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Thus, we obtain a differentiable map N : x(U) → R3. We shall see later
(Secs. 2-6 and 3-1) that it is not always possible to extend this map
differentiably to the whole surface S.

Before leaving this section, we shall make some observations on questions
of differentiability.

The definition given for a regular surface requires that the parametrization
be of class C∞, that is, that they possess continuous partial derivatives of all
orders. For questions in differential geometry we need in general the existence
and continuity of the partial derivatives only up to a certain order, which
varies with the nature of the problem (very rarely do we need more than four
derivatives).

For example, the existence and continuity of the tangent plane depends
only on the existence and continuity of the first partial derivatives. It could
happen, therefore, that the graph of a function z = f (x, y) admits a tangent
plane at every point but is not sufficiently differentiable to satisfy the definition
of a regular surface. This occurs in the following example.

Example 3. Consider the graph of the function z = 3
√

(x2 + y2)2, gen-
erated by rotating the curve z = x4/3 about the z axis. Since the curve is
symmetric relative to the z axis and has a continuous derivative which van-
ishes at the origin, it is clear that the graph of z = 3

√

(x2 + y2)2 admits the
xy plane as a tangent plane at the origin. However, the partial derivative zxx

does not exist at the origin, and the graph considered is not a regular surface
as defined above (see Prop. 3 of Sec. 2-2).

We do not intend to get involved with this type of question. The hypothesis
C∞ in the definition was adopted precisely to avoid the study of the minimal
conditions of differentiability required in each particular case. These nuances
have their place, but they can eventually obscure the geometric nature of the
problems treated here.

EXERCISES

*1. Show that the equation of the tangent plane at (x0, y0, z0) of a regular
surface given by f (x, y, z) = 0, where 0 is a regular value of f , is

fx(x0, y0, z0)(x − x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0)

= 0.

2. Determine the tangent planes of x2 + y2 − z2 = 1 at the points (x, y, 0)

and show that they are all parallel to the z axis.

3. Show that the equation of the tangent plane of a surface which is the
graph of a differentiable function z = f (x, y), at the point p0 = (x0, y0),
is given by
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z = f (x0, y0) + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0).

Recall the definition of the differential df of a function f : R2 → R and
show that the tangent plane is the graph of the differential dfp.

*4. Show that the tangent planes of a surface given by z = xf (y/x), x �= 0,
where f is a differentiable function, all pass through the origin (0, 0, 0).

5. If a coordinate neighborhood of a regular surface can be parametrized in
the form

x(u, v) = α1(u) + α2(v),

where α1 and α2 are regular parametrized curves, show that the tangent
planes along a fixed coordinate curve of this neighborhood are all parallel
to a line.

6. Let α: I → R3 be a regular parametrized curve with everywhere nonzero
curvature. Consider the tangent surface of α (Example 5 of Sec. 2-3)

x(t, v) = α(t) + vα′(t), t ∈ I, v �= 0.

Show that the tangent planes along the curve x(const.,v) are all equal.

7. Let f : S → R be given by f (p) = |p − p0|2, where p ∈ S and p0 is
a fixed point of R3 (see Example 1 of Sec. 2-3). Show that dfp(w) =
2w · (p − p0), w ∈ Tp(S).

8. Prove that if L: R3 → R3 is a linear map and S ⊂ R3 is a regular sur-
face invariant under L, i.e., L(S) ⊂ S, then the restriction L|S is a
differentiable map and

dLp(w) = L(w), p ∈ S, w ∈ Tp(S).

9. Show that the parametrized surface

x(u, v) = (v cos u, v sin u, au), a �= 0,

is regular. Compute its normal vector N(u, v) and show that along the
coordinate line u = u0 the tangent plane of x rotates about this line in
such a way that the tangent of its angle with the z axis is proportional to
the inverse of the distance v(=

√

x2 + y2) of the point x(u0, v) to the z
axis.

10. (Tubular Surfaces.) Let α: I → R3 be a regular parametrized curve with
nonzero curvature everywhere and arc length as parameter. Let

x(s, v) = α(s) + r(n(s) cos v + b(s) sin v), r = const. �= 0, s ∈ I,

be a parametrized surface (the tube of radius r around α), where n is the
normal vector and b is the binormal vector of α. Show that, when x is
regular, its unit normal vector is
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N(s, v) = −(n(s) cos v + b(s) sin v).

11. Show that the normals to a parametrized surface given by

x(u, v) = (f (u) cos v, f (u) sin v, g(u)), f (u) �= 0, g′ �= 0,

all pass through the z axis.

*12. Show that each of the equations (a, b, c �= 0)

x2 + y2 + z2 = ax,

x2 + y2 + z2 = by,

x2 + y2 + z2 = cz

define a regular surface and that they all intersect orthogonally.

13. A critical point of a differentiable function f : S → R defined on a
regular surface S is a point p ∈ S such that dfp = 0.

*a. Let f : S → R be given by f (p) = |p − p0|, p ∈ S, p0 �∈ S (cf.
Exercise 5, Sec. 2-3). Show that p ∈ S is a critical point of f if
and only if the line joining p to p0 is normal to S at p.

b. Let h: S → R be given by h(p) = p · v, where v ∈ R3 is a unit vector
(cf. Example 1, Sec. 2-3). Show that p ∈ S is a critical point of f if
and only if v is a normal vector of S at p.

*14. Let Q be the union of the three coordinate planes x = 0, y = 0, z = 0.
Let p = (x, y, z) ∈ R3 − Q.

a. Show that the equation in t ,

x2

a − t
+

y2

b − t
+

z2

c − t
≡ f (t) = 1, a > b > c > 0,

has three distinct real roots: t1, t2, t3.

b. Show that for each p ∈ R3 − Q, the sets given by f (t1) − 1 = 0,
f (t2) − 1 = 0, f (t3) − 1 = 0 are regular surfaces passing through p

which are pairwise orthogonal.

15. Show that if all normals to a connected surface pass through a fixed point,
the surface is contained in a sphere.

16. Let w be a tangent vector to a regular surface S at a point p ∈ S and
let x(u, v) and x̄(ū, v̄) be two parametrizatioos at p. Suppose that the
expressions of w in the bases associated to x(u, v) and x̄(ū, v̄) are

w = α1xu + α2xv

and
w = β1x̄ū + β2xv̄.


