
Curves

JWR

January 27, 2014

These notes summarize the key points in the first chapter of Differential
Geometry of Curves and Surfaces by Manfredo P. do Carmo. I wrote them to
assure that the terminology and notation in my lecture agrees with that text.
All page references in these notes are to the Do Carmo text.

1. Definition. A parameterized smooth curve is a map α : I → Rn where
I ⊆ R is an interval. The set theoretic image

C = α(I) := {α(t) : t ∈ I}

is called the trace of α and α is called a parameterization of C. See do
Carmo page 2.

2. Remark. For do Carmo the words differentiable and smooth are synony-
mous. I prefer the word smooth. The adjective differentiable is often omitted
by do Carmo.

3. Remark. On page 2 do Carmo says that the interval I should be open but
on page 30 he extends the notion of smoothness to closed intervals. A function
defined on a closed interval [a, b] is said to be smooth iff it extends to an open
interval containing [a, b]. This means that the derivatives of the function are
defined at the end points a and b.

4. Definition. A reparameterization of α : I → Rn is a smooth map
β : J → Rn of form β = α ◦ σ where σ : J → I is a diffeomorphism. That σ
is a diffeomorphism means σ is one-to-one and onto (so there is an inverse map
σ−1 : J → I) and that σ′(t) 6= 0 for t ∈ I (so that the map σ−1 is also smooth).

5. Remark. If β is a reparameterization of α, then the maps α and β have
the same trace C. The idea of the definition is that we should think of α and
β as different ways of describing the same curve C. However do Carmo avoids
giving a precise definition of an (unparameterized) curve.

6. Example. The circle C = {(x, y) ∈ R2 : x2 + y2 = 1} is the trace of the
parameterized curve α : R → R2 defined by

α(θ) =
(

cos θ, sin θ
)

=
(

cos(θ + 2π), sin(θ + 2π)
)

.
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Define a map β : R → R2 by

β(t) =

(

1− t2

1 + t2
,

2t

1 + t2

)

.

This map is a reparameterization of the restriction of α to the open interval
(−π, π) as follows:

(

cos(2ϕ), sin(2ϕ)
)

=

(

cos2 ϕ− sin2 ϕ

cos2 ϕ+ sin2 ϕ
,

2 sinϕ cosϕ

cos2 ϕ+ sin2 ϕ

)

=

(

1− tan2 ϕ

1 + tan2 ϕ
,

2 tanϕ

1 + tan2 ϕ

)

.

Take 2ϕ = θ, t = tanϕ = tan(θ/2), and we get α = β ◦σ where σ : (−π, π) → R

is defined by σ(θ) = tan(θ/2). The common trace of (the restriction of) α and
the map β is the punctured circle C \ (−1, 0). (This particular reparameteriza-
tion is called the Weierstrass substitution or half angle substitution. It
is one of the main techniques used to evaluate integrals in calculus.)

7. Definition. Let α : I → R
n be a smooth parameterized curve. The deriva-

tive α′(t) is called velocity vector at t. The map α is called regular iff its
velocity vector never vanishes. The map α is said to be parameterized by

arc length iff its tangent vector always has length one.

8. Theorem. A smooth regular parameterized curve α has a reparameterization
by arc length, i.e. there is a reparameterization β : J → Rn of α such that
|β′(s)| = 1 for s ∈ J .

Proof: This is the content of Remark 2 in do Carmo page 21. The reparametriza-
tion is defined by β = α ◦ σ where σ is a solution of the differential equation

σ′(s) =
1

|α′(σ(s))|
.

By the chain rule β′(s) = α′(σ(s))σ′(s) so |β′(s)| = 1.

9. Remark. The arc length

ℓ(C) =

∫ b

a

|α′(t)| dt

of the trace C of a regular parameterized curve α : [a, b] → Rn is independent
of the parameterization α used to define it. This is an easy consequence of the
formula for changing variables in a definite integral: if σ : [a, b] → [c, d] is a
diffeomorphism, then

∫ b

a

|α′(t)| dt =

∫ d

c

|α′(σ(r))| |σ′(r)| dr.

(The change of variables is t = σ(r) so dt = σ′(r) dr.) When α is parameterized
by arc length, ℓ(C) = |b− a|.
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10. The reparameterization in Theorem 8 is unique in the following sense: If
β1 : J1 → Rn and β2 : J2 → Rn are two reparameterizations of the same map
α then β2 = β1 ◦ σ where σ : J2 → J1 has one of the two forms σ(s) = s+ c or
σ(s) = −s + c. (This is because |σ′(s)| = 1.) On page 6 do Carmo says that
when σ(s) = −s+ c the two curves β1 and β2 are said to differ by a change

of orientation.
This use of the word orientation can be viewed as a special case of the

definition of orientation of a vector space that do Carmo gives on pages 11
and 12. For a regular curve α the one dimensional vector space Rα′(t) ⊆ Rn is
called the tangent space to the curve at the point α(t). The velocity vector
α′(t) is a basis for this space. Changing the orientation of the curve changes the
sign of the velocity vector α′(t) and thus reverses the orientation of the tangent
space.

11. Remark. Note the distinction between the tangent space and the tangent
line. The tangent line is the line containing the points α(t) and α(t) + α′(t).
(See do Carmo page 5.) This line need not pass through the origin of Rn

and thus is not a vector subspace of the vector space Rn. This illustrates the
difference between points and vectors.

12. Remark. The two orientations of R3 correspond to the thumb, forefin-
ger, and middle finger of the right and left hands. (Recall the right hand rule
from calculus.) The two orientations of R2 correspond to clockwise and counter
clockwise. The two orientations of R = R1 correspond to the two directions
increasing and decreasing.

13. Definition. A map Φ : Rn → Rn is called an isometry iff it preserves
distance i.e. iff it satisfies

|Φ(p)− Φ(q)| = |p− q|

for p, q ∈ Rn. A map Rn → Rn is called a translation iff there is a vector
c ∈ Rn such that the map sends the point p ∈ Rn to the point p+ c. A linear
transformation ρ : Rn → Rn is called orthogonal iff it satisfies (ρu)·(ρv) = u·v
for all vectors u,v ∈ R

n. A rigid motion of Rn is an isometry Φ such that the
corresponding orthogonal linear transformation ρ preserves orientation, i.e. has
positive determinant.

