (t) dt.

a

Differentiating thisidentity with respect to b (and replac-
ing b by t) we obtain, after squaring, the identity

E@u @ +2F@t)u @) v () + G (1) v (1)
=E@®u @ +2E @) uw () v @)+ E@2) v ()

In particular, this identity must hold for linear functions
of the form

u(@) =ugtat, v(i)=v,+pt, |[t|<e,
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where (u,, v,) is an arbitrary point of a domain U, a and f
are arbitrary numbers, and ¢ > 0 is a sufficiently small
positive number. But in this case, after substituting
t =0 it becomes .

E a2 4 2Fqaf + Gop* = an2 + 2[:’0“5 + éoﬁ2’

where E,, . . ., éo are the values of the functions £, . . ., G
at (uo, Vo), and is therefore possible, in view of a and B

being arbitrary numbers, if and only if £, = Eo, F,=7F,

and G, = Gy, i.e. if E =E,F = Fand G=6G everywhere
in U. Hence linear mappings (df), are isometries. [J

Corollary 1. On isometric surfaces the corresponding curves
intersect at the same angles, and the corresponding domains
have the same areas. [J

Corollary 2. Two surfaces are isometric if and only if
local coordinates can be chosen on them in which the first
quadratic forms of those surfaces coincide. []

Of course, this criterion for isometry is extremely
ineffective (how can we guess if there are local coordi-
nates it provides for?). Our final goal (to be achieved in
Lecture 5) is to make this criterion effective, but to do
this we shall have to go quite a long way.

Assuming a surface to be made from a flexible but un-
stretchable material and bending it arbitrarily we shall
not change the lengths of curves on the surface and hence
get an isometric surface. Based on this graphical repre-
sentation the founders of the theory of surfaces in the 19th
century called isometries the bendings. This terminology
has partly survived till the present day, but nowadays
bendings are usually understood in a narrower sense, as
isometries that can be connected with the identity trans-
formation by a continuous family of isometries. All
mathematicians were sure for a long time that in a local
situation, i.e. in a sufficiently small neighbourhood of
an arbitrary point, any isometry is a bending in this
sense. Relatively recently, however, N. V. Efimov has
shown that this is wrong by constructing an appropriate
counterexample.

Suppose a surface is inhabited by intelligent creatures
that can measure lengths, areas, and angles, but cannot
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reach out of the space. Then with any bending of the
surface all their geometry will remain the same and they
will simply fail to notice this bending. For this reason
isometric surfaces are said to have the same inirinsic
geometry.

Here is one important example of an intrinsic and geo-
metric construction.

According to the general results of linear algebra (see
Lecture I1.14). for any Euclidean space 7° with metric
tensor g;; the conjugate space 7°* is a Euclidean space
with metric tensor g¥/ whose components form a matrix
|| g% || inverse to the matrix || g;; || of the components of
g;;. For any covector & = (&, . . ., §,) in 7°* its length
| £ | is thus defined whose square is expressed as follows:

I & | = g8

In our case, for a two-dimensional Euclidean space
T,Z the matrix || g;; || is of the form

E F
[7 el
and hence || g7 || is of the form
. G —F
FG—F? | —F E

gor the length | & | of an arbitrary covector § on T, 7 we
ave

lg Iz — ng_ ZFE"] +ET|2
EG—F? i

where §, ) are the coordinates of that covector.

An example of the covector § is the gradient (3—3 , g—ff)
of an arbitrary smooth function ¢ = ¢ (u, v) on 2Z°. The
square of the length of that covector is called Beltrami’s
differential operator of the first kind of the function ¢
and is denoted by A;@. Thus by definition

GOl —2F @y ¢y +E@2

A= EG—F?
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This construction is invariant, i.e. independent of the

choice of parametrization, and for any isometry f: 2" — z
we have

(34) A (pef) =7pof

(check it!). In this sense it belongs to the intrinsic geomet-
ry of the surface 2.

Consider in conclusion some examples of computing the
first quadratic form of surfaces in a three-dimensional
Euclidean space. In these examples the surfaces are not
elementary as a rule. But they are easily reduced to
elementary ones by cuttings and restrictions of the
domains of definition of parametrizations.

Example 4. The plane Ozy has the parametric equa-
tion r=ui-+vj in coordinates u = z and v = y. There-
fore r, =i, r, =j and hence £E =1, F =0, G =1,
i.e. for a plane,

(35) = du? + dv*.

(The result is easy to foresee without any computations.)
An open subset of a plane (considered as a surface in
space) also has the same quadratic form.
Example 5. For a circular cylinder

r=Rcosu-i-+ Rsinu-j 4+ v-k

we have r, = — R sin u-i + R cosu-j and r, = k.
Therefore

E=r,=R, F=rpg,=0, G=r2=1,

i.e. for a cylinder
I = R?du? + di?.

Introducing a new coordinate u; = Ru (and denoting u,
by u) we transform this to form (35).

Thus, there are coordinates in which the first quadratic
form of a plane and that of a cylinder coincide! This does
not mean yet that the plane and the cylinder (of course,
cut in; see Example 1 above) are isometric, since for
a cylinder the coordinates range over only some region
in R? and so the cut-in cylinder is only isometric to
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a part of the plane. We express this by saying that the
cylinder and the plane are locally isometric.
An isometric mapping of a cut-in cylinder onto a flat
region is produced graphically by gradually unbending it.
Example 6. For a surface of revolution

r=2z W) cosu-i+z@sinu-j+ z(@-k
we have
r, = —z (v) sin u-i + z (v) cos u-j,
r, = 2'(v) cos u-i + z’ (v) sinu-j + 2z’ (v) k.
Hence
‘E = z (v)? sin’u + z (v)? cos’u = z (V)?,
F = — 2 (@) sinu-z'(v) cosu + z (v) cosu-z'(v) sinu =0,
G =z'(v)? cos’u + z'(v)? sin®u—+3'(v)?=2'(v)*+32'(v)?,
so that for the surface of revolution
1=z @3du?+ (' )2+ 7 (v)? d

It is graphically obvious that the meridians and paral-
lels of any surface of revolution are orthogonal. The equa-
tion F = 0 could therefore be foreseen without any
computations as well.

