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Introduction

This lecture supplements the last two afternoons’ presentations, jointly
covering Milnor’s vast contributions to differential and algebraic topology.
Though it deals with only a handful of Milnor’s papers, those that belong to
the field of differential geometry, rather than topology, this selection proves
to be quite rewarding. Among other things, it includes an item of special
interest in this retrospective: Milnor’s very first paper.

This famous paper, written when Milnor was a freshman at Princeton, has
already been alluded to by many otherspeakers. But now it will be examined
a little more thoroughly; in fact, in contrast to previous lectures, in this talk
we will actually give a proof of a theorem. So perhaps I had better first
allay the fears of those blissfully ignorant of the subject, by mentioning one
beautiful aspect of this famous paper of differential geometry: it doesn’t
really require knowing any differential geometry at all.

*That the author of this paper should also be the publisher of these Proceedings is but
one strange aspect of this lecture. I have tried to retain the informal nature of the talk,
which was meant both as an antidote to the unremitting high-powered mathematics
presented throughout the symposium, and as a tribute to the delightfully informal nature
of all of Milnor’s own lectures.
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1. Milnor’s first theorem

Let’s begin by considering a smooth curve C: [0, L] — R? that is closed,
meaning that C(0) = C(L) and C’(0) = C'(L).

We might as well assume that C is “parameterized by arc-length”, so that
|C’(s)] = 1 for all 5; we use t(s) = C’(s) for this unit tangent vector. Then
the derivative C”(s) = t'(s) represents the rate at which the curve deviates
from being a straight line, and the norm of this derivative, « (s) = |C"(s)] is
called the curvature of C at s. Finally, the integral of this curvature,

L L
/ k(s)ds =/ |C”(s)]ds
0 0

is called the total curvature k (C) of the curve C.
Milnor’s theorem states:

THEOREM. 1If C is knotted, then the total curvature x(C) satisfies
k(C) > 4nm.

The definition of ¥ was made for smooth curves, but we can easily extend
it to a piecewise smooth curve, and in particular to a polygonal curve, by
considering a sequence of smooth curves that approaches the polygonal
curve P. The figure below shows such a sequence near a vertex V of the
polygonal curve.

6,

a bo

In this situation we can write

C’'(t) = (cos 8(t), sin6(t)),
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where 6 is nondecreasing, so

C"(t) =0'(t) - (—sinb(r), cos 6(¢))
IC"O1=6"()

and consequently
b
/ IC"(s)|ds =6, — 6.
a

It follows that as a, b — V, the integral

b
/ IC"(s)|ds > «
a

where « is the exterior angle at the vertex v. Consequently,
k(P) = Z exterior angles of P.

Conversely, if we use this as a definition of «(P) for polygonal curves
P, then by considering all polygonal curves P < C inscribed in a smooth
curve C, we can define x(C) as

x(C) = sup «(P).
P<C

(To be sure, one has to check that this definition really coincides with
the original definition, by playing around with the mean-value theorem

appropriately.)
One other preparatory remark is required. For any plane y, we can
consider the function that gives the height of C above y, which is just

s> C)- X for a unitvector X L y.
Suppose that for some plane y this function happens to have a unique local

maximum, at M, and let m be a minimum point for this function, as in the
figure below.
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=4

m

Then the curve C is divided into two arcs joining m and M, and it is easy
to see that any plane parallel to y between m and M must intersect each
of these arcs just once, since M is a unique local maximum for the height
function. If we now join these unique points on the two arcs with straight
lines, we obtain a disk bounded by C. It follows, in particular, that C is not
knotted.

The proof of Milnor’s theorem will proceed by showing that

k(C) <4n == 3X : the function C(s) - X has a unique local maximum.

Now how do we go about proving such a result? Or, more precisely, how did
Milnor go about proving it? As we might expect, by an ingeniously indirect
method.

For any unit vector X, let uc(X) be the number of local maxima of
C@s)- X,
e (X) = #{local maxima of C(s) - X }.