14. Theorem. A map Φ : Rn → Rn is an isometry if and only if it is the
composition of a translation and an orthogonal linear transformation.

Proof: For if see do Carmo page 23 Exercise 6 and do Carmo page 228 Exercise 7.
The converse is not very difficult but is not needed in the rest of these notes so
the proof is omitted.

15. Theorem. Let α : [a, b] → Rn be smooth, Φ : Rn → Rn be an isometry,
and β = Φ ◦ α :. Then the curves α and β have the same arc length. If α is
parameterized by arc length so is β.

Proof: This is because Φ preserves the length of vectors. The first part also
follows from Exercise 8 on page 10 of do Carmo.
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16. Definition. Let α : I → Rn be parameterized by arc length. Then the
unit tangent vector is the vector valued function t : I → Rn defined by

t(s) = α′(s) =
d

ds
α(s),

the curvature vector is the vector valued function I → Rn

α′′(s) =
d

ds
t(s) =

d2

ds2
α(s),

and the curvature is the length κ of the curvature vector, i.e.

κ(s) = |t′(s)| = |α′′(s)|.

The unit normal vector is the normalized curvature vector

n =
t′

|t′|
.

(The vector n is defined only where the curvature κ is not zero.) The binormal

vector is the vector product
b = t ∧ n

of the unit tangent vector t and the unit normal vector n. (The binormal vector
is defined only when n = 3.)

17. Theorem. Let α : I → Rn be parametrized by arc length, Φ : Rn → Rn

be an isometry, and β = Φ ◦ α : I → Rn. Then β is also parametrized by arc
length and α and β have the same curvature. If n = 3 and Φ is a rigid motion
they have the same torsion.

Proof: Exercise 6 page 23 of do Carmo.

18. Standing Assumption. Henceforth we assume that α : I → R
3 is a

regular curve parameterized by arc length.

19. Theorem. Then the vectors t, n, b are orthonormal, i.e.

|t| = |n| = |b| = 1, t · n = t · b = n · b = 0.

The ordered orthonormal basis t,n,b is called the Frenet trihedron.

Proof: (See do Carmo pages 18-19.) The equations |t| = |n| = 1 hold by
definition. Since |t|2 = t · t is constant we get

0 =
d

ds
|t|2 =

d

ds
t · t = 2 t · t′ = 2κ t · n

so t · n = 0. Now b is the vector product of two orthogonal unit vectors t and
n so it is itself a unit vector and is orthogonal to both t and n.
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20. Corollary. The derivative b′ of the binormal vector b is parallel to the
unit normal vector n, i.e. there is a real valued function τ such that

b′ = τn, τ = b′ · n.

The function τ is called the torsion.

Proof: Since t′ ∧ n = κn ∧ n = 0 we have

b′ = (t ∧ n)′ = t′ ∧ n+ t ∧ n′ = t ∧ n′

so b′ · t = b′ · n′ = 0.

21. Frenet Formulas. The Frenet trihedron satisfies the differential equations

t′ = κn, n′ = −κt− τb, b′ = τn.

Proof: The first and last formulas hold by definition. For the middle formula
differentiate the identities n · t = n · b = 0 and n · n = 1 to get

0 = n′ · t+ n · t′ = n′ · t+ κn · n = n′ · t+ κ
0 = n′ · b+ n · b′ = n′ · t+ τ n · n = n′ · b+ τ
0 = 2n′ · n

Since the Frenet trihedron is orthonormal

n′ = (n′ · t)t+ (n′ · n)n+ (n′ · b)b.

This proves the middle Frenet formula.

22. Remark. The Frenet formulas may be written in matrix form as




t′

n′

b′



 =





0 κ 0
−κ 0 −τ
0 τ 0









t

n

b





The coefficient matrix is skew symmetric. This is no coincidence. The two
triples

t(s),n(s),b(s), t(s0),n(s0),b(s0)

are both bases for the vector space R3 so there is a unique change of basis matrix
U(s) satisfying





t(s)
n(s)
b(s)



 = U(s)





t(s0)
n(s0)
b(s0



 .

Since the two bases are both orthonormal, the matrix U(s) is orthogonal. Dif-
ferentiating with respect to s and evaluating at s = s0 gives the Frenet formula
(in matrix form) evaluated at s = s0. But U(s0) is the identity matrix and
U(s)∗ = U(s)−1 so U∗(s)U(s) is the identity matrix so differentiating at s and
evaluating at s0 gives

U ′(s0)
∗ + U ′(s0) = 0.
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23. Theorem. Reversing the orientation of α leaves the curvature κ and the
torsion τ unchanged, i.e. if β(s) = α(−s) the curves α and β have the same
curvature and torsion at s = 0.

Proof: By definition the curvature κ is nonnegative, the normal vector is only
defined at points where the curvature κ is not zero, reversing the orientation
of α reverses the sign of the unit tangent vector t and leaves the sign of the
curvature vector unchanged. Reversing the orientation of α reverses the sign of
t, preserves the sign of n, and therefore reverses the sign of b = t ∧ n. But
reversing the orientation of b reverses the sign of b′ so reversing the orientation
of α preserves the sign of b′ and hence (by the Frenet formula b′ = τn) preserves
the sign of τ .

24. Fundamental Theorem. Let κ, τ : I → R be smooth functions defined on
an interval I. Assume κ > 0. Then

(Existence.) There is a curve α : I → R3 parameterized by arc length with
curvature κ and torsion τ .

(Uniqueness.) If α, β : I → R3 are two curves paramaterized by arc length both
having curvature κ and torsion τ , then there is a rigid motion Φ : R3 → R3

such that β = Φ ◦ α.

Proof: See do Carmo page 309.

25. Corollary. The curvature and torsion of the helix α(θ) = (a cos θ, a sin θ, bθ)
are both constant so for any two points p and q on the helix there is a rigid
motion carrying p to q and mapping the helix to itself.

26. Gauss curvature. In the case of a plane curve (n = 2) it is possible to
choose a normal vector even when the curvature is zero. In this case since t and
n are orthogonal unit vectors we can define n by rotating t clockwise through
90 degrees:

t = (ξ, η), n = (η,−ξ).