When the profile x = z (v), z = z (v) of a surface of
revolution is referred to the natural parameter v =s
(and therefore z’ (v)*> + 2z’ (v)> = 1) the form I is parti-
cularly simple:

I =z (v)%du® 4 dv.

In particular, we see that the first quadratic form of
a sphere of radius 1 is of the form

(36) ;o I = cos®v du? 4 dv.

Cartographic experience shows that no portion of a sphere
however small can be bent into a plane. This means
that no transformation of coordinatescanconvert form (36)
into form (35). But how is this to be proved? The answer
will be given in Lecture 5.

Example 7. The curve formed by a chain of uniform
density hanging freely from two fixed points not in the
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same vertical line is called a catenary and a surface of
revolution whose profile is a catenary is called a catenoid.

In mechanics (statics) a catenary is the graph of a hy-
perbolic cosine. Thus for a catenoid z (v) = cosh v,
z (v) = v and hence

z (V) =cosh?v and 2’ (v)?-+2z' (v)®=sinh?v-+ 1 = cosh? v,
Thus for the catenoid
(37) I = cosh®v (du® + dv?).

Example 8. Let a straight line perpendicular to the
axis Oz rotate uniformly near it remaining perpendicular

A catenoid A helicoid

to it in rotation and simultaneously ascending in helical
motion (to a height proportional to the angle of rotation).
The ruled surface generated by a moving straight line is
called a helicoid. It has the form of a helical ramp for
cars to drive up.

If v is the parameter on the straight line and u is the
angle of rotation, then the helicoid will have the equation

r=vcosu-i +vsinu-j+ u-k.
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Therefore .
r, = —vsinu-i +vcosu-j+ k,
r,=cosu-i +sinu-j
and hence '

E=1+ F=0, G=1.
Thus for a helicoid
I=(1 4 v? du® + di2.

Let us transform this form by introducing new coordi-
nates u,, v; related to the coordinates u, v as follows:

u = u;, v = sinh .
Then
1 4+ v* =1 4 sinh?,; = cosh?v,,
du = du;, dv = cosh v,dv,
and therefore (we drop the indices in the new coordinates)
I = cosh®v (du? + dv?),
which coincides with form (37).

This proves that the catenoid and the helicoid are locally
isometric (more exactly, the catenoid cut-in along a merid-
ian is isometric to a part 0 << u << 2n of the helicoid),
there being an isometry which sends meridians of the

catenoid into rectilinear generators of the helicoid.
Example 9. For an arbitrary ruled surface

(38) r=p ) + va (),

where (see Example 3) p = p (u) is a regular curve referred
to the natural parameter and a (u) is a vector function
such that | a (u) | =1 for all u, denoting differentiation
with respect to u by a dot, we have

ru=é+va., r, = a.
Since 4;2 =1, and a®> = 1 and aa = 0, we have
E =1+ 2pa+ v'a® F=pa, G=1.

) If, in particular, a = p (a surface of tangents), then
pa=a?=1 (ie. F=1) and pa =0 and a% — &?
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where k is the curvature of the curve p = p (u) (i.e. £ =
1 + k%?). Thus for a surface of tangents

(39) I=(1 4+ k%? du® + 2dudv + dv*.

But if a (u) is the binormal vector of the curve p =
o (u), then g.)a =0, pa = 0 and a® = x?, where x is the
torsion of the curve p = p (u). Hence for a surface of
binormals

I =1 4+ »*? du® 4 dv’.

We thus see that the first quadratic form of a surface of
tangents depends only on the curvature of a given curve
and that the first quadratic form of a surface of binormals
depends only on the torsion of the surface.

For surfaces of tangents this implies that every surface
of tangents is locally isometric to a plane. Indeed, consider
a plane curve with the same curvature k = k (w) (such
a curve exists by virtue of Theorem 1 of Lecture 2). The
first quadratic form of the surface of tangents for that
curve is of form (39). But, on the other hand, it is clear
that a surface of tangents of a plane curve is, outside
its singular points, a domain in the plane. There exists
therefore a change of coordinates transforming the first
quadratic form dz® 4 dy* of the plane into form (39).
(This change of coordinates has the form

g=z@+2 @Wv, y=y W +y @,
where z (x) and y (u) are functions such that ' (u)? +
v ?=1and z'(w)® +y" W=k @) O
This' isometry can be carried out by continuous
bending, gradually deforming the curve p = p () into a

plane curve.
For this reason surfaces of tangents are called develop-

able surfaces (or developables) (development into a plane

is meant).
If a (u) = p (u), then surface (38) is a cone with vertex

at the origin (and the curve p = p () is the intersection
of the cone and the unit sphere | p | = 1). In this case
we have

i)i.lzp2=1, az =1, (')a=0,
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from which for the first quadratic form we get
I=(1 + v)%du® + dv*

Here the change of coordinates (u,v) — (u, 1 + v
suggests itself, which converts the last form into a
slightly simpler form

(40) I = v%du?® 4 div’.
Now let us introduce new coordinates
z =vcosu, Yy =vsinu.

Then
dx = — v sin u du + cos u dv,
dy = vcosudu + sin u dv

and hence
dz? + dy? = vidu® + dv.

This proves that the cone is also locally isometric to
a plane (more exactly, each nappe of a cone cut-through
along a generator is isometric to some plane sector;
the fact is intuitively ‘obvious). For this reason cones
are also reckoned among developables.

Notice that form (10) is nothing but the first quadratic
form of a plane referred to polar coordinates r = v
and ¢ = u. _

Finally, if the vector a (u) is constant (and therefore
a = 0), then surface (38) is a cylinder. We may assume
without loss of generality that the directrix p = p (u)
of the cylinder is a plane curve whose plane is orthogonal

to the vector a (and hence pa =0 and pa = 0). Therefore,
as for a circular cylinder (Example 3),

I = du? + div?.
For this reason all cylinders are also reckoned among
developables.

In Lecture 4 we shall show that among ruled surfaces
only developables (i.e. cylinders, cones, and surfaces of
tangents) are locally isometric to a plane, and in Lecture 5
it will be shown that developables exhaust all the surfaces
of a three-dimensional space which are locally isometric
to a plane.
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Normal vector- Surface as the graph of a function. Normal
sections- The second quadratic form of a surface- The Dupin
indicatriz- Principal, total and mean curvatures- The
second quadratic form of a graph- Ruled surfaces of zero
curvature. Surfaces of revolution

In this lecture we shall take a closer look at surfaces in
a three-dimensional oriented Euclidean space. As a rule
we shall study syrfaces only locally, i.e. in sufficiently
small neighbourhoods of their points. We may therefore
assume, without loss of generality, all surfaces to be
elementary.