Then we will prove the following:
(%) ./52 wncdA =2k (C).
Once we have this formula we will be done, for then
k(C) <d4n = /Szuch <8ﬂ=2[92dA

= uc(X) <2 forsomeX € §2.

To prove (), we first consider a polygonal curve P with vertices po, p1,
. s Pn=1, pn = po. These vertices yield n points
Pj — Pj-1

a; =
7 pj = pial
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of the unit sphere $2. Let Q; be the shorter great circle arc connecting
a; and g;_; their union is a closed curve Q in $? (analogous to the unit
tangent vector curve s = C’(s) of a smooth curve C). For convenience, let
X be the north pole of § 2 and let the equator Ex be the intersection of the
sphere with the xy-plane.

X

Pj

Pj—1

Pj+1 '

Note that

a; is a relative maximum

Qj crosses Ex < {or minimum of P(s) - X |

Consequently, if the equator Ex does not contain a vertex of @, then

2up(X) =) _#{intersections of Q; with Ex } = Y  pg,(X), say.
j j

Since the set {X € §?: Ex contains a vertex of Q} is of measure 0, it follows

ﬂldt

To evaluate the integral over § 2 of the function
po;(X) = #{intersections of Q; with Ex }

we just have to change our point of view slightly. On §2, the curve Q; has
length a;, where q; is the exterior angle ata;. Consider the two great circles
perpendicular to the endpoints of Q ;; they bound a “double lune”, as in the
figure below. Clearly, Q; intersects Ex precisely when X is in this double
lune, and the area of this region is just

o o;
—]-areaSZ=—]-47r=4aj.
T T
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Consequently,

2'/szp,pdA=Z4d‘,

J

or

/ updA =2k(P).
Y

length o; =
exterior angle at g;

Finally, for an arbitrary smooth C, we choose a sequence
PP<P,<P3<:.-—>C

of polynomial curves, each refining the previous one, which converges to C,
and check that for each X,

np,(X) /' nc(X)

(a somewhat arduous application of the mean value theorem). It then
follows from monotone convergence that

[ weda~ [ ucas,
s2 s2

which yields the desired result.

Milnor’s paper actually investigated several other related phenomena,
many for curves in R”"; the interested reader is referred to the original

paper [1].
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2. More about curves

Milnor’s next paper on differential geometry [2], coming only a few years
after this one, also involved curves in R3. Most of the results have proofs
using methods similar to that of the first paper, and are not of the sort one
could easily state in standard differential geometry texts. But there is one
result that, to my surprise, does not appear to be mentioned in any book on
differential geometry.

Recall that for the unit tangent vector t(s), we define «(s) = |t'(s)|. If
k(s) # 0, one classically defines the unit normal vector n(s) = t'(s)/|t'(s)],
and then the binormal b(s) = t(s) x b(s). The function

t(s) \ .
A(s) = (n(s)) € SO3)
b(s)

must satisfy
A'(s) = M(s5)A(s)

for some skew-symmetric matrix M(s), so that we have the “Serret-Frenet
formulas”

t = Kn
n = —«t —1b
b’ = —n

where the ftorsion T is defined by this formula.
For curves with ¥ # 0 everywhere, the normal curve n is another closed
curve in §2, whose length is thus

L
/ Vr($)? + 1(s)%ds.
0

There is a fascinating classical theorem about n:

THEOREM (Jacobi, 1842). If m is a simple curve on 52, then it divides §2
into two parts of equal area.

Milnor added another result:

THEOREM. If ©(s) > 0 for all 5, but is not identically 0, then the length
ofnis > 4.
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3. Other papers on differential geometry

After these two papers on curve theory, Milnor’s next excursion into
differential geometry [3] almost seems to be following the prescribed un-
dergraduate route, since the main results are concerned with surfaces (here
we conveniently ignore the fact that in the interim he had also published his
famous paper on manifold homeomorphic to the 7-sphere, etc!). Actually,
[3] isn’t really about differential geometry per se, for it is concerned with
connections that do not necessarily arise from metrics.