With this definition both t and n change sign when the orientation is reversed
so to maintain the equation t′ = κn it is necessary to allow κ to be negative.
For a plane curve α : I → R2 parameterized by arc length we can view the unit
normal vector as a map to the unit circle and define an angle θ = θ(s) by the
formula

n(s) = (cos θ(s), sin θ(s)).

We then define the signed curvature by the formula

κ =
dθ

ds
.

The signed curvature κ for a plane curve C ⊆ R2 is analogous to the Gauss
curvature K of a surface S ⊆ R3. (See do Carmo pages 146, 155, 167.) Note
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that when α(s) = (cos s, sin s) is the counter clockwise parameterization of the
unit circle in R2, the vector n defined by rotation of t as above is the outward
normal (=radius vector) to the circle and the curvature κ is identically one.
Thus the curvature compares the curve α to the unit circle.

27. Setup for local canonical form. Assume that α : I → R3 has positive
curvature and s0 ∈ I. The Taylor expansion

α(s) = α(s0) + (s− s0)α
′(s0) +

(s− s0)
2

2
α′′(s0) +

(s− s0)
3

6
α′′′(s0) + · · ·

tells us what the trace C of α looks like near the point α(s0) ∈ C. Because any
reparameterization of C has the same trace we assume that α is parameterized
by arc length. Because the reparameterization defined by σ(s) = s− s0 is also a
parameterization by arc length, we assume that s0 = 0. Because the arc length,
curvature, and torsion are invariant under rigid motions, we assume that

α(0) = (0, 0, 0), t(0) = (1, 0, 0), n(0) = (0, 1, 0), b(0) = (0, 0, 1).

28. Local Canonical Form. In the notation of Setup 27 above, the Taylor
expansion of α(s) = (x(s), y(s), z(s)) is

x(s) = s−
κ(0)s3

6
+Rx

y(s) =
κ(0)s2

2
−

κ′(0)s3

6
+Ry

z(s) = −
κ(0)τ(0)s3

6
+Rz

where Rx, Ry, Rz = o(s3).

Proof: There is no constant term in these formulas because α(0) = 0. By
definition

α′ = t, α′′ = κn.

Differentiating once more gives

α′′′ = κ′n+ κn′ = κ′n+ κ(−κt− τb)

by the second Frenet formula. Now evaluate at s = s0 = 0.

29. Application. Recall (Remark 11 above and do Carmo page 5) that the
tangent line to the trace C of a regular curve α at a point p0 = α(s0) ∈ C is the
line containing the two points p0 and p0+ t0 where t0 = t(s0). The osculating
plane to C at p0 is the plane containing the three points p0, p0 + t0, p0 + n0

where n0 = n(s0). (See do Carmo pages 17, 29, 30. The definition assumes that
the curvature κ(s0) at p0 is positive.) Let p1 = α(s1) and p2 = α(s2) be two
other points on C distinct from p0 and each other. Then as s1 → s0 the limit of
the line through p0 and p1 is the tangent line at p0 and the limit as s1, s2 → s0
of the plane through p0, p1, and p2 is the osculating plane.
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Surfaces

JWR

February 13, 2014

These notes summarize the key points in the second chapter of Differential
Geometry of Curves and Surfaces by Manfredo P. do Carmo. I wrote them to
assure that the terminology and notation in my lecture agrees with that text.

1. Notation. Throughout x : U → R3 is a smooth1 map defined of an open
set U ⊆ R2 in the plane. Usually a typical point of U denoted by q = (u, v) and
the components of the map x are denoted

x(u, v) = (x(u, v), y(u, v), z(u, v)).

The differential of this map at q ∈ R2 is the linear map dxq : R2 → R3

represented by the matrix of partial derivatives

dxq =



∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂z

∂u

∂z

∂v


evaluated at the point q = (u, v). See do Carmo page 54. On page 84 he
introduces the notations

xu =
∂x

∂u
=



∂x

∂u

∂y

∂u

∂z

∂u


, xv =

∂x

∂v
=



∂x

∂v

∂y

∂v

∂z

∂v


.

for the columns of dxq. Note the inconsistency of notation: in the expression dxq
the subscript q indicates where the partial derivatives are to be evaluated while
in the expressions xu and xv the subscript indicates which partial derivative is
being computed.

1 For do Carmo the terms smooth, differentiable and infinitely differentiable are synony-
mous. I prefer the term smooth.
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2. Definition. A parameterized surface is a map x : U → R3 as above.
The image x(U) ⊆ R3 is called the trace and the surface is called regular iff
the differential dxq is one-to-one for all q ∈ U . (See do Carmo page 78.)

3. Remarks. The definition is analogous to the definition of regular parame-
terized curve α : I → R3 given on pages 2 and 6 of do Carmo. The condition
that dxq be one-to-one holds if and only if xu ∧ xv 6= 0 and this is the analog
of the regularity condition that α′ 6= 0. As for curves the real object of study
is the trace. The following definitions restrict the trace and also enable us to
define surfaces independently from any particular parameterization.

4. Definition. A subset S ⊆ R3 of R3 is called a regular surface iff for
every point p0 ∈ S there is an open subset V ⊆ R3 and a regular parameterized
surface x : U → R3 such that p0 ∈ S ∩ V , x(U) = S ∩ V , and the map x is a
homeomorphism onto its trace S∩V . The last condition means that the inverse
map x−1 : S ∩ V → U is continuous. The map x : U → S ∩ V ⊆ R3 is called a
local parameterization of S and the functions u, v : S ∩ V → R defined by

x−1(p) = (u(p), v(p)), p ∈ S ∩ V

are called local coordinates on S.

5. Change of Parameters Theorem. Let x : U1 → S ∩ V1 ⊆ R3 and
y : U2 → S ∩ V2 ⊆ R3 be two local parameterizations and define open subsets
U12 and U21 of R2 by

U12 := x−1(S ∩ V1 ∩ V2), U21 := y−1(S ∩ V1 ∩ V2).

Then the map h : U12 → U21 defined by

h(q) = y−1(x(q))

is a diffeomorphism, i.e. both h and h−1 are smooth.

Proof: See do Carmo pages 70-71.

