Dupin indicatrix at q_{1} and q_{2} are parallel, and their common direction r^{\prime} is conjugate to r. We shall leave the proofs of these assertions to the Exercises (Exercise 12).

EXERCISES

1. Show that at a hyperbolic point, the principal directions bisect the asymptotic directions.
2. Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.
3. Let $C \subset S$ be a regular curve on a surface S with Gaussian curvature $K>0$. Show that the curvature k of C at p satisfies

$$
|k| \geq \min \left(\left|k_{1}\right|,\left|k_{2}\right|\right),
$$

where k_{1} and k_{2} are the principal curvatures of S at p.
4. Assume that a surface S has the property that $\left|k_{1}\right| \leq 1,\left|k_{2}\right| \leq 1$ everywhere. Is it true that the curvature k of a curve on S also satisfies $|k| \leq 1$?
5. Show that the mean curvature H at $p \in S$ is given by

$$
H=\frac{1}{\pi} \int_{0}^{\pi} k_{n}(\theta) d \theta
$$

where $k_{n}(\theta)$ is the normal curvature at p along a direction making an angle θ with a fixed direction.
6. Show that the sum of the normal curvatures for any pair of orthogonal directions, at a point $p \in S$, is constant.
7. Show that if the mean curvature is zero at a nonplanar point, then this point has two orthogonal asymptotic directions.
8. Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:
a. Paraboloid of revolution $z=x^{2}+y^{2}$.
b. Hyperboloid of revolution $x^{2}+y^{2}-z^{2}=1$.
c. Catenoid $x^{2}+y^{2}=\cosh ^{2} z$.
9. Prove that
a. The image $N \circ \alpha$ by the Gauss map $N: S \rightarrow S^{2}$ of a parametrized regular curve $\alpha: I \rightarrow S$ which contains no planar or parabolic points is a parametrized regular curve on the sphere S^{2} (called the spherical image of α).
b. If $C=\alpha(I)$ is a line of curvature, and k is its curvature at p, then

$$
k=\left|k_{n} k_{N}\right|
$$

where k_{n} is the normal curvature at p along the tangent line of C and k_{N} is the curvature of the spherical image $N(C) \subset S^{2}$ at $N(p)$.
10. Assume that the osculating plane of a line of curvature $C \subset S$, which is nowhere tangent to an asymptotic direction, makes a constant angle with the tangent plane of S along C. Prove that C is a plane curve.
11. Let p be an elliptic point of a surface S, and let r and r^{\prime} be conjugate directions at p. Let r vary in $T_{p}(S)$ and show that the minimum of the angle of r with r^{\prime} is reached at a unique pair of directions in $T_{p}(S)$ that are symmetric with respect to the principal directions.
12. Let p be a hyperbolic point of a surface S, and let r be a direction in $T_{p}(S)$. Describe and justify a geometric construction to find the conjugate direction r^{\prime} of r in terms of the Dupin indicatrix (cf. the construction at the end of Sec. 3-2).
*13. (Theorem of Beltrami-Enneper.) Prove that the absolute value of the torsion τ at a point of an asymptotic curve, whose curvature is nowhere zero, is given by

$$
|\tau|=\sqrt{-K}
$$

where K is the Gaussian curvature of the surface at the given point.
*14. If the surface S_{1} intersects the surface S_{2} along the regular curve C, then the curvature k of C at $p \in C$ is given by

$$
k^{2} \sin ^{2} \theta=\lambda_{1}^{2}+\lambda_{2}^{2}-2 \lambda_{1} \lambda_{2} \cos \theta,
$$

where λ_{1} and λ_{2} are the normal curvatures at p, along the tangent line to C, of S_{1} and S_{2}, respectively, and θ is the angle made up by the normal vectors of S_{1} and S_{2} at p.
15. (Theorem of Joachimstahl.) Suppose that S_{1} and S_{2} intersect along a regular curve C and make an angle $\theta(p), p \in C$. Assume that C is a line of curvature of S_{1}. Prove that $\theta(p)$ is constant if and only if C is a line of curvature of S_{2}.
*16. Show that the meridians of a torus are lines of curvature.
17. Show that if $H \equiv 0$ on S and S has no planar points, then the Gauss map $N: S \rightarrow S^{2}$ has the following property:

$$
\left\langle d N_{p}\left(w_{1}\right), d N_{p}\left(w_{2}\right)\right\rangle=-K(p)\left\langle w_{1}, w_{2}\right\rangle
$$

for all $p \in S$ and all $w_{1}, w_{2} \in T_{p}(S)$. Show that the above condition implies that the angle of two intersecting curves on S and the angle of their spherical images (cf. Exercise 9) are equal up to a sign.