So let 2" be an arbitrary elementary surface in a three-
dimensional oriented Euclidean space # and let r =
r (u, v) be its arbitrary parametrization. Then at every
point p € & there is a single vector m of unit length
which is perpendicular to the tangent plane and forms
together with vectors r, and r, a positively oriented
basis for the space. This vector is given as follows:

_ Iy XTIy
|ry Xry!

and is called the normal vector to 2 at p (and the basis
Ty, T'y, 0 is called the moving basis of the surface). See the
figure on page 68.

By definition the square of the length |r, X r, |* of
a vector product is equal to the area of the parallelogram
constructed on r, and r,, i.e. (see Lecture 3) to the
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Gramian T (r,, r,) = EG — F? of r, and r,. Hence
ry XTy
ne ——m———
VEG—FE °

It is this formula that is usually used to compute n.

Choosing in # rectangular coordinates z, y, and z
with the origin O at a point p and the Oz-axis directed
along the vector n, consider a Jacobian -matrix

Ty Yu 2u
Ty Yo 2v

whose rows are the coordinates of r, and r,. The condition
imposed on Oz implies, in particular, that

Ty Yo

Therefore according to the inverse mapping theorem known
from calculus, in some mneighbourhood of the point
(0, 0) the coordinates z and y can be expressed in terms of
the coordinates u and v. Substituting these expressions
in the vector function r = r (u, v) we obtain a parametri-
zation of the surface 2° (or more precisely some part of
the surface, which contains the point p) of the form

=13,
y=1Y,
z2=1z(z, ¥).

By definition this means that locally (in a neighbourhood
of p) the surface & is the graph of the function z = z (z, y).

Every plane Il passing through the Oz-axis of the
coordinate system involved is called the rormal plane
of & at p and its intersection I ] 2 with the surface 7' is
the normal section of 2 at p. The direction bivector of
every normal plane II is of the form t/\ m, where t is
some nonzero tangent vector of 2°, defined up to propor-
tionality, at p (a vector of the space Tp.Z’). The vector t
uniquely defines the normal plane IT and we shall denote
the plane by II;. :

6—0737
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If z, y, z are chosen so that t is directed along Oz, then
I1, is the coordinate plane Ozz and the normal section
£; =11 N & has the equation z = z (z, 0) (in coordi-
nates z, zin the plane Ozz). This proves that (in some neigh-
bourhood of p) every normal section is locally a graph
and hence a simple singular arc.

A tangent to the graph z = z (z, 0) is, of course, in the
tangent plane to the surface z = z (z, y) and is at the

Normal section

same time in the normal plane. It is therefore directed
alongt,i.e. the tangent vector to the normal section at p
is proportional to t.

Since t is only defined by the normal section only up to
proportionality, without loss of generality we may
assume it to be a unit vector. Referring the normal sec-
tion to the natural parameter we may therefore consider
the unit vector t as the tangent vector to the normal
section at p.

Thinking of the normal section as a curve on II; we
may speak of the relative curvature k, of the curve at p
with respect to the orientation of Il; given by the bivector
t A n. Denoting this curvature by k (t) we thus define
some function t~>k (t) on unit vectors of the tangent
space TpZ. We find the expression for that function in
terms of the coordinates of t.
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Let
@) u=ul), v=0v@, |s|<s,
be the parametric equation of the normal section £; on &
where s is the natural parameter counted off from p. As
a curve in space the section Z; has the vector parametric
equation r = r (u (s), v (s)) and hence the tangent vector

of the curve, r, is expressed as follows:

(2) r == rut;, + r,,v.,

where as ever u and v are the derivatives of functions (1)
with respect to s.

The derivative r of vector (2) is orthogonal to it, and
parallel to the plane II; for s = 0. For s = 0 therefore it
is proportional to n. The corresponding proportionality

factor (equal to the scalar product .r.n) is (see the defini-
tion of relative curvature in Lecture 2) nothing but relative
curvature k (t). Thus

@ k (t) = m.
Since
N i g i S
= (ruul:t —}-ru,,l.i) u + (ru,,ia + l‘m,l.J) v+ ru.u., -+ r,,-.u.
= ruurlz + 2ru,,i'u; + r,,,,z;z + ruﬁ'—l- rv;;
andr,n = 0,r,n = 0, this proves that
k (t) = Lu® + 2Muv + Ni?,
where
(4) L=ry,n, M=ry,n, N =r,n

Thus function t—>% (t) can be easily extended to all
possible tangent vectors dr 5= 0 assuming by definition
that

k) = ().
Since |dr |? = dr? = ds?, where

. ds® = E du? + 2F dudv + G dv?
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(see formula (28), Lecture 3) and the coordinates u and v

dr dr du dv
of the vector Tl =™ are equal to £ and 7 We have
_ Ldu*+2M dudv+ N dv?
() k(d)=—FgrmtordudviGar *

[Notice that the equations us%u and v = Z—: formally

coincide with the equations, known from calculus, for

derivatives as the ratios of the differentials. However,

they have another intentional meaning in our case since

du and dv are the coordinates of the tangent vector dr

rather than differentials and ds is the length of the vector.]
Definition 1. The gquadratic form

Ldu? + 2M du dv + N dv?

is called the second quadratic form of a surface 2 and is

denoted by II.
In this notation formula (5) can be written as follows:

II
6) k=T

For the coefficients of form II, besides formulas (4)
there are also formulas

(N L =—ryny, M =—run, =—r;n,, N=—T,n,

Indeed, since r,n = 0, we have r,,n + ryn, = 0 and

ry,0 + r,n, =0, ice. L =—ryn, and M = — ryn,.

Similarly, since r,n = 0 we have r,,n 4 r,n, = 0 and
rypn +r,n, =0,i.e. M = —r,n, and N = —r,n,. [J

Introducing the vector
(8) dn = nyudu + nydv
we can write form II (by virtue of (7)) as
II = —dr dn,

in a way similar to I = dr? for form I.

