Since $ds/dt = |\alpha'(t)| \neq 0$, the function s = s(t) has a differentiable inverse t = t(s), $s \in s(I) = J$, where, by an abuse of notation, t also denotes the inverse function s^{-1} of s. Now set $\beta = \alpha \circ t$: $J \to R^3$. Clearly, $\beta(J) = \alpha(I)$ and $|\beta'(s)| = |(\alpha'(t) \cdot (dt/ds)| = 1$. This shows that β has the same trace as α and is parametrized by arc length. It is usual to say that β is a *reparametrization* of $\alpha(I)$ by arc length.

This fact allows us to extend all local concepts previously defined to regular curves with an arbitrary parameter. Thus, we say that the curvature k(t) of $\alpha: I \rightarrow R^3$ at $t \in I$ is the curvature of a reparametrization $\beta: J \rightarrow R^3$ of $\alpha(I)$ by arc length at the corresponding point s = s(t). This is clearly independent of the choice of β and shows that the restriction, made at the end of Sec. 1-3, of considering only curves parametrized by arc length is not essential.

In applications, it is often convenient to have explicit formulas for the geometrical entities in terms of an arbitrary parameter; we shall present some of them in Exercise 12.

EXERCISES

Unless explicity stated, $\alpha: I \to R^3$ is a curve parametrized by arc length s, with curvature $k(s) \neq 0$, for all $s \in I$.

1. Given the parametrized curve (helix)

$$\alpha(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \quad s \in \mathbb{R},$$

where $c^2 = a^2 + b^2$,

- **a.** Show that the parameter *s* is the arc length.
- **b.** Determine the curvature and the torsion of α .
- c. Determine the osculating plane of α .
- **d.** Show that the lines containing n(s) and passing through $\alpha(s)$ meet the *z* axis under a constant angle equal to $\pi/2$.
- e. Show that the tangent lines to α make a constant angle with the z axis.
- *2. Show that the torsion τ of α is given by

$$\tau(s) = -\frac{\alpha'(s) \wedge \alpha''(s) \cdot \alpha'''(s)}{|k(s)|^2}.$$

3. Assume that $\alpha(I) \subset R^2$ (i.e., α is a plane curve) and give k a sign as in the text. Transport the vectors t(s) parallel to themselves in such a way that the origins of t(s) agree with the origin of R^2 ; the end points of t(s) then describe a parametrized curve $s \to t(s)$ called the *indicatrix*

of tangents of α . Let $\theta(s)$ be the angle from e_1 to t(s) in the orientation of R^2 . Prove (a) and (b) (notice that we are assuming that $k \neq 0$).

- a. The indicatrix of tangents is a regular parametrized curve.
- **b.** $dt/ds = (d\theta/ds)n$, that is, $k = d\theta/ds$.
- *4. Assume that all normals of a parametrized curve pass through a fixed point. Prove that the trace of the curve is contained in a circle.
 - 5. A regular parametrized curve α has the property that all its tangent lines pass through a fixed point.
 - **a.** Prove that the trace of α is a (segment of a) straight line.
 - **b.** Does the conclusion in part a still hold if α is not regular?
 - **6.** A *translation* by a vector v in \mathbb{R}^3 is the map $A: \mathbb{R}^3 \to \mathbb{R}^3$ that is given by A(p) = p + v, $p \in \mathbb{R}^3$. A linear map $\rho: \mathbb{R}^3 \to \mathbb{R}^3$ is an *orthogonal transformation* when $\rho u \cdot \rho v = u \cdot v$ for all vectors $u, v \in \mathbb{R}^3$. A *rigid motion* in \mathbb{R}^3 is the result of composing a translation with an orthogonal transformation with positive determinant (this last condition is included because we expect rigid motions to preserve orientation).
 - **a.** Demonstrate that the norm of a vector and the angle θ between two vectors, $0 \le \theta \le \pi$, are invariant under orthogonal transformations with positive determinant.
 - **b.** Show that the vector product of two vectors is invariant under orthogonal transformations with positive determinant. Is the assertion still true if we drop the condition on the determinant?
 - **c.** Show that the arc length, the curvature, and the torsion of a parametrized curve are (whenever defined) invariant under rigid motions.
- *7. Let $\alpha: I \to R^2$ be a regular parametrized plane curve (arbitrary parameter), and define n = n(t) and k = k(t) as in Remark 1. Assume that $k(t) \neq 0, t \in I$. In this situation, the curve

$$\beta(t) = \alpha(t) + \frac{1}{k(t)}n(t), \quad t \in I,$$

is called the *evolute* of α (Fig. 1-17).

- **a.** Show that the tangent at t of the evolute of α is the normal to α at t.
- **b.** Consider the normal lines of α at two neighboring points $t_1, t_2, t_1 \neq t_2$. Let t_1 approach t_2 and show that the intersection points of the normals converge to a point on the trace of the evolute of α .

Figure 1-17

8. The trace of the parametrized curve (arbitrary parameter)

$$\alpha(t) = (t, \cosh t), \quad t \in R,$$

is called the catenary.

a. Show that the signed curvature (cf. Remark 1) of the catenary is

$$k(t) = \frac{1}{\cosh^2 t}.$$

b. Show that the evolute (cf. Exercise 7) of the catenary is

$$\beta(t) = (t - \sinh t \cosh t, 2 \cosh t).$$

9. Given a differentiable function k(s), $s \in I$, show that the parametrized plane curve having k(s) = k as curvature is given by

$$\alpha(s) = \left(\int \cos\theta(s) \, ds + a, \int \sin\theta(s) \, ds + b\right),\,$$

where

$$\theta(s) = \int k(s) \, ds + \varphi,$$

and that the curve is determined up to a translation of the vector (a, b) and a rotation of the angle φ .

