This agrees with the value found by elementary calculus, say, by using the theorem of Pappus for the area of surfaces of revolution (cf. Exercise 11).

EXERCISES

1. Compute the first fundamental forms of the following parametrized surfaces where they are regular:
a. $\mathbf{x}(u, v)=(a \sin u \cos v, b \sin u \sin v, c \cos u)$; ellipsoid.
b. $\mathbf{x}(u, v)=\left(a u \cos v, b u \sin v, u^{2}\right)$; elliptic paraboloid.
c. $\mathbf{x}(u, v)=\left(a u \cosh v, b u \sinh v, u^{2}\right)$; hyperbolic paraboloid.
d. $\mathbf{x}(u, v)=(a \sinh u \cos v, b \sinh u \sin v, c \cosh u)$; hyperboloid of two sheets.
2. Let $\mathbf{x}(\varphi, \theta)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$ be a parametrization of the unit sphere S^{2}. Let P be the plane $x=z \operatorname{cotan} \alpha, 0<\alpha<\pi$, and β be the acute angle which the curve $P \cap S^{2}$ makes with the semimeridian $\varphi=\varphi_{0}$. Compute $\cos \beta$.
3. Obtain the first fundamental form of the sphere in the parametrization given by stereographic projection (cf. Exercise 16, Sec. 2-2).
4. Given the parametrized surface

$$
\mathbf{x}(u, v)=(u \cos v, u \sin v, \log \cos v+u), \quad-\frac{\pi}{2}<v<\frac{\pi}{2},
$$

show that the two curves $\mathbf{x}\left(u, v_{1}\right), \mathbf{x}\left(u, v_{2}\right)$ determine segments of equal lengths on all curves $\mathbf{x}(u$, const.).
5. Show that the area A of a bounded region R of the surface $z=f(x, y)$ is

$$
A=\iint_{Q} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

where Q is the normal projection of R onto the $x y$ plane.
6. Show that

$$
\begin{aligned}
& \mathbf{x}(u, v)=(u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha) \\
& \\
& 0<u<\infty, \quad 0<v<2 \pi, \quad \alpha=\text { const. }
\end{aligned}
$$

is a parametrization of the cone with 2α as the angle of the vertex. In the corresponding coordinate neighborhood, prove that the curve

$$
\mathbf{x}(c \exp (v \sin \alpha \operatorname{cotan} \beta), v), \quad c=\text { const. }, \beta=\text { const. },
$$

intersects the generators of the cone ($v=$ const.) under the constant angle β.