Remark 1. By analogy the third quadratic form III =
dn? could also be introduced. But, as is to be shown
below, it can be linearly expressed in terms of forms I
and. IT and therefore gives nothing new. The coefficients
L, M, N of form II are also denoted by D, D', D".
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To represent the function t—Fk (t) graphically the
French mathematician Dupin suggested considering on
a tangent plane the curve (now called the Dupin indi-
catriz) that results when for any unit tangent vector t
a segment of length | k& (t) |7/2 is laid off from the point
of tangency p (taken as the origin O on the tangent plane)
in the direction of that vector. Denote by z and y the
coordinates (in the coordinate system Or,r,) of the end
point of the segment; then its length is expressed as
follows:

|zr, + yr, | =VI(z, y).

Since the curvature k (t) is expressed by formula (6),
which in the present notation has the form

k (t) o (z, y)

i I(z,y) °
we obtain for the Dupin indicatrix the equation
T — I(z, y)
VI (.’II, y) - 1I (z’ y), 9

i.e. the equation
[ (z, ) | = 1.

This proves that the Dupin indicatriz is a curve with equa-
tion '
| La® + 2Mzy + Ny* | = 1.

When LN — M?> 0 the curve (more precisely, the
set of its real points) is an ellipse with equation

9) La® + 2Mzy + Ny? = e,

where ¢ = 1 if L >0 and e = —1 if L << 0. Accord-
ingly a point of the surface at which LN — M2 > 0 is
called elliptic. i ’

At an elliptic point all curvatures k (t) have the same
sign (coinciding with that of L). Among them, there is
one maximum k, and one minimum k%, curvatures (unless
they all coincide, i.e. unless the Dupin indicatrix is
a circle) corresponding to the directions of the minor
and major axes of ellipse (9).
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When LN — M? < 0 the Dupin indicatrix consists of
two hyperbolas

(10) La* + 2Mazy + Nyt = + 1

with common asymptotes and therefore a point of the
surface at which LN — M? < 0 is called hyperbolic. In
the direction of the real axis of one of the hyperbolas (10)

The Dupin indicatriz

(1) At an elliptic point
(2) At a hyperbolic point
(3) At a parabolic point

the curvature k (t) attains its maximum value k; > 0.
As the vector t is rotated the curvature first decreases to
zero when the vector t assumes the asymptotic direction,
and then while continuing to decrease attains its mini-
mum value k, << 0 when the direction of t coincides with
that of the real axis of the other hyperbola (i.e. with the
direction of the imaginary axis of the first hyperbola).

When LN — M? = 0 a point of the surface is called
parabolic. At such a point the Dupin indicatrix has the
equation

(11) (VILIz+ VINly»? =1

and therefore is a pair of parallel lines (provided L 5= 0
or N = 0). In the direction of these lines the curvature
k (t) is equal to zero, in the perpendicular direction it
reaches its maximum value (in magnitude) while main-
taining throughout the same sign. But if L:=0, N=0
(and therefore M = 0), the curvature k (t) is identically
as a function of t equal to Zzero (and the Dupin indicat-
rix is not defined).
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Notice that at elliptic and parabolic points the Dupin
indicatrix is a second degree curve, and at hyperbolic
points it is a quartic curve.

In each of the three cases the:function % (t) attains
twice its maximum k, and minimum %, (unless it is iden-
tically zero).

Problem 1. Prove that
k(t) = k; cos? ¢ + k, sin? o,

where @ is the angle made by the vector t and the direction in
which the curvature is equal to k,. This formula is known as the
Euler formula.

Definition 2. Numbers &, and %, are called the principal
curvatures of the surface at the point under consideration.
Their product

K = kyk,

is called the total (or Gaussian) curvature and their half-
sum

o kit
H=—==5—

is called mean curvature.

According to the foregoing, K > 0 at an elliptical
point, K.<< 0 at a hyperbolic point, and K = 0 at a pa-
rabolic point.

We stress that H and K depend on the point p € 2,
i.e. are functions on 2. As functions of local coordinates
these functions are smooth.

To find principal curvatures one could seek for the prin-
cipal directions of the second degree curves (9) and (10)
(there is no problem with curve (11)) and then find their
canonical equations. This method, however, involves
lengthy computations because the coordinates z and y
are not rectangular. Therefore we shall proceed in
a different way, directly applying the basic formula (6).

According to this formula curvature k&, is the smallest
value of the function '

Il (z, y) __ Lx®+2Mzy+ Ny
I(z, y) ~— Ex®4-2Fzy-+Gy?
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of two variables z and y, with (2, y) 5= (0, 0). Hence

1T (x, y) .
TN

for all (z, y) 5= (0, 0), the equality holding at least at one
point (z, y). Since I (z, y) >0 when (z, y) # (0, 0), this
inequality is equivalent to the inequality

II (z, y) — k,1 (2, ) =0

which means that the quadratic form II — k,I with
matrix

is nonnegative at all points (z, y) = (0, 0) and zero at
least at one of them.

Similarly, the number %, is characterized by the fact
that the quadratic form II — £,I is everywhere positive
and zero at least at one point (z, y) == (0, 0).

But it is easy to see (directly or on the basis of the
general theory of quadratic forms over the field R; see
Lecture I1.12) that a quadratic jorm in two variables is
everywhere nonpositive or nonnegative and zero at least
at one point (z, y) 5 (0, 0) if and only if its rank is less
than two, i.e. if the determinant of its matrix is zero.

This proves that the principal curvatures k,, k, are the
roots of the equation

L—kE M—EKF
M—kF N—kG

i.e. of the equation
(EG — F»k* — (EN + GL — 2FM) k + (LN—M*=0.

In particular, it follows (by virtue of Viéte's formulas)
that

L—kE M—kF
M—kF N—kG

L)

__LN—M2 __ 1 EN+GL—2FM
K= EG—F? ° H"? EG—F*

The first of these formulas will find an important ap-
plication in our next lecture.

Lecture 4 89

Suppose that the coordinates z, y, and z in a space #
have been chosen so that the surface under consideration
is the graph of a function z = z (z, y), with z (0, 0) =0
and the normal vector at the point (0, 0) being the unit
vector k of the Oz -axis (see above).

Then z and y are, in a neighbourhood of the point (0, 0),
the coordinates u and v on the surface, with

r. =4, 0, z), r,=1(0,1,3).