10. Consider the map

$$\alpha(t) = \begin{cases} (t, 0, e^{-1/t^2}), & t > 0\\ (t, e^{-1/t^2}, 0), & t < 0\\ (0, 0, 0), & t = 0 \end{cases}$$

- **a.** Prove that α is a differentiable curve.
- **b.** Prove that α is regular for all t and that the curvature $k(t) \neq 0$, for $t \neq 0, t \neq \pm \sqrt{2/3}$, and k(0) = 0.
- **c.** Show that the limit of the osculating planes as $t \to 0$, t > 0, is the plane y = 0 but that the limit of the osculating planes as $t \to 0$, t < 0, is the plane z = 0 (this implies that the normal vector is discontinuous at t = 0 and shows why we excluded points where k = 0).
- **d.** Show that τ can be defined so that $\tau \equiv 0$, even though α is not a plane curve.
- 11. One often gives a plane curve in polar coordinates by $\rho = \rho(\theta)$, $a \le \theta \le b$.
 - **a.** Show that the arc length is

$$\int_a^b \sqrt{\rho^2 + (\rho')^2} \, d\theta,$$

where the prime denotes the derivative relative to θ .

b. Show that the curvature is

$$k(\theta) = \frac{2(\rho')^2 - \rho\rho'' + \rho^2}{\{(\rho')^2 + \rho^2\}^{3/2}}.$$

- **12.** Let $\alpha: I \to R^3$ be a regular parametrized curve (not necessarily by arc length) and let $\beta: J \to R^3$ be a reparametrization of $\alpha(I)$ by the arc length s = s(t), measured from $t_0 \in I$ (see Remark 2). Let t = t(s) be the inverse function of *s* and set $d\alpha/dt = \alpha'$, $d^2\alpha/dt^2 = \alpha''$, etc. Prove that
 - **a.** $dt/ds = 1/|\alpha'|, d^2t/ds^2 = -(\alpha' \cdot \alpha''/|\alpha'|^4).$
 - **b.** The curvature of α at $t \in I$ is

$$k(t) = \frac{|\alpha' \wedge \alpha''|}{|\alpha'|^3}.$$

c. The torsion of α at $t \in I$ is

$$\tau(t) = -\frac{(\alpha' \wedge \alpha'') \cdot \alpha'''}{|\alpha' \wedge \alpha''|^2}.$$

d. If $\alpha: I \to R^2$ is a plane curve $\alpha(t) = (x(t), y(t))$, the signed curvature (see Remark 1) of α at t is

$$k(t) = \frac{x'y'' - x''y'}{((x')^2 + (y')^2)^{3/2}}.$$

*13. Assume that $\tau(s) \neq 0$ and $k'(s) \neq 0$ for all $s \in I$. Show that a necessary and sufficient condition for $\alpha(I)$ to lie on a sphere is that

$$R^2 + (R')^2 T^2 = \text{const.},$$

where R = 1/k, $T = 1/\tau$, and R' is the derivative of R relative to s.

- **14.** Let α : $(a, b) \rightarrow R^2$ be a regular parametrized plane curve. Assume that there exists t_0 , $a < t_0 < b$, such that the distance $|\alpha(t)|$ from the origin to the trace of α will be a maximum at t_0 . Prove that the curvature k of α at t_0 satisfies $|k(t_0)| \ge 1/|\alpha(t_0)|$.
- *15. Show that the knowledge of the vector function b = b(s) (binormal vector) of a curve α , with nonzero torsion everywhere, determines the curvature k(s) and the absolute value of the torsion $\tau(s)$ of α .
- *16. Show that the knowledge of the vector function n = n(s) (normal vector) of a curve α , with nonzero torsion everywhere, determines the curvature k(s) and the torsion $\tau(s)$ of α .
 - 17. In general, a curve α is called a *helix* if the tangent lines of α make a constant angle with a fixed direction. Assume that $\tau(s) \neq 0$, $s \in I$, and prove that:
 - *a. α is a helix if and only if $k/\tau = \text{const.}$
 - *b. α is a helix if and only if the lines containing n(s) and passing through $\alpha(s)$ are parallel to a fixed plane.
 - *c. α is a helix if and only if the lines containing b(s) and passing through $\alpha(s)$ make a constant angle with a fixed direction.
 - d. The curve

$$\alpha(s) = \left(\frac{a}{c}\int\sin\theta(s)\,ds, \frac{a}{c}\int\cos\theta(s)\,ds, \frac{b}{c}s\right),\,$$

where $c^2 = a^2 + b^2$, is a helix, and that $k/\tau = a/b$.

*18. Let $\alpha: I \to R^3$ be a parametrized regular curve (not necessarily by arc length) with $k(t) \neq 0, \tau(t) \neq 0, t \in I$. The curve α is called a *Bertrand curve* if there exists a curve $\bar{\alpha}: I \to R^3$ such that the normal lines of α and $\bar{\alpha}$ at $t \in I$ are equal. In this case, $\bar{\alpha}$ is called a *Bertrand mate* of α , and we can write

$$\bar{\alpha}(t) = \alpha(t) + rn(t).$$