170 3. The Geometry of the Gauss Map
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Using Eq. (1), the definition of K, and the above convention, we can write
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Going to the limit and denoting also by R the area of the region R, we obtain
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(notice that we have used the mean value theorem for double integrals), and
this proves the proposition. Q.E.D.

Remark. Comparing the proposition with the expression of the curvature
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of a plane curve C at p (here s is the arc length of a small segment of C
containing p, and o is the arc length of its image in the indicatrix of tangents; cf.
Exercise 3 of Sec. 1-5), we see that the Gaussian curvature K is the analogue,
for surfaces, of the curvature k of plane curves.

EXERCISES

1. Show that at the origin (0, 0, 0) of the hyperboloid z = axy we have
K = —a’and H = 0.
*2. Determine the asymptotic curves and the lines of curvature of the helicoid
X =vcosu, y=vsinu, z = cu, and show that its mean curvature is
Zero.

*3. Determine the asymptotic curves of the catenoid
X(u, v) = (cosh vcosu, coshvsinu, v).

4. Determine the asymptotic curves and the lines of curvature of z = xy.
5. Consider the parametrized surface (Enneper’s surface)
3
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and show that

a. The coefficients of the first fundamental form are
E=G=>0+u*>+v»)?, F=0.
b. The coefficients of the second fundamental form are
e=2, g=-2, f=0.
c. The principal curvatures are
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d. The lines of curvature are the coordinate curves.
e. The asymptotic curves are u 4+ v = const., u — v = const.

6. (A Surface with K = —1; the Pseudosphere.)

*a. Determine an equation for the plane curve C, which is such that the
segment of the tangent line between the point of tangency and some
line r in the plane, which does not meet the curve, is constantly equal
to 1 (this curve is called the tractrix; see Fig. 1-9).

b. Rotate the tractrix C about the line r; determine if the “surface” of
revolution thus obtained (the pseudosphere; see Fig. 3-22) is regular
and find out a parametrization in a neighborhood of a regular point.

c. Show that the Gaussian curvature of any regular point of the
pseudosphere is —1.

7. (Surfaces of Revolution with Constant Curvature.) (¢ (v)cosu,
¢(v) sinu, ¥ (v)), ¢ # 0 is given as a surface of revolution with con-
stant Gaussian curvature K. To determine the functions ¢ and ¥, choose
the parameter v in such a way that (¢')> + (¥')? = 1 (geometrically, this
means that v is the arc length of the generating curve (¢ (v), ¥ (v))).
Show that

a. o satisfies "+ K¢ =0 and ¢ is given by ¥ = [ /1 — (¢)?dv;
thus, 0 < u < 27, and the domain of v is such that the last integral
makes sense.

b. All surfaces of revolution with constant curvature K = 1 which
intersect perpendicularly the plane xOy are given by

¢(v) = Ccosv, 1//(1)):/ Vv 1—C?sin* vdv,
0

where C is a constant (C = ¢(0)). Determine the domain of v and
draw a rough sketch of the profile of the surface in the xz plane for
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13.

14.

*18.

*16.

17.

18.

*19.

20.

*21.

b. The length of the segment of a tangent line to a curve v = const.,
determined by its point of tangency and the z axis, is constantly
equal to 1. Conclude that the curves v = const. are tractrices (cf.
Exercise 6).

Let F: R® — R® be the map (a similarity) defined by F(p) = cp,
p € R®, ¢ a positive constant. Let S C R® be a regular surface and set
F(S) = S. Show that S is a regular surface, and find formulas relating
the Gaussian and mean curvatures, K and H, of S with the Gaussian and
mean curvatures, K and H, of S.

Consider the surface obtained by rotating the curve y =x%, —1 <x < 1,
about the line x = 1. Show that the points obtained by rotation of the
origin (0, 0) of the curve are planar points of the surface.

Give an example of a surface which has an isolated parabolic point p
(that is, no other parabolic point is contained in some neighborhood
of p).

Show that a surface which is compact (i.e., it is bounded and closed in
R?) has an elliptic point.

Define Gaussian curvature for a nonorientable surface. Can you define
mean curvature for a nonorientable surface?

Show that the Mobius strip of Fig. 3-1 can be parametrized by
AN . u u
x(u,v) = ((2 — vsin —) sin u, (2 — vsin —) cos U, v cos —)
2 2 2

and that its Gaussian curvature is

1
== {%UZ + (2 —vsin(u/2)))?

Obtain the asymptotic curves of the one-sheeted hyperboloid x? + y? —
2
z77=1.

Determine the umbilical points of the elipsoid

2y 2
;+—+§=1.

Let S be a surface with orientation N. Let V C S be an open setin S and
let f: V.C S — R be any nowhere-zero differentiable function in V.
Let v; and v, be two differentiable (tangent) vector fields in V such that
at each point of V, v; and v, are orthonormal and v; Av, = N.



