Dupin indicatrix at q_1 and q_2 are parallel, and their common direction r' is conjugate to r. We shall leave the proofs of these assertions to the Exercises (Exercise 12).

EXERCISES

- **1.** Show that at a hyperbolic point, the principal directions bisect the asymptotic directions.
- 2. Show that if a surface is tangent to a plane along a curve, then the points of this curve are either parabolic or planar.
- **3.** Let $C \subset S$ be a regular curve on a surface S with Gaussian curvature K > 0. Show that the curvature k of C at p satisfies

$$|k| \geq \min(|k_1|, |k_2|),$$

where k_1 and k_2 are the principal curvatures of S at p.

- **4.** Assume that a surface *S* has the property that $|k_1| \le 1$, $|k_2| \le 1$ everywhere. Is it true that the curvature *k* of a curve on *S* also satisfies $|k| \le 1$?
- 5. Show that the mean curvature H at $p \in S$ is given by

$$H=\frac{1}{\pi}\int_0^{\pi}k_n(\theta)\,d\theta,$$

where $k_n(\theta)$ is the normal curvature at *p* along a direction making an angle θ with a fixed direction.

- 6. Show that the sum of the normal curvatures for any pair of orthogonal directions, at a point $p \in S$, is constant.
- **7.** Show that if the mean curvature is zero at a nonplanar point, then this point has two orthogonal asymptotic directions.
- **8.** Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:
 - **a.** Paraboloid of revolution $z = x^2 + y^2$.
 - **b.** Hyperboloid of revolution $x^2 + y^2 z^2 = 1$.
 - c. Catenoid $x^2 + y^2 = \cosh^2 z$.
- 9. Prove that
 - **a.** The image $N \circ \alpha$ by the Gauss map $N: S \to S^2$ of a parametrized regular curve $\alpha: I \to S$ which contains no planar or parabolic points is a parametrized regular curve on the sphere S^2 (called the *spherical image* of α).

b. If $C = \alpha(I)$ is a line of curvature, and k is its curvature at p, then

$$k=|k_nk_N|,$$

where k_n is the normal curvature at p along the tangent line of C and k_N is the curvature of the spherical image $N(C) \subset S^2$ at N(p).

- 10. Assume that the osculating plane of a line of curvature $C \subset S$, which is nowhere tangent to an asymptotic direction, makes a constant angle with the tangent plane of *S* along *C*. Prove that *C* is a plane curve.
- 11. Let p be an elliptic point of a surface S, and let r and r' be conjugate directions at p. Let r vary in $T_p(S)$ and show that the minimum of the angle of r with r' is reached at a unique pair of directions in $T_p(S)$ that are symmetric with respect to the principal directions.
- 12. Let *p* be a hyperbolic point of a surface *S*, and let *r* be a direction in $T_p(S)$. Describe and justify a geometric construction to find the conjugate direction *r'* of *r* in terms of the Dupin indicatrix (cf. the construction at the end of Sec. 3-2).
- *13. (*Theorem of Beltrami-Enneper.*) Prove that the absolute value of the torsion τ at a point of an asymptotic curve, whose curvature is nowhere zero, is given by

$$|\tau| = \sqrt{-K},$$

where *K* is the Gaussian curvature of the surface at the given point.

*14. If the surface S_1 intersects the surface S_2 along the regular curve *C*, then the curvature *k* of *C* at $p \in C$ is given by

$$k^2 \sin^2 \theta = \lambda_1^2 + \lambda_2^2 - 2\lambda_1 \lambda_2 \cos \theta,$$

where λ_1 and λ_2 are the normal curvatures at p, along the tangent line to C, of S_1 and S_2 , respectively, and θ is the angle made up by the normal vectors of S_1 and S_2 at p.

- **15.** (*Theorem of Joachimstahl.*) Suppose that S_1 and S_2 intersect along a regular curve *C* and make an angle $\theta(p)$, $p \in C$. Assume that *C* is a line of curvature of S_1 . Prove that $\theta(p)$ is constant if and only if *C* is a line of curvature of S_2 .
- *16. Show that the meridians of a torus are lines of curvature.
 - 17. Show that if $H \equiv 0$ on *S* and *S* has no planar points, then the Gauss map $N: S \rightarrow S^2$ has the following property:

$$\langle dN_p(w_1), dN_p(w_2) \rangle = -K(p) \langle w_1, w_2 \rangle$$

for all $p \in S$ and all $w_1, w_2 \in T_p(S)$. Show that the above condition implies that the angle of two intersecting curves on *S* and the angle of their spherical images (cf. Exercise 9) are equal up to a sign.