6. Definition. A subset C ⊆ R3 of R3 is called a regular curve iff for every
point p0 ∈ C there is an open subset V ⊆ R3 and a regular parameterized
curve α : I → R3 such that p0 ∈ C ∩ V , x(I) = C ∩ V , and the map α is a
homeomorphism onto its trace C ∩ V . The map α → C ∩ V ⊆ R3 is called a
local parameterization of C. (Recall from Chapter 1 that the condition that
α be a regular parameterized curve is that α′(t) 6= 0 for t ∈ I.)

7. Change of Parameters Theorem for Curves. Let α : I1 → S ∩V1 ⊆ R3

and β : I2 → S ∩ V2 ⊆ R3 be two local parameterizations of a regular curve C
and define open intervals I12 and I21 of R3 by

I12 := α−1(C ∩ V1 ∩ V2), I21 := y−1(C ∩ V1 ∩ V2).

Then the map h : I12 → I21 defined by

h(t) = β−1(α(t)))

is a diffeomorphism, i.e. both h and h−1 are smooth.

2



Proof: This is Exercise 2.3-15 on page 82 of Do Carmo.

8. Example. Consider the curve γ : R→ R2 defined by

γ(t) = (cos t, sin 2t).

The derivative γ′ never vanishes and the trace C = γ(R) is a figure eight crossing
itself at the origin. Let I1 = (π/2, 5π/2), I2 = (−π/2, 3π/2) and let α : I1 → R2

and β : I2 → R2 be the restrictions of γ to the indicated intervals. Then
C = α(I1) = β(I2) and the maps α and β are one-to-one. However there do not
exist open intervals I12 about about 3π/2 and I21 about π/2 such that α−1 ◦ β
is a diffeomorphism. The hypothesis of the previous theorem fails. The inverse
map α−1 : C ∩V → I1 is not a homeomorphism onto its image no matter small
is the neighborhood V of the origin in R2

9. Theorem. Let S ⊂ R3 be a regular surface and f : S → R. Then the
following are equivalent.

(i) For every local parameterization x : U → S ∩ V the composition f ◦ x :
U → R is a smooth function.

(ii) For every p0 ∈ S there is a local parameterization x : U → S ∩ V with
p0 ∈ S ∩ V such that the composition f ◦ x smooth.

(iii) For every p ∈ S there is an open set V ⊆ R3 containing p0 and a smooth
function F : V → R such that F (p) = f(p) for p ∈ S ∩ V .

(See do Carmo page 72.) A function satisfying these equivalent properties is
called smooth. A map f : S → Rn is called smooth iff each of its n components
is a smooth function.

10. Regular Values. Let V ⊆ R3 be open subset and F : V → R be a smooth
function. A point p ∈ V is called a regular point of F iff the differential

dFp :=

(
∂F

∂x
,
∂F

∂y
,
∂F

∂z

)
p

is non zero. (Here the subscript p on the right indicates that the partial deriva-
tives are to be evaluated at p.) A real number a ∈ R is called a regular value
of F iff every point p ∈ F−1(a) is a regular point of F .

11. Regular Value Theorem. A subset S ⊆ R3 is a smooth surface if and
only if for every point p ∈ S there is an open set V ⊆ R3 and a smooth function
F : V → R such that p ∈ V , 0 is a regular value of F , and S ∩ V = F−1(0).

Proof. (See do Carmo page 59.) If p is a regular point of F then at least one of
the three partial derivatives is non zero at p. The Implicit Function Theorem2

2 Click if reading online.
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states that the corresponding variable is a function of the other two in a neigh-
borhood of p. This means that there is a regular parameterization of one of the
three forms

x(u, v) = (x(u, v), u, v), y(u, v) = (u, y(u, v), v), z(u, v) = (u, v, z(u, v)).

Coordinates formed this way are called Monge coordinates.

12. Remark. It is a theorem (page 114 of do Carmo) that a surface S ⊆ R3

is of form S = F−1(0) for some smooth F : V → R having 0 is a regular value
if and only if S is orientable. (See Definition 26 below for the definition of
orientable.) This theorem requires that S ⊆ V whereas Theorem 11 above is
local; it only requires S∩V = F−1(0). The point is that every surface is “locally
orientable”, but orientability is a “global condition”.

13. Example. The ellipsoid is the set F−1(0) where

F (x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1.

The only point of R3 which is not a regular point of F is the origin and F does
not vanish at the origin. The ellipsoid can be be covered by six graphs, namely

x±(u, v) = (±x(u, v), u, v), x(u, v) := |a|
√

1− b−2u2 − c−2v2,
y±(u, v) = (u,±y(u, v), v), y(u, v) := |b|

√
1− a−2u2 − c−2v2,

z±(u, v) = (u, v,±z(u, v)), z(u, v) := |c|
√

1− a−2u2 − b−2v2.

In each case the open set U ⊆ R2 is defined by the condition that the quantity
under the square root sign is positive (this the interior of an ellipse) and the
open set V ⊆ R3 is the half space where the corresponding coordinate is either
positive or negative as appropriate.

14. Definition. Let S ⊆ R3 be a regular surface and p ∈ S. The tangent
vector to S at p is a vector α′(0) where α : I → R3 is a smooth curve such
that α(I) ⊆ S, 0 ∈ I, and α(0) = p. The space of all tangent vectors to S at
p is denoted by TpS and called the tangent space to S at p. (See do Carmo
page 83.)

15. Theorem. Let x : U → S∩V ⊆ R3 be a local parameterization of a smooth
surface S, q ∈ U , and p = x(q) ∈ S. Then

TpS = dxq(R2),

i.e. the tangent space is the image of the differential dxq : R2 → R3.

16. Remark. I prefer to call TpS the tangent space and the translate p+TpS
the tangent plane. The tangent space is a vector space; the tangent plane is
not. On page 83 do Carmo writes “the plane dxq(R2) which passes through
p = x(q) . . .”. This is incorrect as usually p /∈ dxq(R2). Of course, the point
p = p+ 0 lies in the tangent plane p+ TpS.
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17. Maps between surfaces. Let S1, S2 ⊆ R3 be regular surfaces, and

ϕ : S1 → S2

be a smooth map, i.e. each of its three components is a smooth function as
in Theorem 9 above. An equivalent condition is that the map ϕ is smooth in
local coordinates, i.e. for every point p ∈ S and every local parameterization
y : U2 → S2 ∩V2 with ϕ(p) ∈ S2 ∩V2 there is a local parameterization x : U1 →
S1 ∩ V1 such that ϕ(U1) ⊆ U2 and the map y−1 ◦ ϕ ◦ x : U1 → U2 is a smooth
map from the open set U1 ⊆ R2 to the open set U2 ⊆ R2. When ϕ : S1 → S2 is
smooth and α : I → S1 is a curve in S1 with α(0) = p, then ϕ ◦ α : I → S2 is a
curve with (ϕ ◦ α)(0) = ϕ(p) so the differential

dϕp : TpS1 → Tϕ(p)S2

is a linear map from the tangent space to S1 at p to the tangent space to S2 at
ϕ(p). A map ϕ : S1 → S2 is called a diffeomorphism iff ϕ is one-to-one and
onto and both maps ϕ and ϕ−1 are smooth.

