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1. INTRODUCTION

In this paper we shall investigate the behavior of

solutions of the semilinear diffusion eguation
— = —— + f(u) (1.1)

for large values of the time t. Throughout this work
we shall assume that f£(0) = £(1) = 0 and consider only
solutions u(x,t) with values in [0,1]. The problems
which we consider are the pure initial value problem in
the half-space R XIR+ and the initial-boundary wvalue
problem in the quarter-space :mf X1R+.

The equation (1.l) occurs in various applications,

and we shall consider forms of the function f(u) which

are suggested by some of these applications.

* This work was supported through grants AFOSR71-2098
and NSF GP37660%.
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The classical application is to the following problem
in population genetics, which was formulated by R. A.
Fisher [4].

3 1ati £ dioloid individual S
pose that the gene at a specific locus in a specific
chromosome pair occurs in two forms, called alleles,
which we denote by a and A. Then the population is
divided into three classes or genotypes. Two of these
classes consist of individuals called homozygotes which
carry only one kind of allele, The members of these
classes are denoted by aa or AA, depending on the
alleles they carry. The third class consists of indi-
viduals, called heterozygotes, which carry one of each
allele. We denote these individuals by aA.

Let the population be distributed in a one-dimension-

al hab

1
iCuhs L

t

at Tha linear 4 ac of the
at. lne llnear 1S1 es OIr the

aA, and AA at the point x of the habitat at time t

are denoted by pl(x,t), pz(x,t), and p3(x,t),

respectively. We assume that the population mates
at random, thereby producing offspring with a birth-

rate denoted by r, and that the population diffuses
through the habitat with diffusion constant 1. We fur-

her assume

hat the death rate depends only on

the gen-

otype with respect to the alleles a and A, and de-

note the death rates of the genotypes aa, aA, and AA
1 57 and T3,
these death rates differ slightly, so that some geno-

by 1 T respectively, In general,

types are more viable than others. Reproduction by cell

division can be incorporated into this model by adding

make no assumption about the signs of the T, .
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Under the assumptions stated above the population

densities satisfy the system of partial differential

egquations
o "2 \
op o P
L. -7 + Lo+ 207
2t 2 1PL o P TSR
ox
2
3p 3 p
2 2 2r 1 1
— = - + = + = + = 1.2
3t 2~ o) 5 (Pp e )iy o) (1.2)
ax
°p 3293 1 2
= - + — + —
ot 2 T T3P; (b3 + 5 0,) /
ax
where

o(x,t) = pl(x,t) + pz(x,t) + p3(x,t).

In the Appendix we show that if the derivatives of the

initial data are small, if r is very large, and if

B U . I S
Lile yudliltl o

g = !Tl“Tzl + !T3-T2'

is very small, then for times which are small relative

-1 . .
to ¢ the relative density
D‘fip
u(x,t) = =22 (1.3)
Ql 02 03

can be expected to be close to the solution with the

same initial values of the equation (1.1) with

f(u) = u(l~u){(Tl—T2)(lmu) - (T -Tz)u}. (1.4)

3
Other heuristic derivations of this equation are giv-
en in [4] and [11]. 1In general, the equation (1.1)
should be regarded as a highly idealized and simplified
model of some gualitative features of the genetic pro-

cesses rather than as a strict gquantitative model. It



8 ARONSON, WEINBERGER

is therefore of interest to study the relation between

the qualitative form of the function f(u) and the

qualitative behavior of solutions of the equation (1.1).
Regardless of the values of the Ti . the function

f(u) given by (1.4) has the properties
£e c[0,1], £(0) = £(1) = 0. (1.5)

We shall always deal with functions f(u) which satis-
fy these conditions. Additional assumptions on £f(u)
which depend on the relative values of the Ti are also
suggested by the function (1.4). Since we can always
interchange the labels of a and A and hence the val-
ues of T and T

1 37

in assuming that Tl > T3 , So that AA 1is at least as

viable as aa. There are then three cases.

there is no loss of generality

CASE 1. I < <
f T3 T2 Tl,

heterozygote is between the viabilities of the homozy-

the viability of the

gotes, and we call this the heterozygote intermediate

case. The relevant properties of the function (1.4) are

£'(0) >0, f(u) >0 in (0,1). (1.6)

Piscounoff [11].

A . If < < .
CASE 2 T2 T3 Tl

superiority. The relevant features of f(u) are

we have heterozygote

£'(0) >0 £'(1) >0, and f(u) > 0

\
in (0,a), f{(u) <0 in (a,l) { (1.7)

for some a e (0,1).
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CASE 3. If 1_ <71, <1 we have heterozygote

3 1 2
inferiority. The relevant features of £f(u) are

£'(0) <0, f(u <0 in (O,a), f(u) >0 )

in (o,l1) for some a ¢ (0,1), ( (1.8)

1
[y £(udu > 0. )

There are various other applications which lead to
similar models. For example certain flame propagation
problems in chemical reactor theory lead to equations of
the form (1.1) with a function £f(u) which satisfies
(1.5) and the generalization

f(u) €0 in (0,a), f(u) >0 in (a,l)

1 (1.8")
for some o ¢ (0,1), fO f(u)du > ©
of (1.8). (See, for example, the article of Gelfand
[5]) . Here u represents a normalized temperature and

0 represents a critical temperature at which an exo-

thermic reaction starts.

A model for the propagation of a voltage pulse
through the nerve axon of a squid has been proposed by
Hodgkin and Huxley [6]. The voltage u satisfies an

equation of the form

where F 1s a certain rather complicated nonlinear
functional. An electrical analogue which exhibits the
qualitative features of the Hodgkin-Huxley model was
proposed by Nagumo, Arimoto, and Yoshizawa [12]. This

model leads to the equation
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2
du _ Jd'u _ t
Fyale g;§-+ f(u) efo u(x,t)dt (1.9)

where € 1s a nonnegative parameter and

f(u) = u(l - uw(u - )

for some ue(oéa

. Note that this function satisfies
the conditions(1.5) and (1.8). It has been suggested by
Cohen [2, p. 35] that (1.,9) with & =0 1is a model for
a nerve which has been treated with certain toxins.
Moreover, a rescaled version of (1.9) with € = 0 has
been used by Nagumo, Yoshizawa, and Arimoto [l3] as a
model for a bistable active transmission line.

In their classical paper [1l1l] Kolmogoroff, Petrovsky,
and Piscouncff considered equation (l1.l) in the hetero-
zygote intermediate case. They proved the existence of
a number c¢* > 0 such that (1,l1l) possesses travelling
wave solutions u(x,t) = g(x - ct) for all velocities
c Wwith |c| > c*, (These travelling wave solutions in
the heterozygote intermediate case were also discussed
by Fisher in [4].) Moreover, they proved that the solu-
tion of the special initial value problem with

(L for x <0
u(x,0) = i
0 for x>0
converges (in a certain sense) to a travelling wave
solution with speed <c*,

Kanel' [7, 8, 9, 10] has extended and generalized

these results 1in the heterozygote inferior case (1.8)

and the case of flame propagation (1.8') Moreover,

Kanel' has observed the occurrence of a threshold be-
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havior with respect to the initial values u(x,0) in
these cases.

