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is a continuous function on x(U). Since x(U) is connected, the sign of f is
constant. If f = −1, we interchange u and v in the parametrization, and the
assertion follows.

Proceeding in this manner with all the coordinate neighborhoods, we have
that in the intersection of any two of them, say, x(u, v) and x̄(ū, v̄), the Jacobian

∂(u, v)

∂(ū, v̄)

is certainly positive; otherwise, we would have

xu ∧ xv

|xu ∧ xv|
= N(p) = −

x̄ū ∧ x̄v̄

|x̄ū ∧ x̄v̄|
= −N(p),

which is a contradiction. Hence, the given family of coordinate neighborhoods
after undergoing certain interchanges of u and v satisfies the conditions of
Def. 1, and S is, therefore, orientable. Q.E.D.

Remark. As the proof shows, we need only to require the existence of a
continuous unit vector field on S for S to be orientable. Such a vector field
will be automatically differentiable.

Example 3. We shall now describe an example of a nonorientable surface,
the so-called Möbius strip. This surface is obtained (see Fig. 2-31) by con-
sidering the circle S1 given by x2 + y2 = 4 and the open segment AB given
in the yz plane by y = 2, |z| < 1. We move the center C of AB along S1 and
turn AB about C in the Cz plane in such a manner that when C has passed
through an angle u, AB has rotated by an angle u/2. When c completes one trip
around the circle, AB returns to its initial position, with its end points inverted.
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From the point of view of differentiability, it is as if we had identified the
opposite (vertical) sides of a rectangle giving a twist to the rectangle so that
each point of the side AB was identified with its symmetric point (Fig. 2-31).

It is geometrically evident that the Möbius strip M is a regular,
nonorieotable surface. In fact, if M were orientable, there would exist a differ-
entiable field N : M → R3 of unit normal vectors. Taking these vectors along
the circle x2 + y2 = 4 we see that after making one trip the vector N returns
to its original position as −N , which is a contradiction.

We shall now give an analytic proof of the facts mentioned above.
A system of coordinates x: U → M for the Möbius strip is given by

x(u, v) =
((

2 − v sin
u

2

)

sin u,
(

2 − v sin
u

2

)

cos u, v cos
u

2

)

,

where 0 < u < 2π and −1 < v < 1. The corresponding coordinate neighbor-
hood omits the points of the open interval u = 0. Then by taking the origin of
the u’s at the x axis, we obtain another parametrization x̄(ū, v̄) given by

x =
{

2 − v̄ sin

(

π

4
+

ū

2

)}

cos ū,

y = −
{

2 − v̄ sin

(

π

4
+

ū

2

)}

sin ū,

z = v̄ cos

(

π

4
+

ū

2

)

,

whose coordinate neighborhood omits the interval u = π/2. These two coor-
dinate neighborhoods cover the Möbius strip and can be used to show that it
is a regular surface.

Observe that the intersection of the two coordinate neighborhoods is not
connected but consists of two connected components:

W1 =
{

x(u, v):
π

2
< u < 2π

}

,

W2 =
{

x(u, v): 0 < u <
π

2

}

.

The change of coordinates is given by

ū = u −
π

2
v̄ = v

⎫

⎬

⎭

in W1,

and

ū =
3π

2
+ u

v̄ = −v

⎫

⎬

⎭

in W2.
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It follows that
∂(ū, v̄)

∂(u, v)
= 1 > 0 in W1

and that
∂(ū, v̄)

∂(u, v)
= −1 < 0 in W2.

To show that the Möbius strip is nonorientable, we suppose that it is
possible to define a differentiable field of unit normal vectors N : M → R3.
Interchanging u and v if necessary, we can assume that

N(p) =
xu ∧ xv

|xu ∧ xv|

for any p in the coordinate neighborhood of x(u, v). Analogously, we may
assume that

N(p) =
x̄ū ∧ x̄v̄

|x̄ū ∧ x̄v̄|

at all points of the coordinate neighborhood of x̄(ū, v̄). However, the Jacobian
of the change of coordinates must be −1 in either W1 or W2 (depending on
what changes of the type u → v, ū → v̄ has to be made). If p is a point of that
component of the intersection, then N(p) = −N(p), which is a contradiction.

We have already seen that a surface which is the graph of a differen-
tiable function is orientable. We shall now show that a surface which is the
inverse image of a regular value of a differentiable function is also orientable.
This is one of the reasons it is relatively difficult to construct examples of
nonorientable, regular surfaces in R3.

PROPOSITION 2. If a regular surface is given by S = {(x, y, z) ∈ R3;
f (x, y, z) = a}, where f : U ⊂ R3 → R is differentiable and a is a regular
value of f, then S is orientable.

Proof. Given a point (x0, y0, z0) = p ∈ S, consider the parametrized
curve (x(t), y(t), z(t)), t ∈ I , on S passing through p for t = t0. Since the
curve is on S, we have

f (x(t), y(t), z(t)) = a

for all t ∈ I . By differentiating both sides of this expression with respect to t ,
we see that at t = t0

fx(p)

(

dx

dt

)

t0

+ fy(p)

(

dy

dt

)

t0

+ fz(p)

(

dz

dt

)

t0

= 0.