18. Inverse Function Theorem. The differential dϕp : TpS1 → Tϕ(p)S2 is
an invertible linear map if and only if f is a local diffeomorphism at p, i.e.
if and only if there are open sets S1 ∩ V1 and S2 ∩ V2 such that p ∈ S1 ∩ V1,
ϕ(p) ∈ S2 ∩ V2, ϕ(S1 ∩ V1) = S2 ∩ V2, and the map ϕ : S1 ∩ V1 → S2 ∩ V2 is a
diffeomorphism.

Proof: In other words, for all w2 ∈ TpS2 the equation dϕp(w1) = w2 has a
unique solution w1 ∈ TpS1 if and only if for all p2 ∈ S2 near ϕ(p) the equation
p2 = ϕ(p1) has a unique solution p1 ∈ S1 near p. A special case is where
S1 = U1 and S2 = U2 are open subsets in R2 = R2 × {0} ⊆ R3. The general
case follows easily from the special case. For careful proofs of this and the
other theorems (such as the Implicit Function Theorem and the Existence and
Uniqueness Theorem for ODE) which Do Carmo leaves unproved see the little
book Calculus On Manifolds by Michael Spivak.

19. Definition. Let S ⊆ R3 be a regular surface and p ∈ S. The function
Ip : TpS → R defined by

Ip(w) := 〈w,w〉 = |w|2, w ∈ TpS ⊆ R3

is called the first fundamental form of S at p. (See do Carmo page 92.)

20. Remark. Here do Carmo uses the notation 〈w1, w2〉 for what was denoted
by w1 ·w2 in Chapter I and calls 〈w1, w2〉 the inner product (rather than the
dot product) of the vectors w1, w2 ∈ R3. When w1, w2 ∈ TpS he sometimes
writes 〈w1, w2〉p for 〈w1, w2〉. Following do Carmo I will no longer write vectors
in boldface. Note that do Carmo denotes local parameterizations in bold face,
but x(u, v) should be viewed as a point of R3 not a vector.
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21. The First Fundamental Form in Local Coordinates. Let S ⊆ R3

be a regular surface and x : U → S ∩W be a local parameterization. Define
functions F,E,G : U → R by

E(q) = 〈xu,xu〉p , F (q) = 〈xu,xv〉p , G(q) = 〈xv,xv〉p

for q ∈ U and p = x(q) ∈ S. Then

〈p̂1, p̂2〉p = E(q)û1û2 + F (q)(û1v̂2 + v̂1û2) +G(q)v̂1v̂2

for p̂i = (ûi.v̂i) ∈ R2. In particular, the first fundamental form is given by

Ip(p̂) = E(q)û2 + 2F (q)ûv̂ +G(q)v̂2.

In matrix notation this formula is

Ip(p̂) =
(
û v̂

)( E F
F G

)
q

(
û
v̂

)
.

22. Example (Stereographic Projection). (See do Carmo Exercise 16 page
67.) Let S2 ⊆ R3 denote the unit sphere, i.e.

S2 = {(x, y, z) ∈ R3, x2 + y2 + z2 = 1}.

The point n = (0, 0, 1) ∈ S2 is called the north pole. The map π : S2 \{n} → R2

defined by the condition

π(p) = q ⇐⇒ the three points n, p, (q, 0) are collinear

is called stereographic projection. By similar triangles (see Figure 1) we see
that

π(x, y, z) =

(
x

1− z
,

y

1− z

)
and the inverse map is given by x(u, v) := π−1(u, v) = (x, y, z) where

x =
2u

u2 + v2 + 1
, y =

2v

u2 + v2 + 1
, z =

u2 + v2 − 1

u2 + v2 + 1
.

The partial derivatives are

∂x

∂u
=
−2u2 + 2v2 + 2

(u2 + v2 + 1)2
,

∂y

∂u
=

−4uv

(u2 + v2 + 1)2
,

∂z

∂u
=

−4u2

(u2 + v2 + 1)2
,

∂x

∂v
=

−4uv

(u2 + v2 + 1)2
,

∂y

∂v
=

2u2 − 2v2 + 2

(u2 + v2 + 1)2
,

∂z

∂v
=

−4v2

(u2 + v2 + 1)2
.

Hence

〈xu,xu〉 = 〈xv,xv〉 =
4

u2 + v2 + 1
, 〈xu,xv〉 = 0.
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n

p

q

Figure 1: Stereographic Projection

Therefore for p = (x, y, z) ∈ S2 \ {n} and q = (u, v) = π(p) ∈ R2 we have

〈p̂1, p̂2〉 = µ(q) 〈q̂1, q̂2〉

where

q̂i ∈ R2, p̂i = dxq(q̂i) ∈ TpS2, µ(q) :=
4

u2 + v2 + 1
.

In other words the first fundamental form satisfies E = G and F = 0. This
implies that the linear map dxq : R2 → TpS

2 preserves (cosines of) angles. A
linear map which preserves angles is called conformal.

23. Remark. The book Geometry and the Imagination by David Hilbert and
Stephan Cohn-Vossen (Chelsea Publishing Company, 1952) contains an elemen-
tary proof that stereographic projection is conformal on page 248. (The proof
is elementary in that it doesn’t use calculus.) An elementary proof can also be
found online at http://people.reed.edu/~jerry/311/stereo.pdf. (I put a
copy at http://www.math.wisc.edu/~robbin/Do_Carmo/stereo.pdf.)