We study solutions of the equation (1.1) with f(u)
subject to (1.5) and (1.6), (1.7), (1.8) or (1.8'). 1In
the applications to flame propagation and voltage pulse
propagation it is natural to consider the initial-bound-
ary value problem on the quarter plane ZR+ XZR+ as well
as the pure initial value problem. We shall deal with
both of these problems under rather mild restrictions on
the data.

In the various cases under consideration we derive
the limit behavior of the solution u(x,t) as t > =,
We study the stability properties of the equilibrium
states u = 0, u=d, and u =1 in the initial value
problem in Section 3. We show in Section 4 that in ev-
ery case there exists a c¢* > 0 with the property that
in the pure initial value problem every disturbance
which is initially confined to a bounded set and which
is propagated at all is propagated at the asymptotic
speed c¢*., These results are extended to solutions of
the initial-boundary value problem in Section 5.

Many of the results which we obtain here for func-
tions f(u) which satisfy (1.6), (1.7), (1.8), or
(1.8") are valid in more

generalizations will be published elsewhere [1].

2. A MAXTIMUM PRINCIPLE AND ITS APPLICATIONS

All the forcing functions f(u) described in Section

1 satisfy the conditions
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£(0) = £(1) =0, f ¢ cto,11. (2.1)

In the remainder of this paper these conditions will be

understood to hold even if they are not mentioned ex-

plicitly,
We begin our study of the equation (1.1) with a ver-

sion of the maximum principle.

PROPOSITION 2.1 Let u(x,t) € [0,1] and v(x,t)
e Im 11 antiafs +the Twvedualitlco
L LU,J_J UWVVU‘J& Ao 2 I/DC/%WWVI/VI/VK
u - u - f(u) 2 v =-v - f(v) in (a,b) x(0,T] ,
t XX t X

0 % vi(x,0) £ u(x,0) 1 n (a,b)

where —» < a <b <o gund 0 < T< =, Moreover, if

0 £ v(a,t) € u(a,t) £1 on [0,T]
and 1f b < » assuyme that
0 < v(b,t) £ u(b,t) <1 on [0,T].

Then u z v, and Zf u(x,0) > v(x,0) in an open sub-
interval of (a,b) then u > v, in (a,b) x (0,T].
PROOF . By the theorem of the mean we find that
(u-v) _ - (u-v) z f(u) - f(v) = £'(v+B(u-v)) (u-v)
t XX

for some O € (0,1). Let o = max £f£'(u), and define

[0,1]
wix,t) = (u—v)e-at.
Then
Wwoo—- W > {f'"(v + 6(u~v)) - alw.
t XX

Since the coefficient of w 1s nonpositive, our result
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follows from the strong maximum principle for linear

parabolic inequalities. (See, for example, [14, p. 172].)

We now derive the principal tool for our investiga-

tion.

PROPOSITION 2.2. ZLet qg(x) e [0,1] be a solution of

the ordinary differential equation
g* + f(gq) =0 in (a,b)

where -» < a <b <w, If a > - qgssune that
g(a) = 0 and ©f b < « gssume that q(b) = 0. Let

vix,t) denote the solution of the initial value problem

. +
Ve = Vo + f(v) =n R xR , (2.2)
g{x) 1in (a,b)
v(x,0) =
0 tn  R\(a,b).

Then v(x,t) is a nondecreasing function of t for

each x. Moreover,

1 RN S Y — A

lim vix,t) = 1({x)

t>0
4 pana -.o/\a/,m7-;: San syl e oA A sy 7 s nanm P T aa +lno
“wrib vl fi{&g (224 CUCT: LUMTUCUL LIibel UL, Wricl o sy Lo [ g4~

smallest nonnegative solution of the differential equa-

tzon

- 3 F£f{TY N {9
T r{ity U \ <l

2
b - a4

*

on the whole real line R which satisfies the inequal-
ity

T(x) 2 g(x) in (a,b). (2.4)

+
PROOF., By Proposition 2.1, v(x,t) 20 in R xR ,

Thus we can apply Propositicn 2.1 with u replaced by
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the present v(x,t) and v replaced by g(x) to find
that vi(x,t) 2 g(x) in (a,b) XZE%. We then see that

for any h > 0 we have

v(x,h) =2 v(x,0) in IR,
We now apply Proposition 2.1 to v(x,t+h) and v(x,t)
to conclude that for any h > 0,
) +
vix,t+h) 2 v(x,t) in R xR .

Since u =1 1is a solution of (1.1), Proposition 2.1
shows that v(x,t) € 1. Thus for each x, v{(x,t) is
nondecreasing in t and bounded above. Therefore the

1imit T{w) avictg
a4 diita o CNAS CXLSOULS .

By applying the inverse of the heat operator to the

eguation (2.2) it is easy to show that Vet Voo and

v, are uniformly bounded in IR X [l,»). It then fol-

lows from the Schauder-type theory for parabolic equa-

tions (see [3, p. 92]) that on each bounded x-interval
the families of functions v , v , and v , para-
X XX t

metrized by t, are eguicontinuous in x. Therefore

on each bounded x-interval, Vv converges to T and

v o,V < and vt converge to the corresponding deri-

X X
vatives of T wuniformly. It follows that T satisfies

the steady-state equation (2.3) in IR. Since v(x,t) €

(S

11 T { ) e rm 11 A S dmean wr i~ +1) > o~ v LS
rL ] CAXy © VL] Ina sSiiice ViX,%) = Jixy i1
+

(

)

/o) XIR , T satisfies the inequality (2.4).

Finally, if o(x) 1is any nonnegative solution of
(2.3) in all of IR which satisfies the inequality (2.4),
then v(x,0) < o(x). Hence by Proposition 2.1 v(x,t)

< 0(x) and therefore also 7T(x) £ o(x). This shows

that 1(x) 1is the minimal nonnegative solution of (2,3)
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with the property (2.4).

Note that Proposition 2.2 establishes the existence

of a unique nonnegative solution of (2.3) which is mini-

mal with respect to the condition (2.4).

3. STABILITY AND THRESHOLD RESULTS

late £ ae PO T, R A 12~ ~ e ~ —m e 2T - A& -~
Uur 1Llrbt result SbhiLdbllblies LIe bltdibillily OL Llc

equilibrium state u = in the heterozygote interme-

diate case and the state u = a 1in the heterozygote

superior case.

THEOREM 3,1. Let u(x,t) € [0,1] be a solution of
(1.1) in R xR .