Since at (0, 0) the vectorsr, and r, are parallel by the con-~
dition for the coordinate plane Ozy, it follows that

(2:)o = 0 and (zy)o =0

(with the subscript O we write the values of partial deriv—
atives at (0, 0)) and hence the expansion of the function

z (x, y) into a Taylor series begins with quadratic terms

z:% (ra2+2sxy+ty?))+ ...,
where
r= (2zz)o S§= (ny)o’ t = (2,5)0
(surface of Monge).
On the other hand, since
Tyu = (O, 0, zxx)" Typ = (Ov 0, ny), Tyy = (O’ 0, Zyy)r
at (0, 0) we have
L=r, M=s, N=1.
Thus, in this case, the second quadratic form of a surface
differs only by a constant factor of—; from the sum z, (z, Y}

of the quadratic terms in the Taylor series of the function
z(z, Y)-

Since near the point (0, 0) a surface z = z (z, y) differs
but little from a surface z = z, (z, y) and since for rt —
s2> 0 the lattér surface is an elliptic paraboloid and
for rt — s> << 0 it is a hyperbolic paraboloid, this proves
that an arbitrary surface differs but little from an elliptic
paraboloid near the elliptic point and from a hyperbolic
paraboloid near the hyperbolic point.
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This gives quite a satisfactory idea of the behavieur
of a surface near nonparabolic points. '

When rt — s2 = 0 but either r = 0 or s = 0, the sur-
face z ==z, (z, y) is a parabolic cylinder. About a parabolic
point for which either L = 0 or N = 0 the surface therefore
differs but little from the parabolic cylinder.

As to the behaviour of a surface near a parabolic point
at which L = 0 and N = 0 (and hence M = 0) nothing
definite can be said; it may generally be quite complex.

The computations also show that at (0, 0) we have
E =1, F =0 and G = 0 for the surface under consid-
gration, from which it follows that at this point

K=rt—s? and H= r+t .

Moreover, immediate calculations (which can be done
mentally if we notice that for functions f and g having
the property that f (0) = 0 and g (0) = 1 the derivative
(fg)' of their product fg assumes at zero the value
7' (0)) shows that at (0, 0)

n, = (—r, —s, 0), n, =(—s, —t, 0)
and hence A
ni=r+s, nmn,=s(+1%), n}=s -+
It follows that
ni =2HL—KE, numn,=2HM—KF, n}=2HN —KG,

i.e. that
Il = 2HII — K1,

where III is the third quadratic form of a surface introd-
uced in Remark 1. Thus form III is indeed linearly exp-
ressed in terms of forms I and II.

For the ruled surface

(12) r = p(u) + va (u),

as we already know,

E=1+2vp'a—|—v2a.2, =g;a, G=1
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(we assume as usual that the parameter u on the curve
o = p (u) isnatural and the vector a (u) is a unit vector).
Further

u=P+U37 r, = a,
r, Xr,=p X a-+v(a X a),

pXxa+v(axa)

s 7

V EG—F?
r u=.p.+vé: ruv':;lv rvvzov
L _(p+va)(pxatv@xa) , __ paa N=0
VEG—F? ’ VEG—F? '’ ’
LN—M>= —%,
and therefore
_ __ (paa)
K= —fm <0

Thus the total curvature of an arbitrary ruled surface is
nonpositive at any of its points, i.e. a ruled surface has no
elliptic points.

When the surface is a cylinder (a = 0), a cone (a = p

and therefore a = p) or a surface of tangents (a = p),
the formula obtained yields K = 0. Thus the total
curvature of every developable is zero (at any point).

Conversely, if K =0, then paa = 0, i.e. the vectors

p, a, a are coplanar. If the vector a (u) is not 1dent1cally
zero, i.e. if surface (12) is not a cylinder, then, going over
if necessary, to a smaller neighbourhood, We may assume

that a (u) % 0 for all u. The vectors a and a are therefore
linearly independent (they are nonzero and orthogonal)

and hence the vector p is expressed linearly in terms of
a and a:
P = Aa + pa,
where A = A (1), p = p () are some functions of u.
Let
Uy =u, v =v+ p ().
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Since the Jacobian of this transformation is equal to 1,
the numbers u, and v, are also, after changing to a smaller
neighbourhood, the coordinates on surface (12). In these
coordinates the equation of the surface is of the form

r=p; @)+ va (u)
(we omit the subscripts in u, and v,), where

Pr (@) =p @ —p @) a @),
and so,

pp=p—pa—pa=(R—p)a.

If (')1 is identically zero (i.e. A = l.l), then the equation
of the surface is of the form

r = const -+ va (u)
and therefore the surface is a cone. Otherwise we may
assume, diminishing if necessary the neighbourhood, that

(.)1 (u) = 0 for all u. Changing to the natural parameter
(and changing if necessary the sign of v) we see that

p; = a, i.e. that the surface under consideration is a sur-
face of tangents.
Thus we have proved the following proposition.
Proposition 1. A ruled surface has zero total curvature
at every point, :

K =0,
if and only if it is a developable. [J

We have also established that developables are charac-
terized by the condition

paa = 0

which is, as’is easily seen, equivalent to the collinearity

of the vectors p X a and a X a. But the collinearity of
these vectors implies that the vector

ruXr,,=(;><a+v(a><a)
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is, up to proportionality, independent of v, i.e. the corre-
sponding unit vector n is independent of v. This proves
that developables can be distinguished among all the ruled

A developable of tangents

surfaces by the property that at all the points of each recti-
linear generator such a surface has the same tangent plane.
For an arbitrary surface of revolution

r=z @) cosu-i+ z @ sinu-j+ 2 @v-k
we have
r, = —x (v)sin u-i + z (v) cos u-j,
r,=x (v)cosu-i +2 (v)sinu-j+ 2z’ (v) k

and hence £ =z (v)?, F =0, G =1 (we assume that
z' (v)? + 2’ (v)2 = 1; see Lecture 3). Therefore

r, Xr,=2z @)z (v)cosu-i+ z (v)z' (v)sinu.j

—z @)z’ (v)k,
n=z'(v)cosu-i+z' (v)sinu-j—=z’ (v) k,
ryy=—x(@)cosu-i—zx@)sinu-j,
Iypy=—2 (V)sinu-i+z' (v)cosu-j,