24. Area Theorem. Let S ⊆ R3 be a compact3 regular surface. Then there is
a unique function A which assigns a real number A(S ∩V ) to every open subset
S ∩ V of S and satisfies the following two properties.

(i) For every local parameterization x : U → S ∩ V we have

A(S ∩ V ) :=

∫∫
U

|xu ∧ xv| du dv

(ii) If V = V1 ∪ V2 and the sets S ∩ V1 and S ∩ V2 intersect only in their
boundaries, then

A(S ∩ V ) = A(S ∩ V1) +A(S ∩ V2).

3 The term compact means closed and bounded.
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The number A(S) is called the area of S.

Proof: A careful proof of this theorem is best left for another course, but the
geometric idea isn’t so difficult. The key point is the change of variables formula
for a double integral. (See do Carmo at the bottom of page 97.) This formula
says that ∫∫

U1

|xu ∧ xv| du dv =

∫∫
U2

|yu ∧ yv| du dv

if x : U1 → S ∩ V and y : U2 → S ∩ V are two local parameterizations with
the same trace. i.e. x(U1) = y(U2). Then we must show that S can be covered
by open sets which overlap only in their boundaries. (A precise definition of
boundary must be given.) Finally we must prove the addition formula in part (ii).

The formula in part (i) is plausible. Imagine that the set U is broken up into
a large number of very small rectangles. Each rectangle has area du dv. The
image of this rectangle under the map x will be approximately a parallelogram
with edge vectors xu du and, xv dv and the area of this parallelogram is roughly

dA = |xu ∧ xv| du dv.

Now |xu ∧ xv| = | sin θ| |xu| |xv| where θ is the angle from xu to xv. But this is
the area of the tiny parallelogram. Adding up all these tiny areas gives the total
area as an integral. In terms of the first fundamental form the area element in
local coordinates is

dA =
√
EG− F 2 du dv.

This is a consequence of the formulas

〈w1, w2〉 = |w1| |w2| cos θ, |w1 ∧ w2| = |w1| |w2| | sin θ|

for the inner product and wedge product of two vectors w1, w2 ∈ R3.

25. Example. As an example we will prove the formula

A(S2) = 4π

in two different ways. A parameterization of the upper hemisphere is

x(u, v) = (u, v, z(u, v)), z(u, v) :=
√

1− u2 − v2.

The coordinate vectors are

xu =

 1
0
−u√

1− u2 − v2

 , xv =

 0
1
−v√

1− u2 − v2

 ,

so

xu ∧ xv =


v√

1− u2 − v2
−u√

1− u2 − v2
1

 , |xu ∧ xv| =
1√

1− u2 − v2
.
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To evaluate the integral we use the change of variables

(0, 1)× (0, 2π)→ {(u, v), u2 + v2 < 1} : (r, θ) 7→ (u, v) = (r cos θ, r sin θ)

so du dv =
∂(u, v)

∂(r, θ)
dr dθ where

∂(u, v)

∂(r, θ)
= det


∂u

∂r

∂u

∂θ
∂v

∂r

∂v

∂θ

 = r

so ∫
u2+v2<1

|xu ∧ xv| du dv =

∫ 2π

0

∫ 1

0

r dr dθ√
1− r2

= 2π

∫ 1

0

ds

2
√
s

= 2π.

The parameterization (u, v) 7→ (u, v,−z(u, v)) of the lower hemisphere gives the
same answer and the two hemispheres intersect only in their common boundary
(the unit circle in the (x, y)-plane) so the area of S2 is 4π.

A second way to prove A(S2) = 4π is to use spherical coordinates

x(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

Here x : (0, 2π) × (0, π) → S2 ∩ V where V = {(x, y, z) ∈ R3, x 6= 1, z 6= ±1}.
Then

xθ =

 − sin θ cosϕ
cos θ cosϕ

0

 , xϕ =

 − cos θ sinϕ
− sin θ sinϕ

cosϕ

 ,

so

xθ ∧ xϕ =

 cos θ cos2 ϕ
sin θ cos2 ϕ
cosϕ sinϕ

 , |xθ ∧ xϕ| = | cosϕ|.

Now S2 ∩ V intersects itself only in its boundary (which is a semicircle) so

A(S2) =

∫ π

0

∫ 2π

0

| cosϕ| dθ dϕ = 4π.

26. The Unit Normals. For a two dimension vector subspace W ⊆ R3 there
are exactly two unit vectors n ∈ R3 which are perpendicular to every vector in
W , i.e. such that |n| = 1 and 〈n,w〉 = 0 for w ∈ W . If n is one of these two
vectors then −n is the other one. In particular, when W = TpS is the tangent
space at a point p to a regular surface S ⊆ R3 there are exactly two vectors
N(p) such that |N(p)| = 1 and 〈N(p), w〉 = 0 for all w ∈ TpS. If x : U → S ∩V
is a local parameterization of S and p = x(q) ∈ S where q ∈ U , then these two
unit normal vectors are

N(p) = ±
(

xu ∧ xv
|xu ∧ xv|

)
q

.
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27. Definition. A regular surface is said to be orientable iff there is a smooth
map N : S → S2 such that

〈N(p), w〉 = 0, ∀w ∈ TpS.

Such a map determines an orientation on each tangent space: an ordered basis
w1, w2 ∈ TpS is positively oriented iff 〈N(p), w1 ∧ w2〉 > 0. The vector field N
is called the unit normal to the oriented surface S and the map N : S → S2

is called the Gauss map.

28. Remark. It is a difficult theorem that a compact regular surface S is
orientable and the open set R3 \S has two connected components, one bounded
and the other unbounded. In this case one chooses the orientation so that
the normal vector N points into the unbounded component. This N is called
the outward unit normal vector. For example, when S = S2 the bounded
component is the open ball {(x, y, z) ∈ R3, x2 +y2 +z2 < 1} and the unbounded
component is the open set {(x, y, z) ∈ R3, x2 + y2 + z2 > 1}. The outward unit
normal for S2 is N(p) = p so the Gauss map is the identity map.

29. The Möbius Strip. (See do Carmo page 106.) This is the image S of the
map x : R× (−1, 1)→ R3 defined by

x(θ, r) = z(θ)+rn(θ), z(θ) = (2 cos 2θ, 2 sin 2θ, 0), n(θ) = (sin θ, sin θ, cos θ).