(1) If f£(u) satisfies (2.1) and (1.6), then ei-
ther u(x,t) =0 on
lim u(x,t) = 1.

toe

(i7) If f(u) satisfies (2.1) and (1.7), then

u(x,t) = 0, u{x,t) =1, onr

1im u({x,t) = a.
Tt

PROOF. The differential eguation
qu + f(q) = 0
has the first integral

%q'z + F(q) =k (3.1)

where k 1is an arbitrary constant and
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F(q) = fg £(u)du.

Suppose first that £f(u) satisfies the conditions

(2.1) and (1.7) of the heterozygote superior case. Then

for any € € (0,a), F(g) 1is increasing in (0,e) and

in particular F(e) > 0. Since f(g) > 0, it is easily
-1/2 . ,

seen that {F(eg) - F(u)} / is integrable on the in-

terval [0,e]., It follows that for each € € (0,a) the

problem

q'2 + F(g) = F(g)

0o

g(0) =0

1 /7

g'(0) = {2F(e)}"°

has a solution qe(x) which is positive in the interval
(O’bs)’ where

-1/2

] / du

»

b_ = 2f§ [2{F(e) - F(u)}

1
< — m
Moreover, qe(x) < qE(2 be) €, and
qE(O) = qE(bE) = 0.

As € decreases to zero, e approaches the solution

/2

e sin{f'(0) of the corresponding linearized

1
problem, and b  approaches 7/{f'(0)} /2.
c

t) 20, u(x,h)
1/2

Xy
Qi rmeea i Ll Ve EAN ! whan
[N 5y § L0 e ~ i/ L \uvy) g Wil

€
e 1s sufficiently small, and since qe(x) < g, we

In view of Proposition 2.1, if u({

> N FArv armer h > N
> < U

AV L al.l_y 11 -

can choose € > 0 so small that u(x,h) =z qE(x) in

(O’be)’ It then follows from Proposition 2.2 that

lim inf u(x,t) = lim inf u(x, t+h) = T(x)

where T(x) 1is the smallest nonnegative solution of
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q" + f(g) = 0 which satisfies g(x) 2 qe(x) in (O'be)'
To show that T(x) 2 &, we assume the contrary and

show that a contradiction results. Suppose that there

is an XO such that R = T(YO) e (0,0), Then T(x)
satisfies the first order equation (3.1) with some

_ .=1/2 . .
k > F(B). Hence {k - F(u)} is integrable on the

interval [0,B]. Therefore T(x) 1is implicitly deter-
mined by the egquation

- rB o (e =7 .1-—1/2 -
X = XO + JT 121k = F(u) ;] du,

where the sign is determined by the sign of T'(XO).
It follows that T(x) becomes zero with 71' # 0 at a

= L - o Tl oA — T P
rirnice vailue oOr X 50 Tlli4du L cdninocL e 4 INolinneydtuel

ve
solution of g" + f(g) = 0 for all x. This contradic-

tion shows that T(x) =2 o and hence that

I1f we apply this proof with o =1 when f satis=
fies (1.6) and recall that u £ 1, we obtain the state-
ment (1) of the Theorem.

We now let v =1 - u and note that v satisfies
the equation (l1.l) with f(u) replaced by -f(1 - v).
If f(u) satisfies (1.7), then -f(1 - v) > 0 for
v € (0, l-a). Hence the same proof shows that if
ui{x,t) Z 1, then

lim inf (1 -u(x,t)} =2 1 -a.
oo
Hence we have proved statement (ii), and the Theorem is

proved.

We remark that Theorem 3.1 not only proves the sta-
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bility of the state u = 1 1in the heterozygote inter-

mediate case but also the very strong instability of

the state u = 0, Similarly, statement (i1i) shows that

in the heterozygote superior case both the states u = 0

and u £ 1 are very unstable.

We now turn to the case (1.8) of heterozygote inferi-

ority. In this case we shall show that the equilibrium
states u = 0 and u = 1 are stable while u = a 1is
unstable. As a consegquence, we can expect threshold
phenomena to be associated with this case.

We begin with the following elementary lemma.

LEMMA . Let u(x,t) € [0,1] be a solution of (1.1)
in IR X rY and let f(u) < 0 1in the interval (0,v].
If u(x,0) € [0,y], then

lim u(x,t) =0

t>0
uniformly on R.
PROOF. Let v be the solution of the initial wvalue
problem

v o=V + f£(v)

t XX
v(x,0) = y.

Then v 1s independent of x and satisfies the rela-
tion
-1
t=/ 7 [~f(w] " du.
v
Hence v goes to zero as t > o,

Since v(x,0) = u(x,0), the Lemma follows from Prop-

osition 2.1.
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Our next theorem concerns the stability of the equi-
librium state u = 0 1in the heterozygote inferior case.
It is a generalization of a result proved by Kanel'[l0].
In stating the theorem we shall use the following nota-

tion: For any p € [0,a) we define

1)

s(p) sup {j{F) Tu € (a,l)}.

p

Moreover, we shall use the notation

1" = max{u,0}.

THEOREM 3.2. Let u(x,t) € [0,1] be a solution of
equation (1.1) in R xR’ where £(u) satisfies (2.1)

and (1.8). If for some p e [0,q)

21 }1/2 (a=p),  (3.2)

o +
J_[u(x,0) - p] dx < {S(p)e

then

untformly on RR.

PROOF. Fix p and write s for s(p). Let w(x,t)

denote the solution of the problem

w, =Wt sw

w(x,0) = [u(x,0) - p]+.
By Proposition 2.1, w =2 0 so that w = [w]+. Since
f(u) £ 0 on [0,a], it follows from the definition of
s(p) that

£(u) < sfu-o]".
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Let
vix,t) = ulx,t) - p
Then
v, =V - s(v <u =-u - f(u
t X [v] t XX ()
= 0
+
=W, - W - s[w] ,
t XX

In view of Proposition 2.1, v(x,t) £ w(x,t) so that
u(x,t) < wix,t) + p.

. -st e .
The function we satisfies the equation of heat

conduction. Therefore

2
(x-E)
1 o 4t +
wix,t) = s=s et S e [w(g,0 - ol dg
s = /7 o -0t ar.
2vTt 0

. -1
In particular, it follows from (3.2) that u(x,(2s) )

i1s bounded above by a constant v < a. Then the pre-

ceding Lemma proves Theorem 3.2.

Theorem 3.2 shows that the state u = 0 1is locally
stable while the Lemma proves that the state u = a is
unstable in the case of heterozygote inferiority. We
shall now show that the state u Z 0 is not globally
stable, even with respect to disturbances of bounded
support.