Moving on to higher dimensions, we come to the brief paper [4] (less
than a page, including footnotes). The question had already been raised,
to what extent the eigenvalues of the Laplace operator determine the shape
of a region (“Can you hear the shape of a drum?”). In [4] Milnor pointed
out that for a lattice L C R”, information about the eigenvalues of the
Laplace operator on the quotient manifold R”/L could be formulated in
terms of the dual lattice L*. From the properties of certain known lattices
L1, L, C R it is then simple to conclude that the Laplace operators on
R'S/L, and R!%/L; have the same eigenvalues, although the manifolds are
not isometric (you can’t hear the shape of drums that are topologically
16-dimensional tori).

Here we see the typical Milnor touch, whereby an apparently innocuous
fact is employed in an unfamiliar context to yield surprising results. One
of the most striking instances of this approach is to be found in the next
paper, [5], which has given rise to an entire little subject of its own. A
Riemannian manifold (M, (, }) with curvature tensor R has a “mean cur-
vature tensor” K (X, Y), which plays a role in many classical theorems that
can be proved using methods of Morse Theory. For example, if M is com-
pact and K(X, X) > 0 for all X # 0, then m (M) is finite (Myers) while
if M is complete and K(X, X) < 0 for all X, then m;(M) =0 fori > 2
(Hadamard-Cartan).

More elementary methods allow one to compare the volume w, of the
unit disk in R” with the volume V (r) of

Nr(x0) = {y :d(xp, y) <1}
(where d is the distance function on M determined by (, }): If we have
K(X, X) > 0forall X, then

(1) V() < r'w,.
On the other hand, if K(X, X) < —a? < 0for all X, then

r . h n—1
V) > nw,,/ (sm ax) dx;
0 44
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this expression is asymptotic to 2ce* for some ¢ and A = (n — 1)e, so
(2) V(r) > ce

for large r.

Milnor observed that the simple relations (1) and (2) have immediate
consequences for the fundamental group of M. Suppose first that M is
complete, and consider any finitely generated subgroup G of m1(M), with
generators g1, ..., gp. We identify elements of G with covering transforma-
tions of the universal covering space M of M. Choose a point xp € M, and
let

D= max d(xo, 8i (x0)),

as in the figure below.

L (x0)
[ it
£ (xo0)
D

R (x0)
-xO

=82(%0)

M

We define the growth function y of G (for this particular choice of gener-
ators g1, ..., gp) by

y (k) = number of different words of length < k.

If g € G is a word of length < k, then we have d(xp, g(x0)) < k- D.
Consequently,

the neighborhood Ni.p(xo) contains y (k) different points g(xo), g € G.

If we choose £ > 0 so that N¢(xp) is disjoint from all g(N, (xo)) withe # g € G,
then
Ni.p+¢(x0) contains y (k) disjoint sets g(N¢(xp)), g € G.
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Taking volumes, we have
yk)-V(e) < V(D +e),
hence we can write
yk) <CV(kD+¢) <CV(kD +ke)

for some C. Hence, using (1) we have

THEOREM. If M" is complete with a positive semidefinite mean curvature
tensor, then the growth function y for any finitely generated subgroup of
(M) satisfies

y (k) < constant - k",

Once you see this proof it is, of course, hard to believe that you couldn’t
have done it yourself.
There is a corresponding result for sectional curvatures less than zero:

THEOREM. If M is compact with a negative mean curvature tensor, then
the growth function y of (M) is at least exponential:

y(k) > a*

for somea > 1.

The proof of this uses (2) instead of (1). Though similar, it is a bit more
complicated, but I wouldn’t want to present it here and deprive you of the
pleasure of deriving it for yourself.

Two other differential geometric papers, [6], [8], appeared in the Amer-
ican Mathematical Monthly. As you might suspect, they are concerned with
more elementary problems, but, once again, their results are simultaneously
striking and simple.

