
170 3. The Geometry of the Gauss Map

A′ =
∫∫

R

|Nu ∧ Nv| du dv.

Using Eq. (1), the definition of K , and the above convention, we can write

A′ =
∫∫

R

K|xu ∧ xv| du dv. (12)

Going to the limit and denoting also by R the area of the region R, we obtain

lim
A→0

A′

A
= lim

R→0

A′/R

A/R
=

lim
R→0

(1/R)

∫∫

R

K|xu ∧ xv| du dv

lim
R→0

(1/R)

∫∫

R

|xu ∧ xv| du dv

=
K|xu ∧ xv|
|xu ∧ xv|

= K

(notice that we have used the mean value theorem for double integrals), and
this proves the proposition. Q.E.D.

Remark. Comparing the proposition with the expression of the curvature

k = lim
s→0

σ

s

of a plane curve C at p (here s is the arc length of a small segment of C

containing p, and σ is the arc length of its image in the indicatrix of tangents; cf.
Exercise 3 of Sec. 1-5), we see that the Gaussian curvature K is the analogue,
for surfaces, of the curvature k of plane curves.

EXERCISES

1. Show that at the origin (0, 0, 0) of the hyperboloid z = axy we have
K = −a2 and H = 0.

*2. Determine the asymptotic curves and the lines of curvature of the helicoid
x = v cos u, y = v sin u, z = cu, and show that its mean curvature is
zero.

*3. Determine the asymptotic curves of the catenoid

x(u, v) = (cosh v cos u, cosh v sin u, v).

4. Determine the asymptotic curves and the lines of curvature of z = xy.

5. Consider the parametrized surface (Enneper’s surface)

x(u, v) =
(

u −
u3

3
+ uv2, v −

v3

3
+ vu2, u2 − v2

)
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and show that

a. The coefficients of the first fundamental form are

E = G = (1 + u2 + v2)2, F = 0.

b. The coefficients of the second fundamental form are

e = 2, g = −2, f = 0.

c. The principal curvatures are

k1 =
2

(1 + u2 + v2)2
, k2 = −

2

(1 + u2 + v2)2
.

d. The lines of curvature are the coordinate curves.

e. The asymptotic curves are u + v = const., u − v = const.

6. (A Surface with K ≡ −1; the Pseudosphere.)

*a. Determine an equation for the plane curve C, which is such that the
segment of the tangent line between the point of tangency and some
line r in the plane, which does not meet the curve, is constantly equal
to 1 (this curve is called the tractrix; see Fig. 1-9).

b. Rotate the tractrix C about the line r; determine if the “surface” of
revolution thus obtained (the pseudosphere; see Fig. 3-22) is regular
and find out a parametrization in a neighborhood of a regular point.

c. Show that the Gaussian curvature of any regular point of the
pseudosphere is −1.

7. (Surfaces of Revolution with Constant Curvature.) (ϕ(v) cos u,

ϕ(v) sin u, ψ(v)), ϕ �= 0 is given as a surface of revolution with con-
stant Gaussian curvature K . To determine the functions ϕ and ψ , choose
the parameter v in such a way that (ϕ′)2 + (ψ ′)2 = 1 (geometrically, this
means that v is the arc length of the generating curve (ϕ(v), ψ(v))).
Show that

a. ϕ satisfies ϕ ′′ + Kϕ = 0 and ψ is given by ψ =
∫
√

1 − (ϕ′)2 dv;
thus, 0 < u < 2π , and the domain of v is such that the last integral
makes sense.

b. All surfaces of revolution with constant curvature K = 1 which
intersect perpendicularly the plane xOy are given by

ϕ(v) = C cos v, ψ(v) =
∫ v

0

√

1 − C2 sin2
v dv,

where C is a constant (C = ϕ(0)). Determine the domain of v and
draw a rough sketch of the profile of the surface in the xz plane for
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b. The length of the segment of a tangent line to a curve v = const.,
determined by its point of tangency and the z axis, is constantly
equal to 1. Conclude that the curves v = const. are tractrices (cf.
Exercise 6).

13. Let F : R3 → R3 be the map (a similarity) defined by F(p) = cp,
p ∈ R3, c a positive constant. Let S ⊂ R3 be a regular surface and set
F(S) = S̄. Show that S̄ is a regular surface, and find formulas relating
the Gaussian and mean curvatures, K and H , of S with the Gaussian and
mean curvatures, K̄ and H̄ , of S̄.

14. Consider the surface obtained by rotating the curve y = x3, −1 < x < 1,
about the line x = 1. Show that the points obtained by rotation of the
origin (0, 0) of the curve are planar points of the surface.

*15. Give an example of a surface which has an isolated parabolic point p

(that is, no other parabolic point is contained in some neighborhood
of p).

*16. Show that a surface which is compact (i.e., it is bounded and closed in
R3) has an elliptic point.

17. Define Gaussian curvature for a nonorientable surface. Can you define
mean curvature for a nonorientable surface?

18. Show that the Möbius strip of Fig. 3-1 can be parametrized by

x(u, v) =
((

2 − v sin
u

2

)

sin u,
(

2 − v sin
u

2

)

cos u, v cos
u

2

)

and that its Gaussian curvature is

K = −
1

{ 1
4
v2 + (2 − v sin(u/2))2}2

.

*19. Obtain the asymptotic curves of the one-sheeted hyperboloid x2 + y2 −
z2 = 1.

20. Determine the umbilical points of the elipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1.

*21. Let S be a surface with orientation N . Let V ⊂ S be an open set in S and
let f : V ⊂ S → R be any nowhere-zero differentiable function in V .
Let v1 and v2 be two differentiable (tangent) vector fields in V such that
at each point of V , v1 and v2 are orthonormal and v1 ∧ v2 = N .