We observe that the hypotheses (1.8) or even (1.8")

imply the existence of a unicue « ¢ [a,l) for which
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F(x) = IO f(u)du = 0 (3.3)
Moreover, F(g) > 0 and F'(qg) = f(g) » 0 for

qge (x,1). For any B ¢ (x,l) we define the length

b, = 2IS [2F(8) - 2F(w 1} 2 4u,

and the solution qB(x) of g" + f(g = 0 which has

the first integral

%‘q'z + F(q) = F(B)

and which satisfies q(0) = 0, q'(0) = {2F(8)}"%.
Then g, >0 in (0,b ), g,(0) = g.(b,) =0, and
B o} [} B p
1
< g (= - 0,b 1.
qB(X) qB(z bB) B on [ B]

With the aid of this function we state the following
theorem.

THEOREM 3.3. Let u(x,t) € [0,1] be a solution in

the half-plane R x R' of the equation (1.1) where
f(u) satisfies the conditions (2.1) and (1.8) or (1.8".

If for some B e (x,l) and some x

0
u(x,0) = qe(x-xo) on (xo,xO + bB)'
then
lim u(x,t) = 1,
300
PROOF .,

We apply Proposition 2.2 with g(x) = qB(X)'
The proof of the fact that the minimal nonnegative

solution 1T of the equation g" + f(g) =0 on IR

which satisfies = (x-x ) X + b ) 1is
d qB( O) 0'%o B)
identically one 1s the same as that of the fact that

in (x

T o in the proof of Theorem 3.1. Thus the theorem
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is proved.

We note that Theorem 3.3 not only shows that the

state u = 0 1is unstable with respect to disturbances

with bounded support but also that the state u = 1 1is

such disturbances,

globally stable with respect t

Theorems 3.2 and 3.3 together exhibit a threshold
phenomenon. A disturbance of bounded support of the
state u = 0 which is sufficiently large on a suffi-
ciently large interval grows to one, while a disturbance
which is not sufficiently large on a sufficiently large
interval dies out.

If f(uw
apply. However, if (3.2) holds, then from the proof of
Theorem 3.2 we find that u < a for t > 1/2s(p) and
that [u(+,1/2s(p)) - p]+ € LlGR). A comparison with

the equation of heat conduction then yields

lim sup u({x,t) < p as +t > ® Since Theorem 3.3 is

=2 - ST
—

valid when (1.8') holds, there are also threshold effects

in this case,

4. PROPAGATION

In this section we investigate how the solution
u{x,t) of (1.1) behaves as a function of time. For

this purpose we introduce the moving coordinate
E =x - ct, c > 0.

If we define
v(E,t) = u(f+ct,t),

the equation (1.1) becomes
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v o= v + cv, + f(v). (4.1)

We note that the maximum principle, Proposition 2.1,

and the convergence result, Proposition 2.2, are immedi-

ately extendable to this eguation

=LY 2 2 [ R

identical to those given in Section 2, we shall simply

use these results without further comment.
The steady state equation which corresponds to (4.1)

is, of course,

g" + cqg' + £(g) = 0. (4.2)

This equation 1is equivalent to the system

qg' =p

Il

-cp - f(q).

The functions p(&), g(&) corresponding to a solution
of (4.2) give a trajectory in the g-p plane or, as it is

usually called, the phase plane. Such a trajectory has

the slope
¢ _ - 1@ (4.3)
dg p
for p # 0.
When ¢ = 0, each trajectory satisfies an equation
of the form
1 2
S Pt F(g) = constant.
Under our hypotheses on £(u) there is an n € (0,1)

such that F(n) > 0. For any VvV such that 0 < v <
[2F(n)]l/2 the trajectory through (0,-v) 1lies in the
strip ge [0,1) and contains a point of the positive p-
axis, By continuity there is a g==g(v)>>0 such that

the same is true for all ¢ E[O,g). Hence for ce [0,c)

there is no trajectory joining the origin and the line
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qg=1,
We now consider ¢ > 0. If c2 > 4f'(0), there is
a nontrivial trajectory from the origin [15,856], The

unigue trajectory in the strip g e [0,1] that goes to

the point (0,-v) with Vv > 0 cannot cross any trajec-—
tory that goes to the origin., Hence if we take the lim-
it as v {0 of the trajectory that goes to (0,-v) and
if c2 > 4f'(0), we obtain a nontrivial extremal tra-
jectory going to the origin. We denote this extremal
trajectory by TC.

Wea define

LAAIR S S S S Lend

so that
£(u) £ ou for u e [0,1].

It follows that if T 1is any trajectory of (4.3), then

do . . _ .2
dg

o]

at every point of T where g e [0,1] and p < 0. On

the other hand if 02 > 4g, the line through the origin

- (c +\Jc2-4o) q (4.4)

2

satisfies the differential equation

dp !
= = - N
dq r

Consequently, the trajectory through (0,-v) with v > 0
cannot cross this line for g € [0,1]. It must there-
fore lie below it. Taking the limit as v} 0, we see
that for 02 > 40, Tc is bounded above by the line

(4.4). In particular, T, connects the origin with a



ARONSON, WEINBERGER 25

point of the form (1,-v) with v > 0.

In view of the above observations, the number

c* = inf{c: c2 > 4f'(0), there exists v > 0
such that (1,-v) € TC}
is well-defined and positive. In the remainder of this
section we shall exhibit various properties of c¢*. In
particular, we shall show that c¢* 1s the asymptotic

speed of propagation assoclated with the equation (1.1).

THEOREM 4.1. Let u(x,t) € [0,1] be a solution of
equation (1.1), where f(u) satisfies (1.6), (1.7),

. +
(1.8), or (1L.8"), in R xR . If for some x

0
u(x,0) =0 1in (xO , ©), (4.5)
then for each & and each c > c*,
lim u(g+ct,t) = 0. (4.6)
300
PROOF. Let qc(x) denote the solution of the steady

. + .
state equation (4.,2) in R which corresponds to the
trajectory Tc and for which qc(O) =1, d, is de-
creasing and approaches zero as x > ©.

1l - u satisfies

We observe that the function w
an equation like (1.1) but with £(u) replaced by

-f(1 - w). We apply the extension of Proposition 2.1

with g=1 - qc(x - xo) in (xO ; ®)  to the equation
W, =W + cw, - £(1 - w).
£ T Vgg T g T F
We note that 1 - u(x,0) 21 - g (x - xo). Hence by
C
the extensions of Propositions 2.1 and 2.2
lim inf (1 - u(&+ct,t)) > 1 - 1(§) (4.7)

t >
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where T(§) 1is the solution of equation (4.2) which is

maximal with respect to the properties

™) £ 1 in R (4.8)
and
T(E) £ g (E-x) in (x ,*®), (4.9)
c (@) o]
We must now show that Tt(£) = 0.
For any ¢ > O such that 02 > 4f'(0) the trajectory
TC has slope S at the origin, where
('\i- — l-’ —~ ..L‘I-z Al‘.‘l/f\\)
o = EQ—L — VC —%I'\U)" -

Moreover, Tc is the unique trajectory with this slope
at the origin. Any other trajectory which approaches the
origin with g > 0 must do so with the slope S+. These
statements can be proved by the methods used by Petrovski
[15, §56].