The curve z has period π and the curve n has period 2π. Note that the line
segment `(θ) connecting the two points x(θ,±1) lies in S and if 0 < |θ1−θ2| < π
the two line segments `(θ1) and `(θ2) do not intersect. The two line segments
`(θ) and `(θ + π) are equal as sets but they have opposite orientations. Since
xθ = z′(θ) + rn′(θ) and xr = n(θ) we get

(xθ ∧ xr)(θ, 0) = z′(θ) ∧ n(θ)

so x(θ + π, 0) = x(θ, 0) but xθ ∧ xr(θ + π, 0) = −xθ ∧ xr(θ, 0). Hence there is
no continuous unit normal so the Möbius strip is not orientable.
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The Gauss map

JWR

May 3, 2012

1. Let C ⊂ R3 be a curve and p ∈ C. Let α : (−ε, ε)→ R3 be a parameterization
of C by arc length centered at p, i.e.

‖α′(s)‖2 = 1, α(0) = p.

The vector α′′(0) is called the curvature vector at p. Differentiating shows
that 〈α′′, α′〉 = 0 so the curvature vector is orthogonal to the tangent vector
α′(0) to the curve at p. Reversing the orientation of the curve (i.e. replacing
s by −s) reverses the direction of the tangent vector but leaves the curvature
vector unchanged.

2. Let S ⊂ R3 be an oriented surface. The Gauss map is the map N : S → S2

which assigns to p ∈ S the unit normal. There are two unit normals (−N is the
other one); the meaning of the word oriented is that we have chosen one. Thus1

‖N(p)‖ = 1, 〈N(p),v〉 = 0 for v ∈ TpS. page 136

The first fundamental form assigns to each p ∈ S the quadratic form Ip :
TpS → R defined by

Ip(v) = 〈v,v〉 = ‖v‖2 page 92

It assigns to each tangent vector v ∈ TpS ⊂ R3 the square of its length. The
second fundamental form is defined by

IIp(v) = 〈N(p), α′′(0)〉 , v = α′(0)

where α : (ε, ε) → S is a curve whose tangent vector at p is v. Equation (†)
below says that IIα(α′) is the normal component of the curvature vector α′′.

3. Lemma. The second fundamental form is independent of the choice of curve
α used to define it.

Proof. Since α(s) ∈ S we have α′(s) ∈ Tα(s)S and hence 〈N(α(s), α′(s)〉 = 0.
Differentiating gives

〈dNp(α′(0), α′(0)〉+ 〈N(p), α′′(0)〉

This shows that
IIp(v) = −〈dNp(v),v〉 for v ∈ TpS page 141

is independent of the second derivative.

1All page references are to the Do Carmo text.
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4. Lemma. The derivative dNp : TpS → TN(p)S
2 of the Gauss map is a map

from a vector space to itself, i.e.

TpS = TN(p)S
2

for p ∈ S.

Proof. TpS = N(p)⊥ and TwS
2 = w⊥ for w ∈ S2.

5. Lemma. The derivative dNp : TpS → TpS is self adjoint, i.e.

〈dNp(u),v〉 = 〈u, dNp(v)〉

for u,v ∈ TpS.

Proof. See Proposition 1 page 140. Choose a parameterization x : U → S with

x(0, 0) = p, xu(0, 0) = u, xv(0, 0) = v.

Here (u, v) are the standard coordinates on the open set U ⊂ R2 and the
subscripts u and v indicate partial differentiation.2 Since N(x) ⊥ TxS and
xu,xv ∈ TxS we have

〈N,xu〉 = 〈N,xv〉 = 0

so
〈Nv,xu〉+ 〈N,xuv〉 = 〈Nu,xv〉+ 〈N,xvu〉 = 0. (∗)

The lemma follows from xuv = xvu.

6. Remark. Let α : (−ε, ε) → S be a curve in S parameterized by arclength.
By the geometric definition of the cross product, the vectors N,α′, N ∧ α′ are
orthonormal at each point α(s). The vector α′ is a unit vector tangent to S (at
α) and N(α) is a unit vector normal to S so N ∧α′ is a unit vector tangent to S
and is orthogonal to both N and α′. Since ‖α′‖ = 1 we also have 〈α′, α′′〉 = 0.
Hence the curvature vector can be written as

α′′ = knN + kg(N ∧ α′), kn := 〈α′′, N〉 , kg := 〈α′′, N ∧ α′〉 (†)

The coefficient kn is called the normal curvature and coefficient kg is called
the geodesic curvature. By definition

IIα(α′) = −〈α′′, N(α)〉 = −kn.

By the Pythagorean theorem

k2 = k2n + k2g .

See page 249. A geodesic in S is a curve whose geodesic curvature is zero, i.e.
whose curvature vector is normal to S.

2However the subscript p in the expression dNp(u) indicates that that the derivative is to
be evaluated at p.
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7. Remark. The curvature vector is the acceleration from classical mechanics
so a particle moving in S and acted on by a force which is perpendicular to to
S (and no other forces) moves along a geodesic.

8. Definition. The eigenvalues k1, k2 of dNp are called the principal curva-
tures and the determinant

K := det(dKp) = k1k2

is called the Gauss curvature. The average value

H :=
k1 + k2

2

of the principal curvatures is the called the mean curvature. Thus λ = k1
and λ = k2 are the two solutions of the characteristic equation

λ2 + 2Hλ+K = 0.

9. Remark. If dA denotes the area of an infinitesimal region on S containing
the point p, then K(p) dA is the area of the image of that infinitesimal region
under the Gauss map. Thus K(p) is the analog for surfaces of the curvature
k = dθ/ds of a plane curve.

10. Let U ⊂ R2 be open and x : U → S be a parameterization. The unit
normal is

N =
xu ∧ xv
‖xu ∧ xv‖

. page 135

A curve α : (−ε, ε)→ S can be written

α(t) = x(u(t), v(t))

where (u(t), v(t)) ∈ U . In these coordinates the fundamental forms are given by

Iα(α′) = E(u′)2 + 2Fu′v′ +G(v′)2, page 92

IIα(α′) = e(u′)2 + 2fu′v′ + g(v′)2 page 154

where

E = 〈xu,xu〉 , F = 〈xu,xv〉 , G = 〈xv,xv〉 ,
e = −〈Nu,xu〉 , f = −〈Nu,xv〉 , g = −〈Nv,xv〉 .

are functions on U . The subscript on N means partial differentiation so

Nu = dNx(xu), Nv = dNx(xv).