Finally, [7] is a quite long review article, in which an enormous amount
of known material is tied together coherently, with new simplified proofs of
much of this material. In this respect it is quite typical of Milnor’s expository
work, which is just as illuminating as his research. And this brings us, of
course, to Morse Theory [9], surely the best known of all Milnor’s writings on
differential geometry.
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4. A personal reminiscence

I am glad to have had a small part in the writing of that book, and I
certainly learned a great deal during the process. To end on a somewhat
more personal note, [ would like to recount something of what this learning
experience was like.

The book grew out of a series of lectures given by Milnor at Princeton.
Robert Wells and I, having volunteered to turn these lectures into written
notes, spent a weekend conscientiously setting down the first lecture, which
we proudly presented to Milnor. A few days later he returned our notes,
saying that they really seemed quite nice, and that there were just a few
comments. What this turned out to mean was that there were remarks or
queries for only about half of what we had written. And after we rewrote
the lecture to account for these problems, it was much improved: now only
about a quarter of what we had written needed changes. Of course, at the
same time we had also written up the second lecture, half of which needed
changes. So, as we wrote up the third lecture, we wrote the second draft of
the second lecture, only a quarter of which then needed changes, and the
third draft of the first lecture, which was really much improved—only about
an eighth of what we had written needed changes.

Fortunately, this process did eventually converge, and a set of mimeo-
graphed notes finally appeared, which was so popular that Milnor was pre-
vailed upon to produce a book for the Annals of Mathematics Studies.
I suppose I shouldn’t have been surprised when I first saw the manuscript
for this book; at its basis were the mimeographed notes, but about half of
that had been pasted over with changes, and then about half of these had
further changes written over them, ... .

And the most exasperating aspect of this constant revision process was
this: Each time, the notes really did get better!

During this time I hope that I learned something about writing math-
ematics books, and I certainly had the opportunity to observe a singular
mathematical mind at work. For example, at one point, we had provided
proofs for three basic properties of the curvature tensor,

Rijrt = —Rijik
Rijri = —Rjiu
Rijxt + Rixij + Rigjr = 0.

As we were standing in the common room at Fine Hall [this was the real
Fine Hall, not the modern upstart], the question arose how to give a proof
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for the fourth property,
Ryij = Riju.

You don’t have to have any idea just what the curvature tensor is to
understand this, because the fourth relation is a formal consequence of
the first three. Now the derivation certainly isn’t a major affair, but it can
become confusing when six or seven graduate students are all trying to do
it at once. So, while we were fumbling around, Milnor did what was for him
a very typical thing: he simply went off by himself, sat down in a chair at
the side of the room, took out a piece of paper, and quietly started writing.
And a minute or two later, as we were still flailing, Milnor announced “Oh |
see, it all depends on the geometry of the octahedron!” and held forth the
diagram that we all know and love on page 54 of Morse Theory.

Of course, things like this happened all the time, and after a while they
aren’t all that surprising. And then you start think, well I know this guy
is certainly very bright at mathematics, but is he just as bright about other
things? So, I’d like to offer a proof of that also.

One evening in the common room seemed to be an especially unpro-
ductive time—no one was playing chess or Blitzkrieg, or any of the other
popular time-wasters—and into this languid atmosphere was introduced the
idea of writing limericks about various professors. After a few preliminary
attempts, indicating that some names wouldn’t be very hard to deal with, it
soon became apparent that the only truly interesting challenge was posed
by Papakyriakopoulos.

As feeble attempts to deal with this interesting case were being proposed,
Milnor happened to wander in, and asked what we were doing. And then, as
we continued to fumble around, Milnor did a very typical thing: he simply
went off by himself, sat down in a chair at the side of the room, took out a
piece of paper, and quietly started writing. And a minute or two later, with
a shy smile he said “How about this”, diffidently offering up a folded piece
of paper.

He had already left the room by the time we could unfold the paper, and
read the proffered limerick:

The perfidious Lemma of Dehn
Drove mathematicians insane
But Christos Pap

akyriakop

oulos proved it without any pain.

I’ve always regarded it as one of his finest results.
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