Since ¢ > c*, the trajectory T lies in the half

plane p < 0 for g e (0,l1] and contains a point

(1L,-v) with v > 0, If T(f) Z 0 , then the correspon-
ding trajectory T has slope S+ or S at the origin.
Since the slope of TC at (0,0) is s , it follows
from (4.9) that T cannot have slope S+ at (0,0).

Therefore T = T , and there exists I € TR such that

c
(¢) =1 and T1'(g) = -v < 0. Hence 71T(§&) > 1 for some
£ < g, This contradicts (4.8), and we conclude that

T = 0. Since u(x,t) 2 0 the assertion of the theorem

follows from (4.7).
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In view of (4.3) and the uniqueness property of T
C

it can be shown that for EQ > 4f'(0), T  approaches
c

HTE as c > c. That is, TC is continuous in c¢.
REMARKS. 1, Because the trajectory TC has slope
1 ‘[ 2 .
- \¢ + ¥c - 4f'(0)/, the function . has the prop-
erty

1 ( 2
- >{c+Vc —4f'(0))
lim g (x)l/x = e 2

c
b
One can then see from the proof that the condition (4.5)
can be replaced by
. 1/x
lim u(x,0) / = 0,
X>®
2. Since the equation (1.1l) is invariant when x

is replaced by -x, the conclusion (4.6) holds for

c < =c* if (4.5) is replaced by

u(x,0) = 0 in some interval (-« , xo)
or by
. -1
lim wu(x,0) /% = 0.
X——
3. If u(x,0) = 0 outside a bounded interval, we
have (4.6) for [c[ > ¢*, Moreover, 1t can be shown

that the convergence is uniform in this case.



(1.7)

- s F

(1L.8), or (1.8'"), there extsts a travelling wave so-

lution u = g*(x - c*t) of (1.1). Moreover, qgq*'(f) <0,
lim g*(£) =0
£ >
and
1 Zf f(u) satisfies (1.6), (1.8),0r (1.8"
lim g*(g) =
E>—oo a 1f f(u) satisfies (1.7).
PROOF . If c*2 > 4£'(0), then the trajectory TC*

exists and lies in the half-strip gq ¢ [0,1], p £ 0 at
least in a relative neighborhood of the origin. T _, 1is
ok

minimal in the sense that there is no other trajectory

which lies below T and approaches the origin
C* od ol 4 hd
2 .
If c*” > 4f'(0) and Tc does not intersect the

*

positive g-axis, then by continuity the same will be
true of T  for a slightly smaller value of ¢, which
contradicts the definition of c¢*. Therefore Tc in-

*
argsects the g-axis at a point (n.O) with n € (0,17.

1 4 & lo ol 4 LIl LI N ¥ i 18] B

H

f £(n) # 0, then since Tc* must go in the negative
g-direction for p < 0, (4.3) implies that £(n) > 0.
But then there is a number n, > n  such that f(nl)> 0.
The part of the trajectory through (nl , 0) on which

and must go to the negative

p < 0 lies below TC*,

p-axis. By continuity, the same will be true for suf-
ficiently small ¢ > c*, and the resulting trajectory
through (nl + 0)  bounds TC away from g = 1, This

agalin contradicts the definition of c¢*, We conclude
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that TC must hit the g-axis at a point (n,0) where

*

f(n) =0,

According to (4.3), if £f(g) < 0, the slope of Tc*

i1s negative. Therefore, TC* cannot hit the g-axis at

a zero n of f(u) which is the right endpoint of an
2

* "> '

then T must hit the g-axis at (1,0) in the cases

C*
(1.6), (1.8), and (1.8') and at (o,0) 1in the case
(1.7) .
If, on the other hand, c""Z = 4f'(0), then since

c* > 0, f£'(0) must be positive. Hence £f(u) satis-
fies (1.6) or (1.7). In particular, f(u) > 0O in an
interval (0,a), where we set o =1 1in the case (1.6).
The trajectories through the points of the interval (0,q)
of the g-axis go downward and to the left in the half-
strip g € [0,1], p < O, Hence they cannot recross the
positive g-axis. On the other hand, suppose that a tra-

3y ST A TNV . I3 Ny wrs +1
i LLLLULAKJLI SOQLIE PpOLILL Vi) WL Uik

B

ne(0,a) went to a point (0, -v) on the negative
p-axis. By continuity the trajectory Sc(n) through
(n,0) would still go to the negative p-axis for any
sufficiently small ¢ > c*. Since Sc(n) would bound
TC away from the g-axis, we would again find a contra-
diction with the definition of c¢*. We conclude that
every trajectory Sc*(n) through a point (n,0) with
n € (0,0) must go to the origin. By continuity the
same is true of the limit of these trajectories as 1
approaches «. This limiting trajectory connects the
point (o,0) with the origin.

We have shown that there is always a trajectory in

the phase plane that connects (1,0) to the origin in
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the cases (1.6), (1.8), and (1.8') and that connects
(a,0) to the origin in the case (1.7). Any solution

g*(g) corresponding to this trajectory clearly has the

properties stated in the theorem.

REMARKS., 1. If c*2 = 4f'(0) the trajectory corres-

ponding to g* may not be the minimal trajectory

through the origin, which we have called TC For ex-

*°

ample, if f(u) has the property £(u) < £'(0)u, then

If

F'(0). Hence T lies below the line (4.4) with

o] .

¢ =c*, Thus T , goes to the negative half-line

g=1. Since f'(0) > 0 in this case, the proof of
Thamnvram 4 1 wnrlce wi+h ~ o= ok
P S wL WS B NIR Y T g o WL/ L N ¥¥ L .l “ A -

2. If £f*(0) > 0, the above proof can
be extended to show that there is a travelling wave so-
lution with the properties stated in Theorem 4.2 for
every ¢ 2 c*. The problem treated by Kolmogoroff,
Petrovsky, and Piscounoff [11] has the properties of
Remarks 1 and 2.

3. The function g*(-x - c*t) gives a trav-

elling wave with velocity -c*.

Finally, we consider the behavior of u(&+ct,t) for
|c] < c*. Here we shall have to consider the three

cases separately.

THEOREM 4.3, Let wu(x,t) € [0,1] be a solution of
(1.1) in R xR where f(u) satisfies (1.6). If
u(x,t) Z 0, then for each c with |c| < c* and each

3

lim u(&+ct, t) = 1.
o0
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1 C .
PROOF. If c e (0,{4f'(0)} /2), then the origin in
the phase plane is a spiral point. This means that

there are trajectories in the strip g € [0,1] which

connect the positive p-axils to the negative p-axis.
If c*2 > 4£'(0), the proof of Theorem 4.2 shows
that Tc* goes from (1,0) to (0,0) 1in the lower

12,

half plane. Consider any c € ({4f'(0 c*). Be-

cause of equation (4.3), the trajectory Tc lies above

£

. Hence TC crosses the g-axis at a point n,0)

T,
with ne (0,1). Then if B € (n,l) the lower part of
the trajectory T through (B,0) stays below T..
Therefore, T goes to the negative p-axis. Since

f(u) >0 in (0,1), we see from (4.3) that the slope
of T 1is negative in the upper half-plane. Moreover,
the slope is bounded below when p 1s bounded away from
zero., Therefore, T goes from a point on the positive

p-axis to (B,0) and from there to a point on the nega-

tive p-axis.

