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is a continuous function on x(U). Since x(U) is connected, the sign of f is
constant. If f = —1, we interchange u# and v in the parametrization, and the
assertion follows.

Proceeding in this manner with all the coordinate neighborhoods, we have
thatin the intersection of any two of them, say, x(#, v) and X (it, v), the Jacobian

d(u, v)
(i1, v)

is certainly positive; otherwise, we would have
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which is a contradiction. Hence, the given family of coordinate neighborhoods
after undergoing certain interchanges of u and v satisfies the conditions of
Def. 1, and S is, therefore, orientable. Q.E.D.

Remark. As the proof shows, we need only to require the existence of a
continuous unit vector field on S for § to be orientable. Such a vector field
will be automatically differentiable.

Example 3. We shall now describe an example of a nonorientable surface,
the so-called Mobius strip. This surface is obtained (see Fig. 2-31) by con-
sidering the circle S' given by x* + y* = 4 and the open segment AB given
in the yz plane by y = 2, |z] < 1. We move the center C of AB along S' and
turn AB about C in the Cz plane in such a manner that when C has passed
through an angle u, AB has rotated by an angle u /2. When ¢ completes one trip
around the circle, AB returns to its initial position, with its end points inverted.
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Figure 2-31
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From the point of view of differentiability, it is as if we had identified the
opposite (vertical) sides of a rectangle giving a twist to the rectangle so that
each point of the side AB was identified with its symmetric point (Fig. 2-31).

It is geometrically evident that the Mobius strip M is a regular,
nonorieotable surface. In fact, if M were orientable, there would exist a differ-
entiable field N: M — R? of unit normal vectors. Taking these vectors along
the circle x> + y? = 4 we see that after making one trip the vector N returns
to its original position as — N, which is a contradiction.

We shall now give an analytic proof of the facts mentioned above.

A system of coordinates x: U — M for the Mobius strip is given by

A . u u
xX(u, v) = ((2 — vsin —) sin u, (2 — v sin —) COS U, U COS —) ,
2 2 2
where 0 < u < 27w and —1 < v < 1. The corresponding coordinate neighbor-

hood omits the points of the open interval # = 0. Then by taking the origin of
the u’s at the x axis, we obtain another parametrization X(it, v) given by
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whose coordinate neighborhood omits the interval u = /2. These two coor-
dinate neighborhoods cover the Mbius strip and can be used to show that it
is a regular surface.

Observe that the intersection of the two coordinate neighborhoods is not
connected but consists of two connected components:
T
W, = {X(u,v): 0} <u< Zn},
T
W, = {X(u,v):0<u< 5}

The change of coordinates is given by
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110 2. Regular Surfaces

It follows that

d(u, v) .
=1>0 inW,
o(u, v)
and that
a(u, v) .
=—1<0 inW,.
o(u, v)

To show that the Mdbius strip is nonorientable, we suppose that it is
possible to define a differentiable field of unit normal vectors N: M — R3.
Interchanging u and v if necessary, we can assume that

X, ANX,
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for any p in the coordinate neighborhood of x(u, v). Analogously, we may
assume that
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at all points of the coordinate neighborhood of x(u, v). However, the Jacobian
of the change of coordinates must be —1 in either W; or W, (depending on
what changes of the type u — v, u — v has to be made). If p is a point of that
component of the intersection, then N (p) = —N(p), which is a contradiction.

We have already seen that a surface which is the graph of a differen-
tiable function is orientable. We shall now show that a surface which is the
inverse image of a regular value of a differentiable function is also orientable.
This is one of the reasons it is relatively difficult to construct examples of
nonorientable, regular surfaces in R3.

PROPOSITION 2. If a regular surface is given by S = {(x,y, z) € R3;
f(x,y,z) =a}, where f: U C R?® — R is differentiable and a is a regular
value of f, then S is orientable.

Proof. Given a point (xg, Yo, 20) = p € S, consider the parametrized
curve (x(t), y(t), z(t)), t € I, on S passing through p for ¢ = fy. Since the
curve is on S, we have

fx@),y@),z(t) =a

forall # € I. By differentiating both sides of this expression with respect to 7,
we see that at t = 1,

dx dy dz\ 0
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