Fpy=2" (V) cOsu-i+4z" (v) sinu-j+ 2" (v) k,
L=r,,n=—x@)z' (v), M=r,,n=0,
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z' (v). 2 (V)

' (v) 2" ()
LN—M* _ () |2" () 2’ (v)
EG—F? ~ z(v) |z"(v) 2" (V)

This proves that for a surface of revolution

K— 2 @) |z (V) 2" ()
= —$ (U) I” (U) Z” (v)

Example 1. For a sphere of radius R we have

9

N=r,n=2z" )z v)—2z" )z’ (V)= —

z (V) = Rsin —-

x(v):Rcos—v- &

R 9
and therefore

' ()= —sin—, 2’ (V) = cos —-

R ? R ?
r_ 1 v R P
2= —gos g, 2 V)=—=3 smﬂ "
K_Z2o 2@ O 1
=30 (') #)| T R

Thus the total curvature of a sphere of radius R is constant
and equal to 1/R*.
The result is intuitively obvious.
The following example is more interesting.
Example 2. A surface of revolution with profile

z()=Rsin(v), z@V)=AR (lntan %—Fcosv),

O<v<~;—

(it is the so-called tractriz) is termed a pseudosphere
(R is a pseudoradius). For this surface

R : cos? v
—  —Rsinv=R——
sin v sin v

z' (v)=Rcosv, z’' (V) =
and hence
2 (v)? + 2 () = R? cot? v

Since z’ () + 2’ (v)2 = 1, the above general formula
cannot be immediately applied. First it is necessary to go
over to the natural parameter of the profile.
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We have

s= —R\ cotvdv= —RInsinv

po|ne—"re

and hence

s /—s
: -—— -2 =
sinv=e R cosv:] 1—e R

9

8
v = (]
tanT=eR '—],/-ei'_i'

Thus in terms of the natural parameter (which is again de-

A pseudosphere

noted by v) the tractrix will be given by the functions

4

. z()=Re E
z2()=RIn (ﬁ_ ]/e27—1) + R ]/1.—e—2%.



96 Semester 111

We calculate:

v

2 -2
s o)=—eF, 2o=—V 1=,
. _9 X

1 - # e i
wy=pe *, 7O)=— ]/—_“2—1_1
R 1—e B
2@ 20| SE
z’ (l)) z" (U) S —T—L )
Rl/i—e R
2@ @ FO)__ 1
z(v) |z"(v) 2" (V) R *
Thus
K— 1
= TRz

so that the total curvature of a pseudosphere is constant and

equal to — %.
We see that in regard to total curvature the pseudo-

sphere differs from a sphere only in the sense of curva-

ture. This accounts for the term “pseudosphere”.
Example 3. For the catenoid

z (v) =coshv, z (V) =v,
2’ (v) = sinh v, 2z’ (v) =1,
z (v)* + 2° ()2 = cosh? v,
and therefore we must again pass to the natural pa-

rameter

v
§= S cosh v dv=sinhv.
0

Again denoting this parameter by v we obtain the func-
tions

@)= V1+v2 z(v)’=ln(v—|- Vi+v?).
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Therefore
’ ’ 1
YO =y Y=y
" 1 "
W) =rEpE, 20 = —(1+—';2)3,2,
@ ZFE|___ 1
x” (U) Z” (U) - 1+U2 9
and hence
_ 1
ST T

It is interesting to compare the curvature of the cate-
noid with that of the isometric helicoid.
For the helicoid we have equation (12) with

P () =u-k and a (u) = cos u-i -+ sin u-j.

Therefore
{):k, a = —sin u-i—};cos'u-j,
E=1—|—2vb;1—i—vza;2=l+v2.
F=pa=0, G=1,
EG — F?2 =1 4+ 12,
L. 0 0 1
paa=| cosu sinu 1|=1,
—sinu cosu O
and hence

We have obtained the same result as that for the cate-
noid! This means that when the catenoid is bent into the
helicoid the total curvatures at the corresponding points
coincide. :

What happens to the mean curvature?

7-0737
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For the catencid E =1 +11®, F=0, G=1. In

addition
=—x(v)z’(v)==——1, M=0,
N _|F® @t
T T2 ) )| 1+

and therefore
EN + GL — 2FM = 0,
i.e.
H=0.
Thus the mean curvature of the caienoid is- equal Lo zero.
For the helicoid '

.o
pXa=snu-i—cosu-j axa= — k,

p=0 a= —cosu-i—sin u-j,

0+va)(pxatv@xa)=0
and, in addition, as we have already seen,
E=1+¥ F=0, G=1,

EG — F* =1 + 1*, paa = 0.

Therefore
i
L=0, ey N=0,
and hence
EN + LG — 2FM = 0,
i.e.
H=0.

Thus the mean curvature of the helicoid is also zero.

The example of catenoid and- helicoid suggests that
total and mean curvatures are preserved under bending
(isometry). It turns out that the hypothesis is true for
the total curvature (we shall show this in our next lecture)
whereas for the mean curvature it is false. Indeed, for a plane
the mean curvature is zero while for a circular cylinder of
radius R developable into a plane it is obviously equal
to 1/2R.

As to the reasons why the catenoid and helicoid have
equal mean curvatures, we are deprived of the pos-
sibility of discussing them in this book.

Lecture 5

Weingarten formulas. Coefficients of connection- The Gauss
theorem- Explicit formula for Gaussian curvature- The
necessary and sufficient conditions of isometry-. Surfaces of
constant curvature

For the moving basis r,, r,, n of an arbitrary surface

(1) r=ru v

formulas can be written, similar to Frenet’s formulas for

curves, that yield an expansion of the derivatives
ruu’ ruvs rvv» nua nv

of the vectors of the moving basis with respect to that
same basis.