We have shown that for each ¢ ¢ (0, c¥*)
there is a trajectory T which connects the positive
p-ax1ls to the negative p-axis. T crosses the g-axis
at a point (B8,0) with B ¢ (0,1), and lies in the
strip gq € [0,B]. Let qB be the corresponding solu-
tion of g" 4+ cqg' + £f(g) = 0 for which qB(O) =0,
qB'(O) > 0. This solution is positive on a finite in-
terval (0,b) and vanishes at its ends. Moreover,
qBGQ < B < 1.

According to Theorem 3.1, u(x,t) converges to 1

as t - ®, Moreover, this theorem was proved by using

Proposition 2.2, which states that the
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convergence is uniform on every bounded x-interval. In

particular, there is a time T so that

u(x,T) 2 B =2 qB(x) on [0,b].

Theorem 4.3 for ¢ € [0,c*) now follows from apply-

ing the extensions of Propositions 2.1 and 2.2 to the

solution v of (4.1) and recalling that v(£,t) =

u(&+ct,t) . Since replacing x by -x replaces c by

In exactly the same manner we can prove:

THEOREM 4.4. Let u(x,t) € [0,1] be a solution of
(1.1) in R xR where f(u) satisfies (1.7). If
u(x,0) Z 0 then for each c such that |c| < c*x and
each &

lim inf u(&+4ct, t) 2 «,
t > o

We remark that in this case there will in general be
another propagation speed at which the decrease of u
to o travels,

In the heterozygote inferior case we have seen that
u(x,t) -1 1if and only if the initial conditions ex-
ceed some threshold value. Thus we cannot expect the
analogue of Theorems 4.3 and 4.4 to hold without some
conditions such as those of Theorem 3,3 on u(x,0).

With this in mind we can carry through the argument

used above to obtain the following result.

THEOREM 4.5, Let u(x,t) e [0,1] be a solution

of (1.1) inm R xR where f(u) satisfies (1.8) or
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(1.8') . Suppose that
lim u(x,t) = 1.

oo

Then for every c with |c| < c* and each &

lim u(E+ct, t) = 1.

=00

We see from Theorems 4.1, 4.3, 4.4, and 4.5, that a
disturbance which is initially confined to a half-line
x < X, and which increases to either 1 or o 1is
propagated with the asymptotic speed c*. More pre-
cisely, if B 1is any constant such that 8 ¢ (0,1) in

cases (1.6), (1L.8), or (1.8') or B e (0,n) in case

(1.7), and if we define

x(t)

]

max {x: u(x,t) = B},

x(t)

min {x > 0: u(x,t) = B},

then

lim x/t = lim x/t = c*,

A e A\
L0 L

5. THE INITIAL-BOUNDARY VALUE PROBLEM

We now consider the initial-boundary value problem

. + +
= + 1 X
ut uxx f{u) n R R,

u(XIO)

1
o
-
=}
H

(5.1)

u(0,t) y(t) in R,
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where Y(t) is a given function with values on the in-

terval [0,1]. Since both the results for this problem
and their derivations are very similar to those for the
initial value problem, we shall only sketch the proofs.

The analog of Proposition 2.2 is the following prop-

osition, which is proved in the same manner.

PROPOSITION 5.1. Let q(x) € [0,11 be a solution
of the equation q" + f(q) =0 in (a,b) with a > 0,
and let g(a) = g(b) = 0.

Let vi(x,t) denote the solution of the initial-

boundary value problem

v =V + f(v) in ]R+ XIR+,
t XX

jq(x) n (a,b)
v(x,0) =

o in R'\(a,b),
v(0,t) = ¢(t) in R,

Suppose that ¢(t) <is nondecreasing, ¢(0) =0, and
¢(t) € [0,1].

Then v(x,t) is nondecreasing in t and

lim v(x,t) = T(x)
oo

where 1(x) 18 the smallest nonnegative solution of the
equation

™ + f(1) =0 <Zn ®r
which satisfies the inequalities

T(0) = lim ¢(t)
5w

and

T(x) =2 g(x) in (a,b).
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Moreover, the convergence of v to T 18 uniform on

each closed bounded interval in the interior of TR .

If f(u) satisfies the conditions (1.6) of the het-

erozygote intermediate case, we see from the first in-
tegral (3.1) that the initial value problem
. +
g" + £(g) =0 in R
(5.2)
g(0) = B
has a unique solution in [0,1] for each B ¢ (0,1]
and two such solutions for £ = 0. All these solutions

other than g = 0 approach 1 as x » «», By employing

Prormacition 2 1 and Pramnncitimm & 1 4m a nrant 1ibka hat
ey Lvr’\jud. S e W’ A L o o o Al ey J_Ut}\.lu wde Re LWALL P A1 -t r’-‘-uvu‘w ke S d 11 L.
of Theorem 3.1 we find the following result:

THEOREM 5.1, Let u(x,t) e [0,1]1 be the solution

of the problem (5.,1) where f(u) satisfies (1.6). If

u(x,t) 2 0, then
lim inf u{x,t) 2z 1(x)

£ > oo
where 1(x) 18 the unique positive solution of the
problem (5.2) with

B = lim inf ¢(t).

£ > o

In particular,

1lim lim inf u(x,t) = 1.
X0 f£ >

Thus if ¢(t) # 0, u(x,t) approaches values near
one far from the boundary regardless of the behavior of

P (t) .



w
[9)]

In the same manner we find that if f(u) satisfies

the conditions (1.7) of the heterozygote superior case,

then

[

,£) = 1lim lim sup u(x,t) = o

i

im lim inf u(x
00 t

»

unless {(t) = O
In the heterozygote inferior case (1.8) or the com-
bustion case (1.8"'), it is easily seen from (3.1) that
for B ¢ [0,k), with «x defined by (3.3), there is a
solution qB(x) of the problem (5.2) such that
lim qB(x) = 0,
X0
(There is another solution which approaches 1, but we
shall not use it.)
We then find the following result from Proposition

2.1.

THEOREM 5.2. Let u(x,t) ¢ [0,1] be the solution
of the problem (5.1) and let f£(u) satisfy (1.8). If

B = sup p(t) < x,

te

L Al

then u(x,t) < q,(x). In particular,

lim lim sup u(x,t) = 0.
X £t > w

One can, in fact, obtain the following analogue of

Theorem 3.2.