By (∗) f can be written four ways.
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11. Weingarten Equations.

Nu = a11xu + a12xv. Nv = a21xu + a22xv page 154

where

a11 =
fF − eG
EG− F 2

, a12 =
gF − fG
EG− F 2

,

a21 =
eF − fE
EG− F 2

, a22 =
fF − gE
EG− F 2

.

page 155

12. Corollary. The Gauss curvature is given by

K =
eg − f2

EG− F 2

and the mean curvature is given by

H =
1

2

eG− 2fF + gE

EG− F 2
.

13. Suppose that the surface S is a graph, i.e. it is defined by an equation

z = h(x, y).

The tangent space at p = (x, y, z) ∈ S is the graph of dh i.e. the set of all
vectors (x′, y′, z′) such that

z′ = hx(x, y)x′ + hy(x, y)y′.

The vector

N =
(−hx,−hy, 1)

‖N‖
, ‖N‖ =

√
h2x + h2y + 1

is one of the two unit normal vectors to S. There is an obvious parameterization
x(u, v) = (x, y, z) where

x = u, y = v, z = h(u, v). (#)

For this parameterization

xu = (1, 0, hx), xv = (0, 1, hy)

so
E = 1 + h2x, F = hxhy, G = 1 + h2y,

e =
hxx
‖N‖

, f =
hxy
‖N‖

, g =
hyy
‖N‖

,

K =
hxxhyy − h2xy
‖N‖2

,

2H =
(1 + h2x)hyy − 2hxhyhxy + (1 + h2y)hxx

‖N‖3/2
.
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14. Theorem. If K(p) > 0, then S lies to one side of p + TpS near p. If
K(p) < 0, then S intersects p+ TpS.

Proof. Choose coordinates on R3 so that p = (0, 0, 0), TpS = the xy-plane.
Then S is a graph near p with equation z = h(x, y) and h(0, 0) = hx(0, 0) =
hy(0, 0) = 0 and d2h(0, 0) is the second fundamental form. Rotate the (x, y)
plane so that (1, 0) and (0, 1) are eigenvectors of Hessian matrix

d2h(0, 0) =

(
hxx(0, 0) hxy(0, 0)
hyx(0, 0) hyy(0, 0)

)
.

Then xxy(0, 0) = hyx(0, 0) = 0 so the principle curvatures are k1 = hxx(0, 0)
and k2 = hyy(0, 0). The second fundamental form is k1x

2 + k2y
2. Then

h(x, y) = k1x
2 + k2y

2 + higher order terms.

See Proposition 3 in section 2-2 on page 63 and problem 26 on page 91.

15. Remark. The Implicit Function Theorem says that if N(p) does not lie
in the xy-plane then p lies in the image of a local parameterization as in equa-
tion (#). This is Proposition 3 in section 2-2 on page 63. Since N(p) cannot
lie in all three coordinate planes it is always possible to choose two of the three
coordinates x, y, z to parameterize the surface (near p) as a graph. For example,
the unit sphere is covered by six parameterizations

z =
√

1− x2 − y2, y =
√

1− x2 − z2, x =
√

1− y2 − z2,
z = −

√
1− x2 − y2, y = −

√
1− x2 − z2, x = −

√
1− y2 − z2.

Other local parameterizations of the unit sphere are by cylindrical coordinates

x = r cos θ, y = r sin θ, z =
√

1− r2

(this parameterizes the northern hemisphere), by spherical coordinates

x = cos θ sinϕ, y = sin θ sinϕ. z = cosϕ

(this parameterizes everything but the north and south poles) and stereographic
projection

x =
2u

1 + u2 + v2
, y =

2v

1 + u2 + v2
, z =

1− u2 − v2

1 + u2 + v2

(this parameterizes everything but the south pole (0, 0,−1). See exercise 16
page 67.) The Gauss curvature of the unit sphere is (obviously) identically
equal to one as the Gauss map is the identity map.

16. The point (cos(u±ν), sin(u±ν),±1) lies in the plane z = ±1. When ν = 0
these points lie on the same vertical line but for ν > 0 the upper one has been
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rotated clockwise and the lower one has been rotate counter clockwise. The line
connecting these two points has parametric equations

x = x0 + vξ, y = y0 + vη, z = v

where (x0, y0, 0) is the midpoint of the line segment connecting them and (2ξ, 2η, 2)
is the vector from the lower point to the upper, i.e.

x0 = 1
2 (cos(u+ ν) + cos(u− ν)) = cosu cos ν,

y0 = 1
2 (sin(u+ ν) + sin(u− ν)) = sinu cos ν

and
ξ = 1

2 (cos(u+ ν)− cos(u− ν)) = − sinu sin ν,

η = 1
2 (sin(u+ ν)− sin(u− b)) = cosu sin ν.

Since x0ξ + y0η = 0 we get

x2 + y2 = cos2 ν + v2 sin2 ν = a2 + b2z2

where a = cos ν and b = sin ν. This is the equation of a hyperboloid of one
sheet. Replacing ν by −ν gives the same equation so the hyperboloid of one
sheet contains two lines though every point. The tangent plane at any point
intersects the hyperboloid in these two lines so the hyperboloid has negative
Gauss curvature.

17. The equation x2 + y2 = z2 + 1 defines a hyperboloid of one sheet, and the
equation x2 + y2 = z2 − 1 defines a hyperboloid of two sheets. The latter has
positive Gauss curvature and therefore contains no lines.

18. Stereographic projection R2 → S2 is defined by the condition that the three
points

s = (0, 0,−1), p = (x, y, z), w = (u, v, 0), x2 + y2 + z2 = 1

are collinear. It covers the entire sphere except for the south pole s = (0, 0,−1)
in a one-one way. The analogous condition that the three points

s = (0, 0,−1), p = (x, y, z), w = (u, v, 0), x2 + y2 − z2 = −1

be collinear be used to parameterize the upper sheet of the hyperboloid of one
sheet by the unit disk u2 + v2 < 1. In this example the parameterization covers
the whole upper sheet in a one-one way. (The south pole s = (0, 0,−1) is on
the lower sheet.)
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