Since n®> =1 and hence nn, = 0 and nn, = 0, the
vectors m, and n, are only expanded with respect to the
vectors r, and r,, so that

¥ =
n, = ar, + fr,,
n, = o4Fy -+ 511'1;-

Multiplying the first of these formulas by r, and r, we
obtain two relations:

— L =r,n, =ar} +fpr,r,=ak | pF,
‘ — M =ryn, =oar,r,+ fri =aF 4G,
from which it follows that

_ FM—GL fi= FL—EM
~ EG—F? ~ EG—F? °
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" The coefficients of the second formula are calculated in
the same way:
FN—GCM _ FM—EN
U=—fg—p » P1="mg—p -
Further, since by definition
ry,n=2L r,na=M, r,,n =N

and since under the hypothesis r,n = 0, r,n = 0, the
coefficients of n in the decomposition of vectors ryy, Iy,

r,, in terms of the basis r,, r,, n are equal to L, M, N

respectively.
We thus have

17 2

ryu = I'yry + Thry + L,
1 2

K == L3aln - Ty + M
o 1 2

r,, = Iiry, + T'ir, + Nn,

FM —GL FL—EM
(2) n, == EG—_F? r, + EG_F? Tyy
FN—GM FM-+EN

n="fg—p Tt Ee—F v
where I"fj, i, j, k =1, 2, are some functions of u and v.
Formerly these functions were denoted by

(¥
k
and called the Christoffel symbols. But now they are usual-

ly called connection coefficients.
Formulas (2) are called Weingarten formulas.

To compute connection coefficients I‘é‘j we first find the
six products of vectors ryy, Ty,, Ty, by vectorsry and r,.
Since r3, = E, we have 2r,,r, = E, and 2r,,r, = E,,
i.e.
1 1 E
Fyuly= 5 Eu and yyly = 5 o
Similarly, since ri = G we have

1 1
ru,,rl,=7Gu and r,,r, = TG”'
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Besides, since r,r, = ¥, we have Tyuuly + Xy, = F,
and r,r, +r,r,, = F, from which it follows that

1
Tyul, = F, — 5 E, and r,r, =F, — %Gu-
Now multiplying the first three of the formulas (2) by

r, and r, we obtain six relations:

ET}, 4+ FT% =1 E,,
ET,+ 6T} =F,— + E,,
ET%,+ FT%, = E,,

& ETi, +6T% =1 Gy,
ETY,+ FTY=F,—3 G,
FT},+GT%, == G,,

from which it is easy to find the coefficients I'};. (Theequa-
tions are uniquely solvable since the determinant EG — F*
of each pair of equations is nonzero.)

We see that the connection coefficients T't; can be expressed
in terms of the coefficients of the first quadratic form and of
their derivatives. Hence they remain unaltered under
bendings (isometries) of a surface.

We shall not need explicit expressions for the coeffic-

ients I'’; in terms of the coefficients of the first quadratic
form, and so we shall not give them here.

The coefficients of derived equations are connected by
three relations resulting from calculating partial deriv-
atives ryuu,, Tyypo, and n,, in two different ways by using
these formulas. One of these relations was found by Gauss
and the other two by Peterson, Mainardi, and Codazzi.
We shall consider only Gauss’ relation which we shall
obtain by calculating the coefficient of r, in the expan-
sion of the partial derivativer,,,in terms of the vectors
ry, r,, and n.
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In this calculation we shall only follow the coefficient
of r, and only those of its terms which depend on the
coefficients of the second quadratic form. All the other
terms will be replaced by dots.

We have

Puuo = (Tuu)p= (Fpru + rir, +Ln),
RS L I SIS SRR p 2 P

RS, S, RS . ¥ |
+...+L(...+£Ef"—;;_’?pzi.-v)

:(L%:—f,—iv——l—---)r,,—l—...

I

Similarly ‘
Pyuo= (ruu)u = (Fi2ru ~+ F:JU 4 ]"[n)u

—(wTLEM e

Hence

FM —EN FL—EM
o= =M pe—p T
where dots denote terms dependent only on the coefficients
of the first quadratic form. But
FL—EM FM—EN _ , LN—M?* _
M—e—m L F—m =E—gr—7 =EK.

Since E 5= 0 (form I is positive definite), this proves

L

)

that the total curvature K of a surface is expressed in terms,

of the coefficients of the first quadratic form (and of their
derivatives). It follows that the curvature K remains
unchanged under bendings. More precisely, if f is an
isometry of a surface 2" onto a surface %, then

(4) Kyof = Kg,

where K4 and Kg are the total curvatures on Z and ¥
respectively. (Indeed, if f preserves the coordinates of
vectors in another system of coordinates, then both sides
in (4) differ only in the notation of the coordinates.)
~ This result deserves to be distinguished as a theorem.
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Theorem 1 (Gauss’ theorem). The total (Gaussian) curva-
ture of a surface remains unchanged under bendings (iso-
metries), i.e. isometric surfaces have the same curvature at
corresponding points. [

Gauss was so delighted with the theorem that he called
it the theoremaegregium, which means a “brilliant theorem”
in Latin.

From Theorem 1 it follows in particular that no arbitra-
rily small part of a sphere can be bent into a plane. There-
fore no map gives an accurate representation of the
Earth’s surface.

An explicit expression of curvature K in terms of the
coefficients E, F, and G of the first quadratic form is

EE, E,
©®) K=—gme=pp|f Fu Fy
G G, G,

B 1 E,—Fy Fp—Gy
2 ]/EG——Fﬂ {( VEG—F? )«.,_ ( VEG—F? )u} '
The other two relations resulting from differentiating the

derived equations (and usually called the Peterson-Codazzi
formulas) are of the form

2 (BG — F?) (L, —M,)

EE, L
—(EN-+GL—2FM)(E,—F,)+|F F, M |=0,
G G, N
(6) 2(EG—F*) (My—N,)
E E, L
—(EN +GL—2FM) (F,—G.)+|F Fu M
GG, N

=0.