THEOREM 5.3. Let u(x,t) € [0,1] be the solution
of the problem (5.1) with £(u) subject to the condi-
tions (1.8).
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Suppose that for some T € R and some p € (0,0)

b(t) £ p in (T,=)

= r

and

fT eS(p)(T—t)

0 Wt - 017 at < Y2n/e (a - 0)/s(p),

where s(p) and [u]+ are defined as in Theorem 3.2.
Then

lim lim sup u({x,t) =0
X >0 t > o
REMARK. If f(u) only satisfies (1.8'), we can

still show that under the conditions of Theorem 5.3

lim sup u(x,t) < p.
£t

The following result, together with the two preced-
ing theorems, shows that there 1is a threshold effect in

the initial-boundary value problem.

THEOREM 5.4. Let u(x,t) € [0,1] be the solution
of the initial-boundary value problem (5.1) and let

f(u) satisfy (1.8)or (1.8'). Let «x be defined by
(3.3).
For any B € (x,1) there is a positive time TB
with the property that the condition
t) = on (t.,t 4+ T 5.3
y(t) B ( 0 & B) (5.3)
for some nonnegative 5 implies
lim lim inf u(x,t) = 1. (5.4)

—>00 t > o

]

PROOF. Let ¥x(t) be a smooth nondecreasing function
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which satisfies the conditions

0O in (-=,0)

x(t) =
28 in (l,»).

Let w(x,t) denote the solution of the problem

+ +
W o= W + f(w) in R xR ,
t XX
. +
w(x,0) =0 in R ,
) +
w(0,t) = x(t) in R .

By Proposition 5.1
lim w(x,t) = 1T(x)
500
where T1(x) 1s the smallest nonnegative solution of
the problem (5.2)., Since B > k, the problem (5.2)
has only one nonnegative solution, and this solution is
increasing, so that

T(x) > B8 in ®.

Moreover, the convergence of w(x,t) to T(x) 1is uni-
form on each bounded interval.

We recall the solution qg(x) of g" + f(q) =0
which was used in the proof ;f Theorem 3.3. It is de-
fined and positive in an interval (0,b_ ), wvanishes at

B

the ends of this interval, and satisfies the inequality
(x) < (l-b ) =B on (0,b,)
qB - qB 2 6 ! B hd

Thus qB(x - 1) < 1(x) on (l,bB + 1) .

Since w(x,t) converges to rt1(x) uniformly on

[l,bB + 1], there is a time TB for which

w(x,T,)) = qB(x -1) on [1,b

8 + 1].

B
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We now apply Proposition 2.1 to see that because of

(5.3),
, +
u(x, t+to) > w(x,t) in R X [O,TB].
Hence
u({x, T, +t ) = (x - 1) in (1, b +1).
RS qB\ ) (L1, 8 )
Because of Propositions 2.1 and 5.1, 1lim inf u(x,t)

t >
. . . . +
is bounded below by a nonnegative solution T*¥ in R

cf g" + £(g) = 0 which, in turn, is bounded below by

q,(x - 1) in (1, b_+1). In particular T*(%—ba + 1)
P B Z P

=2 B >k, The first integral (3.1) then shows that

T(x) > 1 as x - «, which proves (5.4).

If, as in Section 4, we introduce the coordinate
E = x - ct, the set ZR+ XZRf is mapped onto the set
{(g,v): £ > -ct, t >0}, If ¢ >0, we can prove an
. extension of Proposition 2.2 for solutions wv(f£,t) of
VEE + cvg + £(v) = 0 which vanish on the boundary
£ = -ct, The limit T(£) 1is a nonnegative solution of
™ 4 ct' 4+ £(1) = 0 1in all of R. The proofs of Theo-
rems 4.1, 4.3, 4.4, and 4.5 now yield the following re-

sult, with c¢* defined as before.

THEOREM 5.5. Let u(x,t) € [0,11 be the solution
of the problem (5.1) and let £(u) satisfy one of the
conditions (1.6), (1.7), (1.8), or (1.8").

(a)  Then for any c > c* and any real &

lim u(&+4ct, t) = 0.
)

(b) If 1lim lim inf u(x,t) = 1, then for any

X0 £ > ®
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c e (0,c%) and any real &
lim u(gf+ct, t) =1,
Tt
(¢) If £(u) satisfies (1,7) and u(x,t) Z 0,

then for any c e (0,c*) and any real &

lim inf u(E+ct, t) 2 o,
£ > o

Thus c* 1is also the asymptotic propagation velocity

associated with the initial-boundary value problem (5.1).

EQUATION

In this section we shall indicate how the initial
value problem for the equation (1.1) with £(u) given by
(1.4) 1is related to the initial value problem for the
system (1.2).

We first consider the initial value problem which comn—

+

sists of finding a solution of the system (1.2) in R XR

subject to the initial conditions
pj(x,O) = Yj(x) in R, (j=1,2,3). (6.1)
The functions Yj are assumed to be smooth and nonnega-

tive. Moreover, we assume that there exist positive

constants a and b such that

(@]
A
Q
| A
-
—_
»
T
—~—
(&)
[N}
S

The solution of the problem (1.2), (6.1l) is obtained
by inverting the linear part of the operator and applying
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the method of successive approximations. Let p,

denote the j~th component of the {~th iterate, where

0 . , .
Y is the j=-th component of the solution of the un-

coupled system

== - TP, (3 =1,2,3)

with the initial data (6.l). By the maximum principle

(14], oj(O) > 0. Let
V = max (Tl ,T2 ,T3)
and
(L) Q) (%) (L)
P = Dl + 02 + 93 .

Using (6.2) in a standard comparison argument, we obtain

the estimate

- +
p(o)(x,t) > ae VEon R xR

Since the nonlinear terms in (l1.2) are nonnegative when

the pj are nonnegative and their sum p 1s positive,

(L) (0) (%)
0. > o,

it follows that and hence also that p

-Vt
p(o) > ge for all &. It is then a routine matter

>
Y

L
to show that the pg ! converge to the unique bounded

solution of the problem (1.2), (6.1) in R x(0,T] for

+
any T e R . In particular, the components pj of the

t +
p(x,t) > ae °° in R xR . (6.3)

Moreover, in carrying through the details of the succes-
Sive approximations, one also obtains the bounds

p(x,t) =< be(rwx)t
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and
E ' ot o t (r-Mt
'—p 0 | <" Y sup |v!| + prye (6.4)
X — . j ™
j=1 R
where

A = min (Tl ,12 ’TB)'

If we introduce the new dependent variables

1 1
v=—1(p, + S0,)
M 3 PA Z
1 2
g = = (p2 - 4plp3) } (6.5)
o
- -2 (log p)
H ox g Pl
the gsystem (1.2) becomes
ov 82 ov 1
N2V fv) =2y Zr= {(r.-1)v - (1.-1.) (1-v)}0 (6.6a)
3t 2 ax 4 2 1 2 3
X
riYe] 320 o0 T*
—— — - - - + —_—
T 2 2u ax-ffr (Tl 13)(1 2v) 2 olo
* , | (6.6b)
= 4% v2(lmv)2-8(a—v>
9xX
u Bzu 3 2 T* 2 2
e ek 9 - - - .6
3t 2 {u +2 0+(12 T3)v +(~r2 rl)(l v) “} (6.6¢)

where f 1is defined by (1.4) and

* = - + .
T Tl 2T2 13

Note that v represents the relative density of the
allele A in the population. The guantity ¢ measures

the deviation of the system from the Hardy-Weinberg equi-
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librium, while p measures its deviation from uniform
population density.

To establish a relationship between the equation (1.1)
and the system (1.2) we must find conditions which guar-
antee that the right-hand side of (6.6a) is negligible

IS S

f. In e usual derivations of

quatior

QO

relative t

[4)

(1.1) in population genetics it is tacitly assumed that

= = 0. However, (6.6c) shows that this assumption

Q
il
=
H

implies 09v/9x £ 0. Thus, if o =y £ 0, there is no
spacial variation, and, in particular, no diffusion. Here

we chall only agaiime hat+ I /A and 1 are initiallvy
FY S e Ay e vlld—l e vt ad LLELL S Sk A O S UV/ U Al LNt H A Ao S ke b A e N e e e

[ ]

small.
The solution of the initial value problem (1.2), (6.1)

generates a solution of the system (6.6) with initial

data
vix,0) = v (x), 0(x,0) =0 (x), p(x,0) =y (x) in R
o o o
where, for example,
1
+_
oo o Y3(x) 2*(2(X)
" .
o Yl(x) YZ(X)+Y3(X)
Since p, >0 and p > 0, wWe have
ve [0, 1, o€ [-1, 1] in R XTR . (6.7)

Moreover, by (6.3) and (6.4), u 1is bounded in every
strip IR x[0,T].
we shall assume for simplicity that
My z 0 in IR. (6.8)
In view of (6.7) the term in braces on the right-hand

5
side of (6.6c) is bounded by u2 + 7 € where
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£ = ‘Tl“"f + IT3'~T2!

.|

is a small parameter. It follows from (6.6c) that

Pad V. S 1
lu(x,t)!gj v] i%%—(x—i,t—n)l (g, 0%+ >elaedn, (6.9)
o ¥R

where G(x,t) denotes the fundamental solution of the

equation of heat conduction. Let

M(t) = sup |u(,m]. (6.10)
RX[0,t]

Then (6.9) implies that

A

|

(o) < 24 S {2 4

L AL §

Therefore

— 1/2{
1 m 20t
Mﬁ)gng%lew W) :

F

provided 20te < 7w, In particular, if et € [0,37/80],

then 1- (20et/m) > 1/4. It follows from the mean value

theorem that

Iu(x,t)[< M(t) < 5&:{E in R x[O, 3L:| . (6.11)
- - T 80¢

In order to estimate the product y * 3v/9Xx we need a

suitable bound for [Bv/ax[. For this purpose

1
“

(x) | < kg™, (6.12)

Here and in the sequel we denote by k, with or without
subscript, a constant which does not depend on € or r.

From (6.6a) we obtain the integral identity
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ox
t
+ [Jf G (x-~£&, twn)jzu i—z+ £ (v) (6.13)
JO r X {
l B
+ 7 [(Tzwfl)v - (T2—~T3) (1-v)]ogdEdn.
Let
33_- |
m(t) = sup —w-(E,n);.
Rx[0,t] %%
Thus by (6.7),

f(v) = O(e).

In view of (1.4), we have
we find that

{6.11), (6.12), and (6.13)
2 2 3
m(t) iklE / + 5etm(t) + kzet / in [O, -E;OT—E:‘ .
Thus
‘8—" (x,8) | <m(t) <ke/? in R x{o, 3L] (6.14)
‘Bx | — - | 80¢
Moreover, for t e [0, 3m/80c], equation (6.6b) has
the form
2
3 9 ¢ o0 _
e 5 24 % + (r~-c)o = g,
ox
where, in view of (6.7) and (6.14), <c <_k3€ and
]gl <k,e . If r > 2ek, , a standard comparison argu-
“t -2
ment shows that
1
- —rt 2ek
2 4 3 ]
X — 6.1
+ ” in R [O, 20e J / ( 5)

lo(x,t)| < se
(Note that by

where s 1is an upper bound for ]0 (x) l
o)

(6.7), s <1.)
Let u dencote the solution of the equation (1.1) with
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YA (S B £S 7 YV LAY ded Ad LT AL
u(x,0) = v (x). By the mean value theorem and (6.6a),
o

the difference

satisfies the eguation

oW 82w

— - — = f'(MM)w = 2 324_£{H ~T.)JV — (T
32 W = Ak s T VT

where n(x,t) lies between u(x,t) and v(x,t) and

2WT3)(lWV)JG;

hence between 0 and 1. We see from (6.7), (6.11),
(6.14) , and (6.15) that

3 32w w%rt £
Mo L fr(mw| < kelse + Vet + =
3t 2 — r
0x
in R XED, 21—}
80¢
According to (1.4), £'(u) = O(e) so that tf'(n) is

uniformly bounded for t ¢ [0, 3m/80¢]. Since w(x,0) =

Therefore, the difference lu - vl 1s very small com-
pared to ¢€t, provided that e/r 1is sufficiently small
and £-<< t << L-.
r £
Since f(u)/e 1is bounded below on any closed inter-

val which does not contain O, a, or 1, we can ex-
pect the effect of f(u) on the solution of (1.1) to be
of the order e€t. Thus for t which are large compared

-] -
to r ~, but small compared to ¢ l, the error made by



is small compared to the effect of f.

REMARKS. l. The estimate (6.15) shows that
-1 -] -1 . .
6 =0(er ) for t>r log(re ). Thus any deviation

from the Hardy-Weinberg law is damped out in time

-1 -1 , , .
r log(re ). For a system which has been in operation
for at least this long before t = 0, we can assume that

-1
s = O(er ). It then follows from (6.16) that lu—v{ =

to(e) for all +t << ¢

2. The assumption that My Z 0 1s not necessary.

. , 1
The inequality (6.16) is still valid if H, = o(e /2).

- o g

3. By simple dimensional considerations, it follows

that the propagation speed c¢* associated with equation
(1.1) 1s of order e’ “ when f(u) 1is given by (1.4).

Thus the time it takes a pulse to reach a particular

-1/2

point is of order ¢ , which may be small relative
-1

to e .
4, Since the bounds (6.11) and (6.14) do not depend
upon a or b, a simple limiting process shows that

the condition (6.2) may be replaced by the condition
v(x) > 0.
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