To prove these formulas all one needs is patience and
care. '

We shall prove only formula (5) and only for the case
where £ = 1 and F = 0, i.e. where the first quadratic
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form of a surface is expressed as

) I =du?+ Gadr
In this case equations (3) for T'}; are of the form
I',=0, TI,=0, Ti=—16,

I, =0, GI%,=G,, GIYh=1G,

from which it follows that
Pilzo’ I‘;a=0’ I‘:1=0’

1 1 G 1.6
P;2=—7Gu’ Fizz_z"(; s P:2='2_ (g-
Hence
I e, B T B W + Mn
uu - uv — 2 G v ¢
Since in the case at hand
nu_—:—Lrv——Jg—rv and n,,:—Mru——%r—rv,

it follows that

N
r“u'-’:(Ln)v:Lvn_I—L ( '—‘Ml‘u —Frv)

=—LMru—2—év—r,,+L,,n
and
1 G 1 G
fuu= (3o To+ Mn ) =5 (), %

g [ 7 reot ]
—l—Mn—f—M( —Lr,— ]g r,,)
—— e+ 5 (), o () ]

(35 o)

105>
and hence
LN 1[Gy \, 1[Gy \2_M?
-G —7( G )+4( G ) G °
1 G
Lv—_—z G"M—{—Mu

The second equation is now of no interest to us (it is the
first of equations (6) for E=1 and F=0) and the first

(since in the case at hand K:%(LN—Mz)) gives

K3 5),~H ST,

i.e., as an obvious computation shows,

(V' 6)uu
(8) K e
which coincides with the result of substituting the values
of E=1 and F=0 in formula (5).
Thus we have proved that the fotal curvature of a surface
with the first quadratic form (7) is expressed by formula(8).
Let, for example,

9) I=du?®- cos® u dv®.

Then G =cos u and (' G),, = —cosu. Hence K =1,
which agrees quite well with the result of Example 1 of
Lecture 4 (for (9) is the first quadratic form of a sphere
of radius R =1; see formula (36) of Lecture 3, in which «
and v are interchanged).

Similarly, it can be shown that a surface with the first
quadratic form

I=du? -+ cosh? u dv?

has the curvature K = —1 (cf. Example 2 of Lecture 4j.
Remark 1. We stress that all these results hold for sur-
faces in a three-dimensional Euclidean space. For surfaces
in a larger, three-dimensional space, however, (9) (or
its special form (8) may be taken to be a definition of
curvature K.
Remark 2. For six functions

(10) E,F,G. L, M, N
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given in an open convex set U < R? to be the coefficients
of the first and the second quadratic form of some surface
r =r (u, v) it is necessary that for these functions, in
addition to conditions

(11) E>0, EG —F*>0

of positive deﬁﬂiteness, relations (5) and (6) hold (it is
meant that we have substituted K = —EG—:%- in rela-

tion (5)). It turns out that these relations are also sufficient
(for the existence of a regular, but not generally elemen-
tary, surface with the given forms I and II). Moreover,
functions (10) (satisfying relations (5), (6), and (11))
define a surface up to movement of space. These state-
ments are the two-dimensional analogue of the corre-
sponding statements for curves (see Theorem 1 of Lecture 2)
and can be proved by a similar method (but instead of
the unique existence theorem for solutions of linear
ordinary differential equations we use the corresponding
theorem for the system of linear partial differential
equations). !

The Gauss theorem states that for the two surfacesto be
isometric it is necessary that the total curvatures be equal.
Although this condition is by no means sufficient, it is
so strong that making use of it sufficient conditions can
be easily obtained. We shall not expound this question
and only consider the most important special case of
the corresponding theorem.

Let

EK2 —2FK,K,+GK?,
EG—F?

AK =

be Beltrami’s first differential parameter of the function K.
If the two functions K and A, K of u and v are functionally
independent, i.e. if their Jacobian

0K 0K

ou v

oMK 0MK
du v
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is everywhere nonzero, then they may be taken as new
local coordinates on the surface. We call them Gaussian
coordinates. From the property that the operator A, is
invariant (formula (34) of Lecture 3) and formula (4)
it follows directly that for any isometry f: 2°— ¥ the
equality

(12) AKgyof = AKy

holds. Taken together, formulas (4) and (12) imply that
every isometry is a mapping which preserves the coordinates
of vectors in another system of coordinates. The following
theorem is therefore true.

Theorem 2. Two elementary surfaces on which Gaussian
coordinates are defined are isometric if and only if the first
quadratic forms in these coordinates coincide. (J

Thus, to determine whether or not two surfaces are iso-
metric it is necessary to introduce (if possible) Gaussian
coordinates and calculate in these coordinates the first
quadratic forms of the surfaces. If the forms coincide, the
surfaces are isometric, but if they differ, the surfaces
are not isometric.

Theorem 2 gives no answer when K and A,K are func-
tionally dependent, for example, when A;K = 0 (which
occurs, as can be easily figured out, if and ony if K =
const). In this case, however, the condition of Theo-
rem 1 proves to be sufficient, i.e. two elementary surfaces
of constant total curvature are isometric if and only if
they have the same curvature. In other words, any surface
of constant total curvature K is locally isometric to a sphere

of radius R:]_/l—l? if K> 0, to a plane if K = 0, and io

1 .
V=% if K<<0.

To prove this we shall need a lemma which is to be
proved in the next semester: :

Lemma (Gauss). On any surface there are local coordi-
nates u, v inwhich the first quadratic form of that surface is of
form (7), the function G = G (u, v) having the property that

(13) GO, v) =1 and G, (0, v) = 0 for all v.

a pseudosphere of pseudoradius R =
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By virtue of this lemma we may assume without loss
of generality that the first quadratic form of a given sur-
face of constant total curvature X is of form (7) and hence
formula (8) holds for K. This formula may be thought of
as a differential equation of second degree with constant
coefficients relative to the function }/ G. It is known from
the theory of differential equations that the general
solution of that equation is of the form

Acosa(u+B) if K=a2>0,
Acosha (u-+B) if K= —a?><0,

where A and B are arbitrary functions of v. But in view-

of the first of the conditions (13) we must have
AcosaB=1 for K>0,
B—=1 for K=0,
AcoshaB=1 for K<0,

and in view of the second of the conditions (13), by virtue
of the identities

A if K=0,
Aasinha(u-+B) if K<O0

—Aasina (u+ B) if K>0,
—~ 1 Gy, __
we must have
AasinaB =0 for K >0,
A=0 for K=0,
Aa sinhaB=0 for K <<0.
Hence

1 if K=0,

cosau if K=a2>0,
Y-
coshau if K= —a2<0.

In the first case we obtain the first quadratic form
du? 4+ cos? au dv?
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for a sphere of radius 1/a, in the second case we obtain the
first quadratic form
du? 4 dv?
for a plane, and in the third the first quadratic form
du® 4 cosh? au dv?
for a pseudosphere of pseudoradius 1/a. O
Here we interrupt the exposition of the theory of sur-

faces and turn to the main subject of this course, the theory
of smooth manifolds.



